THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Homework 3 Solution Due Date: 26th September 2019

Compulsory part

- 1. For $n \ge 2$, then $|A_n|$ is of index 2, so A_n is a normal subgroup of S_n . And also S_n/A_n is isomorphic to \mathbb{Z}_2 . If n = 1, then $A_n = S_n$ so S_n/A_n is the trivial group of only one element.
- Note that the torsion group T is a subgroup of G (Why?). Because G is abelian, every subgroup of G is a normal subgroup, so T is normal in G. Suppose that xT is of finite order in G/T; in particular, we have (xT)^m = T for some positive integer m. Then x^m ∈ T. Because T is a torsion group, we must have (x^m)^r = x^{mr} = e in G for some positive integer r. Thus x is of finite order in G, so that x ∈ T. This means that xT = T. Thus the only element of finite order in G/T is the identity T, so G/T is a torsion free group.
- 3. We have |G/H| = m. Because the order of each element of a finite group divides the order of the group, we see that $(aH)^m = H$ for all elements $aH \in G/H$. On the other hand we have $a^m H = (aH)^m$, so we see that $a^m \in H$ for all $a \in G$.
- 4. Let *H* be the intersection of all subgroups of *G* that are of order *s*. Notice that *H* is still a subgroup of *G*. Note that if K < G is of order *s*, then for any $g \in G \ gKg^{-1} < G$ is also of order *s*. So $H = gHg^{-1}$ for any $g \in G$. Hence *H* is a normal subgroup.
- 5. Let $H = \{g \in G | i_g = i_e\}$. This H is a subgroup of G as for any $a, b \in H$, we have for any $x \in G$,

$$(ab^{-1}) x (ab^{-1})^{-1} = ab^{-1}xba^{-1} = axa^{-1} = x.$$

Let $h \in H$. For any $g \in G$, $i_{ghg^{-1}} = i_e$ since for any $y \in G$

$$(ghg^{-1}) y (ghg^{-1})^{-1} = ghg^{-1}ygh^{-1}g^{-1} = gg^{-1}ygg^{-1} = y.$$

This shows that $ghg^{-1} \in H$ for any $g \in G$.

- (a) The n × n matrices with determinant 1 form a subgroup of GL(n, ℝ). The normality follows from det(AXA⁻¹) = det(A) det(X) det(A⁻¹) = 1 for any X having determinant 1.
 - (b) The n × n matrices with determinant ±1 form a subgroup of GL(n, ℝ). The normality follows from det(AXA⁻¹)² = det(A)² det(A)² det(A⁻¹)² = 1 for any X having determinant ±1.

Optional Part

- Let {H_i | i ∈ I} be the set of all normal subgroups of G containing S. Note that G is such a subgroup of G, so the index set I is nonempty. Let K = ∩_{i∈I} H_i. By Problem 4, we know that K is a normal subgroup of G, and of course K contains S because every H_i contains S. From the constructions, we see that K is contained in every normal subgroup H_i of G containing S, so K must be the smallest normal subgroup of G containing S.
- 2. (a) The associativity is clear. The subset $\{e\}$ acts as identity for this multiplication. Note that \emptyset has no inverse, so P(G) is not a group under this operation.
 - (b) Note that if N is a normal subgroup, then we have (ab)N = (aN)(bN) for any $a, b \in G$.
 - (c) Associativity is clear. The coset N acts as identity element. The equation

$$(a^{-1}N)(aN) = eN = (aN)(a^{-1}N)$$

shows that each coset has an inverse, so these cosets of N do form a group under this multiplication. The identity of the coset group is N, while the identity for the multiplication of all subsets of G is $\{e\}$. If $N \neq \{e\}$, these identities are different.