THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Tutorial 4 Date: 3rd October 2019

- 1. Find the center $Z(G)$ if $G =$
	- (a) $S_n(n \geq 3)$.
	- (b) D_n .
	- (c) $GL(2,\mathbb{R})$.
	- **Solution.** (a) $Z(G) = \{Id\}$. Note that for $n \geq 3$, the only element of S_n commuting with all the elements of the same group is the identity permutation.
	- (b) Recall that the dihedral group D_n is the group of symmetries of a regular *n*-gon. This group has $2n$ elements, n of which are rotations about the origin and the other n of which are reflections each with respect to a straight line through the origin. The rotations form a cyclic subgroup, generated by a member σ_0 which is the rotation about the origin by $+\frac{2\pi}{n}$ $\frac{2\pi}{n}$ or $-\frac{2\pi}{n}$ $\frac{2\pi}{n}$ radians, while the reflections form a coset of $\langle \sigma \rangle$. In addition, the elements of D_n satisfy $\sigma^n = r^2 =$ Id and $r \sigma r = \sigma^{-1}$ for any rotation σ and any reflection r.
		- Suppose $Z(D_n)$ contains a reflection r.
			- From the property discussed above, $r\sigma_0 r = \sigma_0^{-1}$.
			- While from the assumption that $r \in Z(D_n)$, $r\sigma_0 = \sigma_0 r$.
			- Hence we have

$$
\sigma_0^{-1} = r\sigma_0 r = \sigma_0 rr\sigma_0.
$$

- That is $\sigma_0^2 = \text{Id}$.
- But this is impossible since the order of σ_0 is n which is greater than 2.
- We conclude that $Z(D_n)$ does not contain any element which is a reflection.

• Suppose $Z(D_n)$ contains a rotation $\sigma = \sigma_0^i$ for some $i \in \{0, 1, ..., n-1\}$.

- We have $r\sigma_0^i r = \sigma_0^{-i}$ and $r\sigma_0^i = \sigma_0^i r$.
- Hence

$$
\sigma_0^{-i} = r\sigma_0^i r = \sigma_0^i rr = \sigma_0^i.
$$

- That is $\sigma_0^{2i} = \text{Id}$.
- This is possible only if $i = 0$ or $i = \frac{n}{2}$ $\frac{n}{2}$ if *n* is even.
- We can also see that σ_0^i indeed commutes with all elements of D_n if i is one of these values.
- Thus we conclude that

$$
Z(D_n) = \begin{cases} \{ \operatorname{Id} \} & \text{if } n \text{ is odd} \\ \{ \operatorname{Id}, \sigma_0^{\frac{n}{2}} \} & \text{if } n \text{ is even} \end{cases}.
$$

Remark. $\sigma_0^{\frac{n}{2}}$ is the reflection with respect to the origin.

- (c) Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $Z(GL(2,\mathbb{R}))$.
	- Consider the matrix $\begin{pmatrix} \lambda & 0 \\ 0 & -\end{pmatrix}$ $0 \quad \tau$ \setminus where λ , τ are nonzero real numbers.
	- Then

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \tau \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \tau \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$

$$
\begin{pmatrix} a\lambda & b\tau \\ c\lambda & d\tau \end{pmatrix} = \begin{pmatrix} a\lambda & b\lambda \\ c\tau & d\tau \end{pmatrix}.
$$

- So if we take $\lambda = 1$ and $\tau = 2$, we have $b = 2b$ and $c = 2c$, and hence $b = c = 0.$
- Now consider the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- Then

$$
\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}
$$

$$
\begin{pmatrix} a & a \\ 0 & d \end{pmatrix} = \begin{pmatrix} a & d \\ 0 & d \end{pmatrix}.
$$

- Hence $a = d$.
- Conversely, every element of the form $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ $0 \mid a$ \setminus commutes with all 2×2 matrices (even the singular ones).
- We conclude that

$$
Z(GL(2,\mathbb{R})) = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} | a \in \mathbb{R} - \{0\} \right\}.
$$

- 2. Find the commutator subgroup $[G, G]$ if $G =$
	- (a) $S_n(n \geq 3)$.
	- (b) D_n .
	- (c) $A_n(n \ge 3)$.

Solution. (a) We prove that $[S_n, S_n] = A_n$.

• Note first that S_n/A_n is abelian (it is a cyclic group of order 2), and so $[S_n, S_n]$ < A_n .

 \blacktriangleleft

- To show that the inclusion is an equality, it suffices to show that $[S_n, S_n]$ contains all 3-cycles because of Tutorial 1.
- This is true because $(a \, b \, c) = (b \, c)(a \, b)(b \, c)^{-1}(a \, b)^{-1}$.
- (b) We prove that $[D_n, D_n] = \langle \sigma^2 \rangle$.

Since $rsrs^{-1} = \sigma^{-2}$, every even power of s is in the commutator.

