THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Homework 2 Solution Due Date: 19th September 2019

Compulsory part

- Let G be of order ≥ 2 but with no proper nontrivial subgroups. Let e ≠ a ∈ G. Note that the nontrivial cyclic subgroup ⟨a⟩, G must be finite, for otherwise it is isomorphic to Z which has proper subgroups. Then the nontrivial cyclic subgroup ⟨a⟩ must be G itself because every cyclic group not of prime order has proper subgroups. Therefore G must be finite and of prime order.
- From [G : H] = 2, we know that G = H ⊔ gH for some g ∈ G, where the union is disjoint (i.e. H ∩ gH = Ø). Observe that G = H ⊔ Hg⁻¹. (To see it, we recall the map τ : G → G, τ(x) = x⁻¹, is a bijective function. Thus τ(G) = τ(H) ⊔ τ(gH). As H is a subgroup, τ(H) = H and τ(gH) = Hg⁻¹.)

Clearly from $G = H \sqcup gH = H \sqcup Hg^{-1}$, we deduce (with the disjointness) that

Case 1. $H = Hg^{-1}$ and gH = H: This implies $g \in H$ (as $g = ge \in gH$), then $gH \subset H$, contradicting to $H \cap gH = \emptyset$.

Case 2. $gH = Hg^{-1}$: This implies $g \in Hg^{-1}$, and $g \in Hg^{-1} \Rightarrow g = hg^{-1}$ for some $h \in H \Rightarrow g^{-1} = h^{-1}g \Rightarrow Hg^{-1} = Hh^{-1} \cdot g = Hg$. i.e. gH = Hg.

Let $x \in G (= H \sqcup gH)$. If $x \in H$, then clearly xH = Hx. Otherwise (i.e. $x \in gH = Hg$), let x = gh = h'g for some $h, h' \in H$, then

$$xH = gh \cdot H = gH$$
 and $Hx = H \cdot h'g = Hg$.

So xH = Hx for all $x \in G$. Remark: Note that $H \triangleleft G$.

- 3. (a) Reflexive: $\forall a, a \sim a \text{ as } a = eae \text{ with } e \in H \text{ and } e \in K$.
 - Symmetric: Let a ~ b so a = hbk for some h ∈ H, k ∈ K. Then b = h⁻¹ak⁻¹ so we have b ~ a.
 - Transitive: Let $a \sim b$ and $b \sim c$ so $a = h_1bk_1$ and $b = h_2ck_2$ for some $h_1, h_2 \in H, k_1, k_2 \in K$. Then $a = h_1h_2ck_2k_1$ so we have $a \sim c$.
 - (b) The equivalence class containing the element a is $HaK = \{hak : h \in H, k \in K\}$. It can be formed by taking the union of all right cosets of H that contain elements in the left coset aK or the union of all left cosets of K that contain elements in the right coset Ha.
- 4. Closure: Let $a, b \in H \cap K$. Then $a, b \in H$ and $a, b \in K$. Because H and K are both subgroups of G, we have $ab \in H$ and $ab \in K$, so $ab \in H \cap K$.
 - Identity: As $e \in H$ and $e \in K$, $e \in H \cap K$.
 - Inverse: Let $a \in H \cap K$. Then $a \in H$ and $a \in K$. Because H and K are both subgroups of G, we have $a^{-1} \in H$ and $a^{-1} \in K$, so $a^{-1} \in H \cap K$.

