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Compulsory part

1. Let S = {x ∈ G : x−1 6= x}. Then S has an even number of elements, because the
elements can be grouped in pairs x, x−1. Because G has an even number of elements, the
set G − S must carry even number of element. Furthermore the set G − S is nonempty
because it contains e. Thus there is at least one element of G − S other than the identity
e, that is, at least one element other than e such that its own inverse is just itself.

2. Consider (a ∗ b) ∗ (a ∗ b). From the given condition: x ∗ x = e for all x ∈ G, we have
e = (a ∗ b) ∗ (a ∗ b), and also (a ∗ a) ∗ (b ∗ b) = e ∗ e = e. Thus

a ∗ b ∗ a ∗ b = e = a ∗ a ∗ b ∗ b.

By cancellation, one has b ∗ a = a ∗ b.

3. Let a ∈ H and let H have n elements. Then we find that the elements a, a2, a3, · · · , an+1

are all in H as H is closed under the operation and observe that the elements cannot all
be different, so ai = aj for some i < j. Then we have e = aj−i so e ∈ H . Also, a−1 ∈ H
because a−1 = aj−i−1. This shows that H is a subgroup of G.

4. • Closure: Let a, b ∈ H ∩ K. Then a, b ∈ H and a, b ∈ K. Because H and K are
both subgroups of G, we have ab ∈ H and ab ∈ K, so ab ∈ H ∩K.

• Identity: As e ∈ H and e ∈ K, e ∈ H ∩K.

• Inverse: Let a ∈ H ∩ K. Then a ∈ H and a ∈ K. Because H and K are both
subgroups of G, we have a−1 ∈ H and a−1 ∈ K, so a−1 ∈ H ∩K.

5. Note that every group is the union of its cyclic subgroups, because every element of the
group generates a cyclic subgroup that contains the element. Let G have only a finite
number of subgroups, and hence only a finite number of cyclic subgroups. Now none
of these cyclic subgroups can be infinite, for every infinite cyclic group is isomorphic to
Z which contains infinitely of subgroups. Such subgroups of an infinite cyclic subgroup
of G would of course give an infinite number of subgroups of G, contrary to hypothesis.
Thus G can only have a finite number of finite cyclic subgroups. One leads that the set G
can be written as a finite union of finite sets, so G is itself a finite set.

6. The positive integers less that pq and relatively prime to pq are those that are not multiples
of p and are not multiples of q. Note that there are p−1 multiples of q and q−1 multiples
of p that are less than pq. Thus there are (pq− 1)− (p− 1)− (q− 1) = pq− p− q+1 =
(p− 1)(q − 1) positive integers less than pq and relatively prime to pq.
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8. Let A = {a1, a2, . . . , an}. Consider the permutation σ =
(
a1 a2 · · · an

)
. Clearly

σ ∈ Sn. Note that |σ| = n and hence H := 〈σ〉 is a cyclic group of order n(= |A|). This
group H is transitive on A as σj−i(ai) = aj for any 1 ≤ i, j ≤ n.

9. (a) Note that a cycle of length n can be written as a product of n− 1 transpositions as(
1 2 · · · n

)
=
(
1 n

) (
1 n− 1

)
· · ·
(
1 3

) (
1 2

)
.

Now a permutation in Sn can be written as a product of disjoint cycles, the sum of
whose lengths is≤ n. If there are r disjoint cycles involved, we see the permutation
can be written as a product of at most n− r transpositions. Because r ≥ 1, we can
always write the permutation as a product of at most n− 1 transpositions.

(b) It follows immediately from our proof of (a), because we must have r ≥ 2.

(c) Write the odd permutation σ as a product of s transpositions, where s ≤ n − 1 by
Part(a). Then s is an odd number and 2n+ 3 is an odd number, so 2n+ 3− s is an
even number. Adjoin 2n + 3− s transpositions

(
1 2

)
as factors at the right of the

product of the s transpositions that comprise σ. The same permutation σ results as(
1 2

) (
1 2

)
= id. Thus σ can be written as a product of 2n+ 3 permutations.

If σ is even, we proceed in exactly the same way, but this time s is even so 2n+8−s
is also even. We tack the identity permutation, written as a product of the 2n+8− s
factors

(
1 2

)
, onto the end of σ and obtain σ as a product of 2n+8 transpositions.

10. Suppose σ ∈ H is an odd permutation. Let φ : H → H be defined by φ(µ) = σµ for
µ ∈ H . If φ(µ1) = φ(µ2), then σµ1 = σµ2, so µ1 = µ2 by group cancellation. Also, for
any µ ∈ H , we have φ(σ−1µ) = σσ−1µ = µ. This shows that φ is a one-to-one map of
H onto itself. Because σ is an odd permutation, we see that φ maps an even permutation
onto an odd one, and an odd permutation onto an even one. Because φ maps the set of
even permutations in H one to one onto the set of odd permutations in H , it is immediate
that H has the same number of even permutations as odd permutations. Thus we have
shown that if H has one odd permutation, it has the same number of even permutations
as odd permutations.

