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Compulsory part

1. Let G be of order ≥ 2 but with no proper nontrivial subgroups. Let e 6= a ∈ G. Note
that the nontrivial cyclic subgroup 〈a〉, G must be finite, for otherwise it is isomorphic to
Z which has proper subgroups. Then the nontrivial cyclic subgroup 〈a〉 must be G itself
because every cyclic group not of prime order has proper subgroups. Therefore G must
be finite and of prime order.

2. From [G : H] = 2, we know that G = H t gH for some g ∈ G, where the union is
disjoint (i.e. H ∩ gH = ∅). Observe that G = H tHg−1. (To see it, we recall the map
τ : G→ G, τ(x) = x−1, is a bijective function. Thus τ(G) = τ(H) t τ(gH). As H is a
subgroup, τ(H) = H and τ(gH) = Hg−1.)

Clearly from G = H t gH = H tHg−1, we deduce (with the disjointness) that

Case 1. H = Hg−1 and gH = H: This implies g ∈ H (as g = ge ∈ gH), then gH ⊂ H ,
contradicting to H ∩ gH = ∅.
Case 2. gH = Hg−1: This implies g ∈ Hg−1, and g ∈ Hg−1 ⇒ g = hg−1 for some h ∈ H ⇒
g−1 = h−1g ⇒ Hg−1 = Hh−1 · g = Hg. i.e. gH = Hg.

Let x ∈ G (= H t gH). If x ∈ H , then clearly xH = Hx. Otherwise (i.e. x ∈ gH =
Hg), let x = gh = h′g for some h, h′ ∈ H , then

xH = gh ·H = gH and Hx = H · h′g = Hg.

So xH = Hx for all x ∈ G.
Remark: Note that H / G.

3. (a) • Reflexive: ∀a, a ∼ a as a = eae with e ∈ H and e ∈ K.
• Symmetric: Let a ∼ b so a = hbk for some h ∈ H, k ∈ K. Then b = h−1ak−1

so we have b ∼ a.
• Transitive: Let a ∼ b and b ∼ c so a = h1bk1 and b = h2ck2 for some
h1, h2 ∈ H, k1, k2 ∈ K. Then a = h1h2ck2k1 so we have a ∼ c.

(b) The equivalence class containing the element a is HaK = {hak : h ∈ H, k ∈ K}.
It can be formed by taking the union of all right cosets of H that contain elements
in the left coset aK or the union of all left cosets of K that contain elements in the
right coset Ha.

4. • Closure: Let a, b ∈ H ∩ K. Then a, b ∈ H and a, b ∈ K. Because H and K are
both subgroups of G, we have ab ∈ H and ab ∈ K, so ab ∈ H ∩K.

• Identity: As e ∈ H and e ∈ K, e ∈ H ∩K.

• Inverse: Let a ∈ H ∩ K. Then a ∈ H and a ∈ K. Because H and K are both
subgroups of G, we have a−1 ∈ H and a−1 ∈ K, so a−1 ∈ H ∩K.
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5. WLOG, we can only work on Zn. Let d|n. Then 〈n/d〉 is a subgroup of Zn with order d.
We have the only one such subgroup. (Note that the element k ∈ Zn has order d which
says kd = 1, but on other hand, kd = nt for 0 ≤ t < d, then k ∈ 〈n/d〉.) Every subgroup
has the order dividing n, so these are the only subgroups that it has.

6. (a) 36

(b) 2, 12, 60

(c) Find an isomorphic group that is a direct product of cyclic groups of prime-power
order. For each prime divisor of the order of the group, write the subscripts in the
direct product involving that prime in a row in order of increasing magnitude. Keep
the right-hand ends of the rows aligned. Then take the product of the numbers down
each column of the array.

7. • Closure: Let a, b ∈ H . Then a2 = b2 = e. Because G is abelian, we see that
(ab)2 = abab = aabb = ee = e, so ab ∈ H also. Thus H is closed under the group
operation.

• Identity: Clearly e ∈ H .

• Inverses: For all a ∈ H , the equation a2 = e means that a−1 = a2 ∈ H . Thus H is
a subgroup.

8. (a) (h, k) = (h, e)(e, k).

(b) (h, e)(e, k) = (h, k) = (e, k)(h, e).

(c) The only element ofH×K of the form (h, e) and also of the form (e, k) is (e, e) = e.

9. • Uniqueness: Suppose that g = hk = h1k1 for h, h1 ∈ H and k, k1 ∈ K. Then
h−11 h = k1k

−1 is in both H and K, and we know that H ∩K = {e}. Thus h−11 h =
k1k

−1 = e, from which we see that h = h1 and k = k1.

• Isomorphic: Suppose g1 = h1k1 and g2 = h2k2. Then g1g2 = h1k1h2k2 = h1h2k1k2
because elements of H and K commute by hypothesis b. Thus by uniqueness, g1g2
is renamed (h1h2, k1k2) = (h1, k1)(h2, k2) in H ×K.

Optional Part

1. Every element in Zn generates a subgroup of some order d dividing n, and the number of
generators of that subgroup is φ(d). By Question 4, there is a unique such subgroup of
order d dividing n. Thus

∑
d|n φ(d) counts each element of Zn once and only once as a

generator of a subgroup of order d dividing n. Hence∑
d|n

φ(d) = n

2. Let d be a divisor of n = |G|. Now if G contains a subgroup of order d, then each
element of that subgroup satisfies the equation xd = e. Note that if there exists at least
one element of order d, then we can generates a cyclic group of order d, whose elements
give at most d solutions to the equation xd = e (by the hypothesis). By the hypothesis
that xm = e has at most m solutions in G, we see that there can be at most one subgroup
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of each order d dividing n. Now each a ∈ G has some order d dividing n, and 〈a〉 has
exactly φ(d) generators. Because 〈a〉 must be the only subgroup of order d, we see that
the number of elements of order d for each divisor d of n cannot larger than φ(d). Thus
we can establish

n =
∑
d|n

(number of elements of G of order d) ≤
∑
d|n

φ(d) = n.

This shows that G must have exactly φ(d) elements of each order d dividing n, in partic-
ular, it must have φ(n) ≥ 1 elements of order n. Hence G is cyclic.

3. Recall that every subgroup of a cyclic group is cyclic. Thus if a finite abelian group G
contains a subgroup isomorphic to Zp ×Zp, which is not cyclic, then G cannot be cyclic.

Conversely, suppose that G is a finite abelian group that is not cyclic. By Fundamental
Theorem of finitely generated abelian groups, G contains a subgroup isomorphic to Zpr×
Zps for the same prime p, because if all components in the direct product correspond to
distinct primes, then G would be cyclic (Zn × Zn is cyclic if gcd(n,m) = 1). The
subgroup 〈pr−1〉 × 〈ps−1〉 of Zpr × Zps is clearly isomorphic to Zp × Zp.

4. By Fundamental Theorem of finitely generated abelian groups, the groups that appear in
the decompositions ofG×K and of H×K are unique except for the order of the factors.
Because G×K and of H×K are isomorphic, these factors in their decompositions must
be the same. Because the decompositions of G×K and of H ×K can both be written in
the order with the factors from K last, we see that G and H must have the same factors
in their expression in the decomposition described in Fundamental Theorem of finitely
generated abelian groups. Thus G and H are isomorphic.