- 5. WLOG, we can only work on Z_n. Let d|n. Then ⟨n/d⟩ is a subgroup of Z_n with order d. We have the only one such subgroup. (Note that the element k ∈ Z_n has order d which says kd = 1, but on other hand, kd = nt for 0 ≤ t < d, then k ∈ ⟨n/d⟩.) Every subgroup has the order dividing n, so these are the only subgroups that it has.</p>
- 6. (a) 36
 - (b) 2, 12, 60
 - (c) Find an isomorphic group that is a direct product of cyclic groups of prime-power order. For each prime divisor of the order of the group, write the subscripts in the direct product involving that prime in a row in order of increasing magnitude. Keep the right-hand ends of the rows aligned. Then take the product of the numbers down each column of the array.
- Closure: Let a, b ∈ H. Then a² = b² = e. Because G is abelian, we see that (ab)² = abab = aabb = ee = e, so ab ∈ H also. Thus H is closed under the group operation.
 - Identity: Clearly $e \in H$.
 - Inverses: For all a ∈ H, the equation a² = e means that a⁻¹ = a2 ∈ H. Thus H is a subgroup.
- 8. (a) (h,k) = (h,e)(e,k).
 - (b) (h, e)(e, k) = (h, k) = (e, k)(h, e).
 - (c) The only element of $H \times K$ of the form (h, e) and also of the form (e, k) is (e, e) = e.
- 9. Uniqueness: Suppose that $g = hk = h_1k_1$ for $h, h_1 \in H$ and $k, k_1 \in K$. Then $h_1^{-1}h = k_1k^{-1}$ is in both H and K, and we know that $H \cap K = \{e\}$. Thus $h_1^{-1}h = k_1k^{-1} = e$, from which we see that $h = h_1$ and $k = k_1$.
 - Isomorphic: Suppose $g_1 = h_1k_1$ and $g_2 = h_2k_2$. Then $g_1g_2 = h_1k_1h_2k_2 = h_1h_2k_1k_2$ because elements of H and K commute by hypothesis b. Thus by uniqueness, g_1g_2 is renamed $(h_1h_2, k_1k_2) = (h_1, k_1)(h_2, k_2)$ in $H \times K$.

Optional Part

Every element in Z_n generates a subgroup of some order d dividing n, and the number of generators of that subgroup is φ(d). By Question 4, there is a unique such subgroup of order d dividing n. Thus ∑_{d|n} φ(d) counts each element of Zn once and only once as a generator of a subgroup of order d dividing n. Hence

$$\sum_{d|n} \phi(d) = n$$

2. Let d be a divisor of n = |G|. Now if G contains a subgroup of order d, then each element of that subgroup satisfies the equation $x^d = e$. Note that if there exists at least one element of order d, then we can generates a cyclic group of order d, whose elements give at most d solutions to the equation $x^d = e$ (by the hypothesis). By the hypothesis that $x^m = e$ has at most m solutions in G, we see that there can be at most one subgroup

of each order d dividing n. Now each $a \in G$ has some order d dividing n, and $\langle a \rangle$ has exactly $\phi(d)$ generators. Because $\langle a \rangle$ must be the only subgroup of order d, we see that the number of elements of order d for each divisor d of n cannot larger than $\phi(d)$. Thus we can establish

$$n = \sum_{d|n}$$
 (number of elements of G of order d) $\leq \sum_{d|n} \phi(d) = n$.

This shows that G must have exactly $\phi(d)$ elements of each order d dividing n, in particular, it must have $\phi(n) \ge 1$ elements of order n. Hence G is cyclic.

3. Recall that every subgroup of a cyclic group is cyclic. Thus if a finite abelian group G contains a subgroup isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$, which is not cyclic, then G cannot be cyclic.

Conversely, suppose that G is a finite abelian group that is not cyclic. By Fundamental Theorem of finitely generated abelian groups, G contains a subgroup isomorphic to $\mathbb{Z}_{p^r} \times \mathbb{Z}_{p^s}$ for the same prime p, because if all components in the direct product correspond to distinct primes, then G would be cyclic $(\mathbb{Z}_n \times \mathbb{Z}_n \text{ is cyclic if } gcd(n,m) = 1)$. The subgroup $\langle p^{r-1} \rangle \times \langle p^{s-1} \rangle$ of $\mathbb{Z}_{p^r} \times \mathbb{Z}_{p^s}$ is clearly isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$.

4. By Fundamental Theorem of finitely generated abelian groups, the groups that appear in the decompositions of G×K and of H×K are unique except for the order of the factors. Because G×K and of H×K are isomorphic, these factors in their decompositions must be the same. Because the decompositions of G×K and of H×K can both be written in the order with the factors from K last, we see that G and H must have the same factors in their expression in the decomposition described in Fundamental Theorem of finitely generated abelian groups. Thus G and H are isomorphic.