If n is odd, an even power of s is just the same as a power of σ , and since $\langle \sigma \rangle$ is normal and has abelian quotient of order 2, this is exactly the commutator subgroup. If *n* is even, then the commutator is $\langle \sigma^2 \rangle$, since its quotient is of order 4, which is abelian. Hence $\langle \sigma^2 \rangle$ is exactly the commutator subgroup. Alternately, we can have:

- Note first that the subgroup $\langle \sigma_0 \rangle$ has index 2 and the subgroup $D_n \cap A_n$ has index at most 2.
- It follows that they are normal in D_n and the quotient groups of D_n defined by them are abelian.
- Hence $[D_n, D_n] < \langle \sigma_0 \rangle \cap (D_n \cap A_n) = \langle \sigma_0 \rangle \cap A_n$.
- We claim that the right member is $\langle \sigma_0^2 \rangle$.
- Since σ_0^2 is an even permutation, $\langle \sigma_0^2 \rangle \subseteq \langle \sigma_0 \rangle \cap A_n$.
- On the other hand, if σ_0^i is an even permutation for some *i*, and if *i* is odd, then σ_0 is an even permutation, and hence *n* is odd.
- But if *n* is odd, then $\langle \sigma_0 \rangle = \langle \sigma_0^2 \rangle$ so that $\sigma_0^i \in \langle \sigma_0^2 \rangle$. Our claim is proved.
- Now we do have $[D_n, D_n] = \langle \sigma_0^2 \rangle$.
- It follows from the observation that $r\sigma_0^{-1}r = \sigma_0 \Longrightarrow \sigma_0^2 = \sigma_0 r\sigma_0^{-1}r^{-1}$.
- (c) $[A_3, A_3] = \{Id\}$ since A_3 is abelian.
	- Note that Klevin 4 group V can be identified as $\{Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}.$ V is a normal subgroup of A_4 . Since A_4/V is abelian, $[A_4, A_4] \subset V$. $[A_4, A_4]$ is not trivial, as A_4 nonabelian. The order of $[A_4, A_4]$ must be 2 or 4, so it contains $(a, b)(c, d)$. $[A_4, A_4]$ is normal in A_4 , so $(a, b)(c, d)$ is conjugate to every term of $(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)$. Note that $(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)$ are pairwisely conjugate to each other in A_4 . In fact we can find some (not all) relations such as $(1, 3, 2)(1, 3)(2, 4)(1, 2, 3) = (1, 4)(2, 3)$ and $(1, 2, 3)(1, 3)(2, 4)(1, 3, 2) =$ $(1, 2)(3, 4)$. Then $[A_4, A_4] = \{Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}.$
	- We can generate all the 3-cycles in A_n for $n \geq 5$. For example, we can consider $a = (1, 3, 2)$ and $b = (2, 3)(4, 5)$. Then by direct checking $[a, b] = aba^{-1}b^{-1} =$ $(1, 2, 3)$. This suggests that $[A_n, A_n] = A_n$ for $n \ge 5$.
- 3. Let H, K be two normal subgroup of G such that G/H and G/K are both abelian. Show that $G/(H \cap K)$ is abelian.

Solution. We must have $[G, G] \subset H$ and $[G, G] \subset K$. In particular $[G, G] \subset H \cap K$. Then we are done because of the fact that the subgroup N is normal in G and G/N is abelian if and only if $[G, G] \subset N$.

 \blacktriangleleft

4. Show that if $N \triangleleft G$ and $G = Z(G)N$, then $[G, G] < N$.

Solution. • It suffices to show that the quotient group G/N is abelian.

- Consider the projection map $\pi : G \to G/N$ and consider the image $\pi(Z(G))$ of $Z(G)$ under π .
- Let $x \in G/N$ be an element, then $x = \pi(g)$ for some $g \in G$.
- From $G = Z(G)N$, there are $h \in Z(G)$ and $k \in N$ such that $g = hk$.
- It follows that $x = \pi(hk) = \pi(h) \cdot e = \pi(h) \in \pi(Z(G)).$
- This shows that $G/N = \pi(Z(G))$, and hence G/N is abelian.
- 5. Let H be any group with $|H| = h$, where h is odd. Show that $A_4 \times H$ has no subgroups of order 6h.

Solution. Suppose to the contrary that $A_4 \times H$ has a subgroup K with $|K| = 6h$; then K has index 2 in $A_4 \times H$, so that K is a normal subgroup of $A_4 \times H$ and $|(A_4 \times H)/K| = 2$. Hence, $(A_4 \times H)/K$ is Abelian, so that $[A_4 \times H, A_4 \times H]$ is a subgroup of K. Also note that $[A_4 \times H, A_4 \times H] = [A_4, A_4] \times [H, H]$. It follows that $[[A_4, A_4]]$ divides $[K]$. Now $[A_4, A_4] = \{Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$, so that 4 must divide $|K| = 6h$; this is not possible, since h is odd, and this completes our proof.

 \blacktriangleleft

 \blacktriangleleft

 \blacktriangleleft