THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Homework 4 Due Date: 3rd October 2019

Compulsory part

- 1. Let $\phi: G \to G'$ be a group homomorphism. Show that if |G| is finite, then $|\phi[G]|$ is finite and is a divisor of |G|.
- 2. Show that any group homomorphism $\phi: G \to G'$ where |G| is a prime must either be the trivial homomorphism or a one-to-one map.
- 3. Let $\phi: G \to H$ be a group homomorphism. Show that $\phi[G]$ is abelian if and only if for all $x, y \in G$, we have $xyx^{-1}y^{-1} \in Ker(\phi)$.
- 4. Let G be a group. Let $h, k \in G$ and let $\phi : \mathbb{Z} \times \mathbb{Z} \to G$ be defined by $\phi(m, n) = h^m k^n$. Give a necessary and sufficient condition, involving h and k, for ϕ to be a homomorphism. Prove your condition.
- 5. Let G be an abelian group. The elements of finite order in G form a subgroup group of G. This subgroup is called the torsion subgroup of G. Find a torsion subgroup T of the multiplicative group \mathbb{C}^* of nonzero complex numbers.
- 6. It is known that: Let G be an abelian group. Let H be a subset of G consisting of the identity e together with all the order 2 elements in G. This H is a subgroup.

Find a counterexample to the above with hypothesis that G is not abelian.

- 7. Show that if G is nonabelian, then the factor group G/Z(G) is not cyclic. [Hint: Show that if the factor group G/Z(G) is cyclic, then G is abelian.]
- 8. Show that a nonabelian group G of order pq where p and q are primes has a trivial center.

Optional part

- 1. Let $\phi: G \to G'$ with kernel H and let $a \in G$. Prove the set equality $\{x \in G : \phi(x) = \phi(a)\} = Ha$.
- 2. Find a necessary and sufficient condition on G such that the map ϕ described in Question 4 is a homomorphism for all choices of $h, k \in G$.
- 3. Prove that A_n is simple for $n \ge 5$, following the steps and hints given.
 - (a) Show A_n contains every 3-cycle if $n \ge 3$.
 - (b) Show A_n is generated by 3-cycles for $n \ge 3$. [Hint: Note that (a,b)(c,d) = (a,c,b)(a,c,d) and (a,c)(a,b) = (a,b,c).]

(c) Let r and s be fixed elements of $\{1, 2, \dots, n\}$ for $n \ge 3$. Show that A_n is generated by n "special" 3-cycles of the form (r, s, i) for $1 \le i \le n$. [Hint: Show every 3-cycle is the product of "special" 3-cycles by computing

$$(r,s,i)^2$$
, $(r,s,j)(r,s,i)^2$, $(r,s,j)^2(r,s,i)$, and $(r,s,i)^2(r,s,k)(r,s,j)^2(r,s,i)$.

Observe that these product give all possible types of 3-cycles.]

(d) Let N be a normal subgroup of A_n for $n \ge 3$. Show that if N contains a 3-cycle, then $N = A_n$. [Hint: Show that $(r, s, i) \in N$ implies that $(r, s, j) \in N$ for $j = 1, 2, \dots, n$ by computing

$$((r,s)(i,j))(r,s,i)^2((r,s)(i,j))^{-1}$$
.

-]
- (e) Let N be a nontrival normal subgroup of A_n for $n \ge 5$. Show that one of the following cases must hold, and conclude in each case that $N = A_n$.
- Case I N contains a 3-cycle.
- Case II N contains a product of disjoint cycles, at least one of which has length greater than 3. [Hint: Suppose N contains the disjoint product $\sigma = \mu(a_1, a_2, \dots, a_r)$. Show $\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}$ is in N, and compute it.]
- Case III N contains a disjoint product of the form $\sigma = \mu(a_4, a_5, a_6)(a_1, a_2, a_3)$. [Hint: Show $\sigma^{-1}(a_1, a_2, a_4)\sigma(a_1, a_2, a_4)^{-1}$ is in N, and compute it.]
- Case IV N contains a disjoint product of the form $\sigma = \mu(a_1, a_2, a_3)$ where μ is a product of disjoint 2-cycles. [Hint: Show σ^2 is in N, and compute it.]
- Case V N contains a disjoint product σ of the form $\sigma = \mu(a_3, a_4)(a_1, a_2)$, where μ is a product of of an even number of disjoint 2-cycles. [Hint: Show that $\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}$ is in N, and compute it to deduce that $\alpha = (a_2, a_4)(a_1, a_3)$ is in N. Using $n \ge 5$ for the first time, find $i \ne a_1, a_2, a_3, a_4 \in \{1, 2, 3, \dots, n\}$. Let $\beta = (a_1, a_3, i)$. Show that $\beta^{-1}\alpha\beta\alpha \in N$, and compute it.]