THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Homework 1 Solution Due Date: 12th September 2019

Compulsory part

7.

- 1. Let $S = \{x \in G : x^{-1} \neq x\}$. Then S has an even number of elements, because the elements can be grouped in pairs x, x^{-1} . Because G has an even number of elements, the set G S must carry even number of element. Furthermore the set G S is nonempty because it contains e. Thus there is at least one element of G S other than the identity e, that is, at least one element other than e such that its own inverse is just itself.
- 2. Consider (a * b) * (a * b). From the given condition: x * x = e for all $x \in G$, we have e = (a * b) * (a * b), and also (a * a) * (b * b) = e * e = e. Thus

$$a \ast b \ast a \ast b = e = a \ast a \ast b \ast b.$$

By cancellation, one has b * a = a * b.

- 3. Let $a \in H$ and let H have n elements. Then we find that the elements $a, a^2, a^3, \dots, a^{n+1}$ are all in H as H is closed under the operation and observe that the elements cannot all be different, so $a^i = a^j$ for some i < j. Then we have $e = a^{j-i}$ so $e \in H$. Also, $a^{-1} \in H$ because $a^{-1} = a^{j-i-1}$. This shows that H is a subgroup of G.
- 4. Closure: Let $a, b \in H \cap K$. Then $a, b \in H$ and $a, b \in K$. Because H and K are both subgroups of G, we have $ab \in H$ and $ab \in K$, so $ab \in H \cap K$.
 - Identity: As $e \in H$ and $e \in K$, $e \in H \cap K$.
 - Inverse: Let $a \in H \cap K$. Then $a \in H$ and $a \in K$. Because H and K are both subgroups of G, we have $a^{-1} \in H$ and $a^{-1} \in K$, so $a^{-1} \in H \cap K$.
- 5. Note that every group is the union of its cyclic subgroups, because every element of the group generates a cyclic subgroup that contains the element. Let G have only a finite number of subgroups, and hence only a finite number of cyclic subgroups. Now none of these cyclic subgroups can be infinite, for every infinite cyclic group is isomorphic to Z which contains infinitely of subgroups. Such subgroups of an infinite cyclic subgroup of G would of course give an infinite number of subgroups of G, contrary to hypothesis. Thus G can only have a finite number of finite cyclic subgroups. One leads that the set G can be written as a finite union of finite sets, so G is itself a finite set.
- 6. The positive integers less that pq and relatively prime to pq are those that are not multiples of p and are not multiples of q. Note that there are p-1 multiples of q and q-1 multiples of p that are less than pq. Thus there are (pq-1) - (p-1) - (q-1) = pq - p - q + 1 = (p-1)(q-1) positive integers less than pq and relatively prime to pq.
 - $(1 \ 2 \ 3)(1 \ 2) = (1 \ 3) \neq (2 \ 3) = (1 \ 2)(1 \ 2 \ 3)$

- 8. Let $A = \{a_1, a_2, \dots, a_n\}$. Consider the permutation $\sigma = (a_1 \ a_2 \ \cdots \ a_n)$. Clearly $\sigma \in S_n$. Note that $|\sigma| = n$ and hence $H := \langle \sigma \rangle$ is a cyclic group of order n(=|A|). This group H is transitive on A as $\sigma^{j-i}(a_i) = a_j$ for any $1 \le i, j \le n$.
- 9. (a) Note that a cycle of length n can be written as a product of n-1 transpositions as

 $(1 \ 2 \ \cdots \ n) = (1 \ n) (1 \ n-1) \cdots (1 \ 3) (1 \ 2).$

Now a permutation in S_n can be written as a product of disjoint cycles, the sum of whose lengths is $\leq n$. If there are r disjoint cycles involved, we see the permutation can be written as a product of at most n - r transpositions. Because $r \geq 1$, we can always write the permutation as a product of at most n - 1 transpositions.

- (b) It follows immediately from our proof of (a), because we must have $r \ge 2$.
- (c) Write the odd permutation σ as a product of s transpositions, where $s \le n-1$ by Part(a). Then s is an odd number and 2n + 3 is an odd number, so 2n + 3 s is an even number. Adjoin 2n + 3 s transpositions $\begin{pmatrix} 1 & 2 \end{pmatrix}$ as factors at the right of the product of the s transpositions that comprise σ . The same permutation σ results as $\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} = id$. Thus σ can be written as a product of 2n + 3 permutations. If σ is even, we proceed in exactly the same way, but this time s is even so 2n + 8 s is also even. We tack the identity permutation, written as a product of the 2n + 8 s

factors $\begin{pmatrix} 1 & 2 \end{pmatrix}$, onto the end of σ and obtain σ as a product of 2n + 8 transpositions.

10. Suppose σ ∈ H is an odd permutation. Let φ : H → H be defined by φ(μ) = σμ for μ ∈ H. If φ(μ₁) = φ(μ₂), then σμ₁ = σμ₂, so μ₁ = μ₂ by group cancellation. Also, for any μ ∈ H, we have φ(σ⁻¹μ) = σσ⁻¹μ = μ. This shows that φ is a one-to-one map of H onto itself. Because σ is an odd permutation, we see that φ maps an even permutation onto an odd one, and an odd permutation onto an even one. Because φ maps the set of even permutations in H one to one onto the set of odd permutations in H, it is immediate that H has the same number of even permutations as odd permutations. Thus we have shown that if H has one odd permutation, it has the same number of even permutations as odd permutations.

