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Compulsory part

1. Let S = {z € G : ' # z}. Then S has an even number of elements, because the
elements can be grouped in pairs z, z~!. Because G has an even number of elements, the
set G — S must carry even number of element. Furthermore the set G — S is nonempty
because it contains e. Thus there is at least one element of G — .S other than the identity
e, that is, at least one element other than e such that its own inverse is just itself.

2. Consider (a * b) * (a * b). From the given condition: x * x = e for all z € G, we have
e=(axb)*(axb),and also (axa) * (b*xb) = e*e =e. Thus

axbxaxb=e=a*xaxbxb.

By cancellation, one has b * a = a * b.

3. Leta € H and let H have n elements. Then we find that the elements a, a?, a3, - - - , a™™*

are all in H as H is closed under the operation and observe that the elements cannot all
be different, so a’ = a’ for some i < j. Then we have e = @’ “soe € H. Also,a ' € H
because a~! = a/~*~1. This shows that H is a subgroup of G.

4. e Closure: Let a,b € HN K. Then a,b € H and a,b € K. Because H and K are
both subgroups of GG, we have ab € H and ab € K,soab e HN K.

e Identity: Asec Hande € K,e € HN K.

o Inverse: Leta € HN K. Thena € H and a € K. Because H and K are both
subgroups of G, wehave e ™' € Handa ' € K,soa '€ HNK.

5. Note that every group is the union of its cyclic subgroups, because every element of the
group generates a cyclic subgroup that contains the element. Let G have only a finite
number of subgroups, and hence only a finite number of cyclic subgroups. Now none
of these cyclic subgroups can be infinite, for every infinite cyclic group is isomorphic to
Z which contains infinitely of subgroups. Such subgroups of an infinite cyclic subgroup
of G would of course give an infinite number of subgroups of (G, contrary to hypothesis.
Thus G can only have a finite number of finite cyclic subgroups. One leads that the set G
can be written as a finite union of finite sets, so G is itself a finite set.

6. The positive integers less that pg and relatively prime to pq are those that are not multiples
of p and are not multiples of ¢. Note that there are p — 1 multiples of ¢ and ¢ — 1 multiples
of p that are less than pq. Thus there are (pg— 1) — (p—1)—(¢—1) =pg—p—q+1 =
(p — 1)(¢ — 1) positive integers less than pq and relatively prime to pg.

(1231 2)=013)#(2 3)=1 2)( 2 3)



8. Let A = {ay,as,...,a,}. Consider the permutation o = (a1 ay - an). Clearly
o € S,. Note that |o| = n and hence H := (o) is a cyclic group of order n(= | A|). This
group H is transitive on A as 07 7*(a;) = a; forany 1 < i,j < n.

9. (a) Note that a cycle of length n can be written as a product of n — 1 transpositions as

(12 n)=>01n@Qn-1)---(1 3)(1 2).

Now a permutation in S,, can be written as a product of disjoint cycles, the sum of
whose lengths is < n. If there are r disjoint cycles involved, we see the permutation
can be written as a product of at most n — r transpositions. Because > 1, we can
always write the permutation as a product of at most n — 1 transpositions.

(b) It follows immediately from our proof of (a), because we must have r» > 2.

(c) Write the odd permutation ¢ as a product of s transpositions, where s < n — 1 by
Part(a). Then s is an odd number and 2n + 3 is an odd number, so 2n + 3 — s is an
even number. Adjoin 2n + 3 — s transpositions (1 2) as factors at the right of the
product of the s transpositions that comprise 0. The same permutation o results as
(1 2) (1 2) =14d. Thus o can be written as a product of 2n + 3 permutations.

If o is even, we proceed in exactly the same way, but this time s is even so 2n+8—s
is also even. We tack the identity permutation, written as a product of the 2n 48 — s
factors (1 2), onto the end of ¢ and obtain ¢ as a product of 2n + 8 transpositions.

10. Suppose o € H is an odd permutation. Let ¢ : H — H be defined by ¢(u) = ou for
e H I ¢(u1) = ¢(us), then oy = opg, S0 11 = fio by group cancellation. Also, for
any 1 € H, we have ¢(0~ ) = oco~'pu = p. This shows that ¢ is a one-to-one map of
H onto itself. Because o is an odd permutation, we see that ¢ maps an even permutation
onto an odd one, and an odd permutation onto an even one. Because ¢ maps the set of
even permutations in /4 one to one onto the set of odd permutations in H, it is immediate
that H has the same number of even permutations as odd permutations. Thus we have
shown that if H has one odd permutation, it has the same number of even permutations
as odd permutations.