Optional Part

1. First of all, it is not difficult to see that〈G, ∗〉 is a group, because the order of multiplica-
tion inG is simply reversed: (a∗b)∗c = a∗(b∗c) follows at once from c·(b·a) = (c·b)·a,
the element e is still the identity element, and also the inverse of each element remains
the same.

Let f(a) = a−1 for a ∈ G, where a−1 is the inverse of a in the group 〈G, ·〉. Uniqueness
of inverses and the fact that (a−1)−1 = a show at once that f is one to one and onto G.
Also,

f(a · b) = (a · b)−1 = b−1 · a−1 = a−1 ∗ b−1 = f(a) ∗ f(b),
showing that f is an isomorphism of 〈G, ·〉 onto 〈G, ∗〉.

2. Let G be a group with no proper nontrivial subgroups. If G = {e}, then G is of course
cyclic. If G 6= {e}, then there is a ∈ G, such that a 6= e. We know that 〈a〉 is a
subgroup of G and 〈a〉 6= {e}. Because G has no proper nontrivial subgroups, we must
have 〈a〉 = G, so G is indeed cyclic.
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3. (a) Let a be a generator of H and let b be a generator of K. Because G is abelian, we
have

(ab)rs = (ar)s(bs)r = eres = e.

We claim that no lower power of ab is equal to e, for suppose that (ab)n = anbn = e.
Then an = b−n = c must be an element of both H and K, and thus the order of
c divides r and s. Because r and s are relatively prime, we see that we must have
c = e, so an = bn = e. But then n is divisible by both r and s, and because r and s
are relatively prime, we have n ≥ rs. Thus ab generates the desired cyclic subgroup
of G of order rs.

(b) Let L the least common multiple of r and s. Using prime factorization, L =∏k
i=1 p

ri
i where pi is prime and ri ∈ Z+. If we can find an element of G with

order prii for every i, then by the above, the product of these elements would have
order L because prime powers are all relatively prime to prime powers of different
primes. Fix i. It suffices to find an element having order prii . We know that prii is
divisible by r or s. WLOG, we suppose prii |r. Let a be a generator of H . Then
am/p

ri
i has order prii .

4. (a) Note that the n × n permutation matrices form a subgroup of the group GL(n,R)
of all invertible n× n matrices under matrix multiplication.
Let us number the elements of G from 1 to n, and number the rows of In from 1
to n, say from top to the bottom in the matrix. We can associate with each g ∈ G
a permutation (reordering) of the elements of G, which we can now think of as a
reordering of the numbers from 1 to n, which we can in turn think of as a reordering
of the rows of the matrix In, which is in turn produced by multiplying In on the
left by a permutation matrix P . The effect of left multiplication of a matrix by a
permutation matrix, explained in the exercise, shows that this association of g with
P is an isomorphism of G with a subgroup of the group of all permutation matrices.

(b) We number the elements e, a, b, and c of the Klein 4-group in Table 5.11 with the
numbers 1, 2, 3, and 4 respectively. Performing the left multiplication, we can have
the following correspondence:

e↔ I4, a↔


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , b↔


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , c↔


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

5. Note that

(
1 2 3 · · · n

)r (
1 2

) (
1 2 3 · · · n

)n−r
=


(
1 2

)
for r = 0,(

r + 1 r + 2
)

for r = 1, 2, . . . , n− 2,(
n 1

)
for r = n− 1.

For r = 0 or n − 1, it is trivial. For r = i with 1 ≤ i ≤ n − 2,
(
1 2 3 · · · n

)n−i

maps i + 1 to 1, which is then mapped into 2 by
(
1 2

)
, which is mapped into i + 2
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by
(
1 2 3 · · · n

)i. By a similar manner, i + 2 maps to i + 1. For the others, it is
unchanged.

Let
(
i j

)
be any transposition, written with i < j. We observe that(

i j
)
=
(
i i+ 1

)
· · ·
(
j − 2 j − 1

) (
j − 1 j

) (
j − 2 j − 1

)
· · ·
(
i i+ 1

)
.

By Corollary 9.12, every permutation in Sn can be written as a product of transpositions,
which we now see can each be written as a product of the special transpositions

(
1 2

)
,(

2 3
)
, . . .,

(
n 1

)
. And we have already shown that these in turn can be expressed as

products of
(
1 2 3 · · · n

)
and

(
1 2

)
. The proof follows plainly.