Optional Part

First of all, it is not difficult to see that ⟨G, *⟩ is a group, because the order of multiplication in G is simply reversed: (a*b)*c = a*(b*c) follows at once from c ⋅ (b ⋅ a) = (c ⋅ b) ⋅ a, the element e is still the identity element, and also the inverse of each element remains the same.

Let $f(a) = a^{-1}$ for $a \in G$, where a^{-1} is the inverse of a in the group $\langle G, \cdot \rangle$. Uniqueness of inverses and the fact that $(a^{-1})^{-1} = a$ show at once that f is one to one and onto G. Also,

$$f(a \cdot b) = (a \cdot b)^{-1} = b^{-1} \cdot a^{-1} = a^{-1} * b^{-1} = f(a) * f(b),$$

showing that f is an isomorphism of $\langle G, \cdot \rangle$ onto $\langle G, * \rangle$.

Let G be a group with no proper nontrivial subgroups. If G = {e}, then G is of course cyclic. If G ≠ {e}, then there is a ∈ G, such that a ≠ e. We know that ⟨a⟩ is a subgroup of G and ⟨a⟩ ≠ {e}. Because G has no proper nontrivial subgroups, we must have ⟨a⟩ = G, so G is indeed cyclic.

3. (a) Let a be a generator of H and let b be a generator of K. Because G is abelian, we have

$$(ab)^{rs} = (a^r)^s (b^s)^r = e^r e^s = e.$$

We claim that no lower power of ab is equal to e, for suppose that $(ab)^n = a^n b^n = e$. Then $a^n = b^{-n} = c$ must be an element of both H and K, and thus the order of c divides r and s. Because r and s are relatively prime, we see that we must have c = e, so $a^n = b^n = e$. But then n is divisible by both r and s, and because r and s are relatively prime, we have $n \ge rs$. Thus ab generates the desired cyclic subgroup of G of order rs.

- (b) Let L the least common multiple of r and s. Using prime factorization, $L = \prod_{i=1}^{k} p_i^{r_i}$ where p_i is prime and $r_i \in \mathbb{Z}^+$. If we can find an element of G with order $p_i^{r_i}$ for every i, then by the above, the product of these elements would have order L because prime powers are all relatively prime to prime powers of different primes. Fix i. It suffices to find an element having order $p_i^{r_i}$. We know that $p_i^{r_i}$ is divisible by r or s. WLOG, we suppose $p_i^{r_i}|r$. Let a be a generator of H. Then $a^{m/p_i^{r_i}}$ has order $p_i^{r_i}$.
- 4. (a) Note that the $n \times n$ permutation matrices form a subgroup of the group $GL(n, \mathbb{R})$ of all invertible $n \times n$ matrices under matrix multiplication.

Let us number the elements of G from 1 to n, and number the rows of I_n from 1 to n, say from top to the bottom in the matrix. We can associate with each $g \in G$ a permutation (reordering) of the elements of G, which we can now think of as a reordering of the numbers from 1 to n, which we can in turn think of as a reordering of the matrix I_n , which is in turn produced by multiplying In on the left by a permutation matrix P. The effect of left multiplication of a matrix by a permutation matrix, explained in the exercise, shows that this association of g with P is an isomorphism of G with a subgroup of the group of all permutation matrices.

(b) We number the elements e, a, b, and c of the Klein 4-group in Table 5.11 with the numbers 1, 2, 3, and 4 respectively. Performing the left multiplication, we can have the following correspondence:

$$e \leftrightarrow I_4, a \leftrightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, b \leftrightarrow \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, c \leftrightarrow \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

5. Note that

$$(1 \ 2 \ 3 \ \cdots \ n)^r (1 \ 2) (1 \ 2 \ 3 \ \cdots \ n)^{n-r} = \begin{cases} \begin{pmatrix} 1 \ 2 \end{pmatrix} & \text{for } r = 0, \\ \begin{pmatrix} r+1 \ r+2 \end{pmatrix} & \text{for } r = 1, 2, \dots, n-2, \\ \begin{pmatrix} n \ 1 \end{pmatrix} & \text{for } r = n-1. \end{cases}$$

For r = 0 or n - 1, it is trivial. For r = i with $1 \le i \le n - 2$, $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \end{pmatrix}^{n-i}$ maps i + 1 to 1, which is then mapped into 2 by $\begin{pmatrix} 1 & 2 \end{pmatrix}$, which is mapped into i + 2

by $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \end{pmatrix}^i$. By a similar manner, i + 2 maps to i + 1. For the others, it is unchanged.

Let $\begin{pmatrix} i & j \end{pmatrix}$ be any transposition, written with i < j. We observe that

$$(i \ j) = (i \ i+1) \cdots (j-2 \ j-1) (j-1 \ j) (j-2 \ j-1) \cdots (i \ i+1).$$

By Corollary 9.12, every permutation in S_n can be written as a product of transpositions, which we now see can each be written as a product of the special transpositions $\begin{pmatrix} 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 2 & 3 \end{pmatrix}$, ..., $\begin{pmatrix} n & 1 \end{pmatrix}$. And we have already shown that these in turn can be expressed as products of $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 \end{pmatrix}$. The proof follows plainly.