THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Homework 3 Solution Due Date: 26th September 2019

Compulsory part

- 1. For $n \geq 2$, then $|A_n|$ is of index 2, so A_n is a normal subgroup of S_n . And also S_n/A_n is isomorphic to \mathbb{Z}_2 . If $n = 1$, then $A_n = S_n$ so S_n/A_n is the trivial group of only one element.
- 2. Note that the torsion group T is a subgroup of G (Why?). Because G is abelian, every subgroup of G is a normal subgroup, so T is normal in G. Suppose that xT is of finite order in G/T ; in particular, we have $(xT)^m = T$ for some positive integer m. Then $x^m \in T$. Because T is a torsion group, we must have $(x^m)^r = x^{mr} = e$ in G for some positive integer r. Thus x is of finite order in G, so that $x \in T$. This means that $xT = T$. Thus the only element of finite order in G/T is the identity T, so G/T is a torsion free group.
- 3. We have $|G/H| = m$. Because the order of each element of a finite group divides the order of the group, we see that $(aH)^m = H$ for all elements $aH \in G/H$. On the other hand we have $a^m H = (aH)^m$, so we see that $a^m \in H$ for all $a \in G$.
- 4. Let H be the intersection of all subgroups of G that are of order s. Notice that H is still a subgroup of G. Note that if $K < G$ is of order s, then for any $q \in G$ $qKq^{-1} < G$ is also of order s. So $H = gHg^{-1}$ for any $g \in G$. Hence H is a normal subgroup.
- 5. Let $H = \{g \in G | i_g = i_e\}$. This H is a subgroup of G as for any $a, b \in H$, we have for any $x \in G$,

$$
(ab^{-1}) x (ab^{-1})^{-1} = ab^{-1} xba^{-1} = axa^{-1} = x.
$$

Let $h \in H$. For any $g \in G$, $i_{ghq^{-1}} = i_e$ since for any $y \in G$

$$
(ghg^{-1}) y (ghg^{-1})^{-1} = ghg^{-1}ygh^{-1}g^{-1} = gg^{-1}ygg^{-1} = y.
$$

This shows that $ghg^{-1} \in H$ for any $g \in G$.

- 6. (a) The $n \times n$ matrices with determinant 1 form a subgroup of $GL(n, \mathbb{R})$. The normality follows from $\det(AXA^{-1}) = \det(A)\det(X)\det(A^{-1}) = 1$ for any X having determinant 1.
	- (b) The $n \times n$ matrices with determinant ± 1 form a subgroup of $GL(n, \mathbb{R})$. The normality follows from $\det(AXA^{-1})^2 = \det(A)^2 \det(X)^2 \det(A^{-1})^2 = 1$ for any X having determinant ± 1 .

Optional Part

- 1. Let $\{H_i | i \in I\}$ be the set of all normal subgroups of G containing S. Note that G is such a subgroup of G, so the index set I is nonempty. Let $K = \bigcap_{i \in I} H_i$. By Problem 4, we know that K is a normal subgroup of G, and of course K contains S because every H_i contains S . From the constructions, we see that K is contained in every normal subgroup H_i of G containing S, so K must be the smallest normal subgroup of G containing S.
- 2. (a) The associativity is clear. The subset $\{e\}$ acts as identity for this multiplication. Note that \emptyset has no inverse, so $P(G)$ is not a group under this operation.
	- (b) Note that if N is a normal subgroup, then we have $(ab)N = (aN)(bN)$ for any $a, b \in G$.
	- (c) Associativity is clear. The coset N acts as identity element. The equation

$$
(a^{-1}N)(aN) = eN = (aN)(a^{-1}N)
$$

shows that each coset has an inverse, so these cosets of N do form a group under this multiplication. The identity of the coset group is N , while the identity for the multiplication of all subsets of G is $\{e\}$. If $N \neq \{e\}$, these identities are different.