THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Tutorial 6 Date: 24th October 2019

- 1. (a) How many different ways can the cyclic group C_3 of order three act on the set $\{1, 2, 3, 4\}$?
 - (b) How many different ways can the cyclic group C_4 of order four act on the set $\{1, 2, 3\}$?
 - **Solution.** (a) Consider $G = C_3$ acting on $S = \{1, 2, 3, 4\}$. The action decomposes S into a disjoint union of orbits. By the Orbit-Stabiliser Theorem, $|Ga| = |(G : G_a)|$ divides |G| for all $a \in S$. Hence the orbits have size 1 or 3. There are therefore two possibilities:
 - Case 1: S is the union of four orbits all of size 1. Then G fixes all elements of S and therefore there is precisely one action.
 - Case 2: S is the union of an orbit of size 3 and an orbit of size 1. The orbit of size 1 is a fixed point. There are 4 choices for this element. Now consider the orbit of size 3. Suppose it consists of the three elements $\alpha, \beta, \gamma \in S$. Writing $G = \langle x \rangle$ where x has order 3, then the Orbit-Stabiliser Theorem shows that $\{\alpha, \beta, \gamma\} = \{\alpha, x\alpha, x^2\alpha\}$. Hence there are two possibilities: either $x\alpha = \beta$ or $x\alpha = \gamma$. Thus having chosen the fixed point, there are two further choices for the action.

In conclusion, there are $1 + 4 \times 2 = 9$ different actions of C_3 on $\{1, 2, 3, 4\}$.

- (b) Consider $G = C_4$ acting on $S = \{1, 2, 3\}$. The action decomposes S into a disjoint union of orbits. By the Orbit-Stabiliser Theorem, $|Ga| = |(G : G_a)|$ divides |G| for all $a \in S$. Hence the orbits have size 1 or 2. There are therefore two possibilities:
- Case 1: S is the union of four orbits all of size 1. Then G fixes all elements of S and therefore there is precisely one action.
- Case 2: S is the union of an orbit of size 2 and an orbit of size 1. The orbit of size 1 is a fixed point. There are 3 choices for this element. Now consider the orbit of size 2. Suppose it consists of the two elements $\alpha, \beta \in$ S. The Orbit-Stabiliser Theorem tells us that $|G_a| = 2$, so if $G = \langle x \rangle$ then $G_a = \langle x^2 \rangle$ is the unique subgroup of G of order 2. Then we have $x\alpha = \beta$ and $x\beta = \alpha$. Hence the action of G on $\{\alpha, \beta\}$ is already uniquely determined, and we describe the whole action by specifying which point in S is the fixed point.

In conclusion, there are 1 + 3 = 4 different actions of C_4 on $\{1, 2, 3\}$.

2. Let G be a group and let Γ and Δ be sets such that G acts on Γ and on Δ . Define

$$g(\gamma, \delta) = (g\gamma, g\delta)$$

for all $\gamma \in \Gamma, \delta \in \Delta$ and $g \in G$.

- (a) Verify that this is an action of G on the set $\Gamma \times \Delta$.
- (b) Verify that the stabiliser of the pair (γ, δ) in this action equals the intersection of the stabilisers of γ and δ .
- (c) If G acts transitively on the non-empty set S, show that

$$D := \{(w, w) | w \in S\}$$

is an orbit of S on $S \times S$. Deduce that G acts transitively on $S \times S$ if and only if |S| = 1.

Solution. (a) Firstly

$$h[g(\gamma,\delta)] = h(g\gamma,g\delta) = (h(g\gamma),h(g\delta)) = (hg\gamma,hg\delta) = hg(\gamma,\delta)$$

for all $(\gamma, \delta) \in \Gamma \times \Delta$ and all $g, h \in G$. Secondly

$$e(\gamma, \delta) = (e\gamma, e\delta) = (\gamma, \delta),$$

for all $(\gamma, \delta) \in \Gamma \times \Delta$.

(b)

$$G_{(\gamma,\delta)} = \{g \in G | g(\gamma,\delta) = (\gamma,\delta)\} = \{g \in G | g\gamma = \gamma \text{ and } g\delta = \delta\}\} = G_{\gamma} \cap G_{\delta}.$$

- (c) Let (w, w) ∈ D. For any (w', w') ∈ D, we can find a g ∈ G such that g(w, w) = (w', w') as G acts transitively on S: gw = w'. This shows that D is an orbit.
 If |S| = 1, then it is trivial. Conversely, if G acts transitively then the orbit D must equal S × S. If w, w' ∈ S, then (w, w') ∈ S × S = D, which forces that w = w'. Hence |S| = 1.
- 3. (a) There is a natural action of S_n on $X = \{1, 2, ..., n\}$. For $n \ge 2$, How many orbits does S_n have on $X \times X$?
 - (b) Repeat part (a) with the action of the alternating group A_n on $X = \{1, 2, ..., n\}$ for $n \ge 3$.

Solution. (a) Consider the action of S_n on $X \times X$. Then $D = \{(w, w) | w \in X\}$ is an orbit as S_n acts transitively on X. If n = |X| = 1, then $D = X \times X$ and there is just one orbit.