Optional Part

1. First of all, it is not difficult to see that(G, ) is a group, because the order of multiplica-
tion in G is simply reversed: (a*b)*c = ax*(b*c) follows at once from c-(b-a) = (c¢-b)-a,
the element e is still the identity element, and also the inverse of each element remains
the same.

Let f(a) = a™! for a € G, where a™! is the inverse of a in the group (G, -). Uniqueness
of inverses and the fact that (a~')~! = a show at once that f is one to one and onto G.
Also,
fla-b)=(a-0)"'=b""-a" =a" xb7" = f(a) = f(D),
showing that f is an isomorphism of (G, -) onto (G, ).
2. Let G be a group with no proper nontrivial subgroups. If G = {e}, then G is of course
cyclic. If G # {e}, then there is a € G, such that a # e. We know that (a) is a

subgroup of G and (a) # {e}. Because G has no proper nontrivial subgroups, we must
have (a) = G, so G is indeed cyclic.



3. (a) Let a be a generator of H and let b be a generator of K. Because G is abelian, we
have
(ajb)’f’s — (a/T‘)S(bS)T‘ — 67’65 = e.

We claim that no lower power of ab is equal to e, for suppose that (ab)” = a"b" = e.
Then a™ = b~™ = ¢ must be an element of both H and K, and thus the order of
c divides r and s. Because r and s are relatively prime, we see that we must have
c=e,s0a"” = 0" = e. But then n is divisible by both r and s, and because r and s
are relatively prime, we have n > rs. Thus ab generates the desired cyclic subgroup
of GG of order rs.

(b) Let L the least common multiple of r and s. Using prime factorization, L =
1L, p;" where p; is prime and r; € Z*. If we can find an element of G with
order p;" for every i, then by the above, the product of these elements would have
order L because prime powers are all relatively prime to prime powers of different
primes. Fix i. It suffices to find an element having order p;*. We know that p;* is
divisible by r or s. WLOG, we suppose p;‘|r. Let a be a generator of H. Then
a™/7i' has order pl'.

4. (a) Note that the n x n permutation matrices form a subgroup of the group GL(n,R)
of all invertible n X n matrices under matrix multiplication.

Let us number the elements of G from 1 to n, and number the rows of I,, from 1
to n, say from top to the bottom in the matrix. We can associate with each g € GG
a permutation (reordering) of the elements of G, which we can now think of as a
reordering of the numbers from 1 to n, which we can in turn think of as a reordering
of the rows of the matrix /,,, which is in turn produced by multiplying In on the
left by a permutation matrix P. The effect of left multiplication of a matrix by a
permutation matrix, explained in the exercise, shows that this association of g with
P is an isomorphism of GG with a subgroup of the group of all permutation matrices.

(b) We number the elements e, a, b, and c of the Klein 4-group in Table 5.11 with the
numbers 1,2, 3, and 4 respectively. Performing the left multiplication, we can have
the following correspondence:

0100 0010 000 1
s han |t OO0, 0001 0010
€ i a 000 1]’ 1000fF€ 0100
0010 0100 1000
5. Note that
12) forr = 0,
(123 - n) 12123 - n)"=¢(r+1 r+2) forr=1,2,...,n—2,
n 1> forr=n—1.
Forr = 0orn — 1,1itis trivial. Forr = iwith 1 < ¢ <n — 2, (1 2 3 --- n)n_i

maps ¢ + 1 to 1, which is then mapped into 2 by (1 2), which is mapped into ¢ + 2



by (1 2 3 --- n)l By a similar manner, i + 2 maps to i + 1. For the others, it is
unchanged.

Let (7, j) be any transposition, written with ¢ < 7. We observe that
G )=G i+ (-2 j-1)0-1 5)0-2 j-1)--( i+1).

By Corollary 9.12, every permutation in S, can be written as a product of transpositions,
which we now see can each be written as a product of the special transpositions (1 2),
(2 3) ey (n 1) . And we have already shown that these in turn can be expressed as
products of (1 2 3 .- n) and (1 2). The proof follows plainly.