Suppose $n \ge 2$, so D is a proper subset of $X \times X$. Consider two pairs not in D, say (w_1, w_2) and (w'_1, w'_2) . Then $w_1 \ne w_2$ and $w'_1 \ne w'_2$. Define a permutation σ of X by defining it to map w_1 to w'_1 and to map w_2 to w'_2 and then to map the remaining n-2 points in the domain bijectively to the remaining n-2 points in the codomain. Then $\sigma \in S_n$ and

$$\sigma(w_1, w_2) = (\sigma w_1, \sigma w_2) = (w'_1, w'_2).$$

So $(X \times X) \setminus D$ is an orbit, and S_n has two orbits on $X \times X$ when $n \ge 2$.

(b) Consider the action of A_n on $X \times X$. Then $D = \{(w, w) | w \in X\}$ is an orbit as A_n acts transitively on X.

At first, let's assume $n \ge 4$. We have constructed in part (a) a permutation σ above which maps (w_1, w_2) to (w'_1, w'_2) . If σ is even, then there is nothing more to do. If, however, σ is an odd permutation, now apply a transposition τ which swaps some pair of points, neither of which is w'_1 or w'_2 . (This is possible since $n \ge 4$.) Then $\sigma' := \sigma \tau$ is an even permutation and

$$\sigma'(w_1, w_2) = (\sigma'w_1, \sigma'w_2) = (\sigma\tau w_1', \sigma\tau w_2') = (\sigma w_1', \sigma w_2') = (w_1', w_2').$$

(since τ fixes both w'_1 and w'_2). Thus, if $n \ge 4$, A_n acts transitively on $(X \times X) \setminus D$, and so A_n has two orbits on $X \times X$ when $n \ge 4$.

Now consider the case n = 3. Then $|A_3| = 3$ and $(X \times X) \setminus D$ has 6 elements. No point in $X \times X$ is fixed under the action of A_3 and hence the orbits all have length 3 (by the Orbit-Stabiliser Theorem). Hence there are three orbits for A_3 on $X \times X$.

4. Let F be a finite field with q elements. By considering the action of GL(n, F) on $F^n - \{0\}$, show that

$$|GL(n,F)| = \prod_{i=0}^{n-1} (q^n - q^i)$$

- **Solution.** Consider the standard action of GL(n, F) on F^n (i.e. matrix multiplication).
 - Since nonsingular matrices do not take a nonzero vector to the zero vector, it follows that the action of GL(n, F) on $F^n \{0\}$ is defined.

• Let
$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in F^n$$
.

• Consider the formula

$$|G| = |G \cdot \mathbf{x}| \cdot |G_{\mathbf{x}}|$$

where $G \cdot \mathbf{x}$ is the orbit containing \mathbf{x} and $G_{\mathbf{x}}$ is the stabiliser of \mathbf{x} .

- These are the sets we need to determine.
- $G \cdot \mathbf{x}$: We claim that $G \cdot \mathbf{x} = F^n \{\mathbf{0}\}$ (i.e. the action is transitive).
 - Recall from Linear Algebra that every nonzero vector in a finite-dimensional vector space can be extended to a basis.
 - More precisely, if $\mathbf{v} \in V$ is nonzero and dimV = n, then there is a basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of V such that $\mathbf{v}_1 = \mathbf{v}$.
 - Now back to our claim, suppose $\mathbf{v} \in F^n \{\mathbf{0}\}$, then we can find a basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of F^n such that $\mathbf{v}_1 = \mathbf{v}$.
 - Let $A = [\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n].$
 - Then A is nonsingular because its columns are linearly independent.
 - What's more, $A\mathbf{x} = \mathbf{v}_1 = \mathbf{v}$.
 - This shows that the action is indeed transitive.
 - Hence $|G \cdot \mathbf{x}| = q^n 1$.
 - $G_{\mathbf{x}}$: Observe that for an $n \times n$ matrix A, $A\mathbf{x}$ is nothing but the first column of A.
 - The stabiliser G_x of x is the set consisting of all nonsingular $n \times n$ matrices A such that $A\mathbf{x} = \mathbf{x}$,
 - in other words, those A whose first column is equal to \mathbf{x} .
 - Taking also the fact that the matrices are nonsingular into account, we see that these matrices are of the form

$$\begin{bmatrix} 1 & * & \cdots & * \\ 0 & & \\ \vdots & \in GL(n-1,F) \\ 0 & & \end{bmatrix},$$

- where the * 's are arbitrary, and there are n-1 of them.
- It follows that $|G_{\mathbf{x}}| = q^{n-1}|GL(n-1,F)|$.
- Now, by putting what we have computed into the formula above, we get

$$|GL(n,F)| = (q^n - 1) \cdot (q^{n-1}|GL(n-1,F)|).$$

• By induction, we have

$$|GL(n,F)| = [q^{n-1}(q^n-1)][q^{n-2}(q^{n-1}-1)] \cdots [q(q^2-1)] \cdot |GL(1,F)|$$

= $[q^{n-1}(q^n-1)][q^{n-2}(q^{n-1}-1)] \cdots [q(q^2-1)](q-1)$
= $\prod_{i=0}^{n-1} (q^n-q^i).$