THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Tutorial 2 Date: 19th September 2019

- 1. Determine which of the following subgroups are normal.
 - (a) The Klein-4-group $< D_4$
 - (b) $D_4 < S_4$
 - (c) $S_n < S_{n+1}$
 - (d) $SL(n, \mathbb{R}) < GL(n, \mathbb{R})$
 - (e) $GL(n, \mathbb{R}) < GL(n+1, \mathbb{R})$
 - Solution. (a) Yes. It follows from the fact that every subgroup of index 2 of a group is normal.
 (How about in S₄? Yes, we can check it directly. How about in A₄? Yes, since it is a normal subgroup of S₄.)
 - (b) No. Take $g = (1 \ 2 \ 3) \in S_4$ and $h = (1 \ 2 \ 3 \ 4) \in D_4$. Then $ghg^{-1} = (1 \ 4 \ 2 \ 3) \notin D_4$.
 - (c) No, unless n = 1. For $n \ge 2$, take $g = (1 n + 1) \in S_{n+1}$ and $h = (1 2) \in S_n$. Note that $n + 1 \ne 2$. Then $ghg^{-1} = (2 n + 1) \notin S_n$.
 - (d) Yes. Let φ : GL(n, ℝ) → ℝ[×] be the map given by φ(X) = det(X), for all X ∈ GL(n, ℝ). The map φ is a group homomorphism. Note that its kernel is SL(n, ℝ), so SL(n, ℝ) is a normal subgroup of GL(n, ℝ) as the kernel is always a normal subgroup.
 - (e) No. Consider the map φ_n : S_n → GL(n, ℝ) (where ℝ can actually be replaced by any field) defined by letting φ_n(σ) be the matrix permutating the coordinate vectors e_i to e_{σ(i)} for i = 1, 2, ..., n. It can be shown that φ_n is a homomorphism and φ⁻¹_{n+1}(GL(n, ℝ)) = S_n, so if GL(n, ℝ) is normal in GL(n + 1, ℝ), then S_n is also normal in S_{n+1} but it is not true as shown in (c). In fact the preimage of a normal subgroup under a group homomorphism is also normal.

2. True or false: $K \lhd H \lhd G \Rightarrow K \lhd G$.

Solution. No. $\langle s \rangle \lhd \langle r^2, s \rangle \cong$ Klein-4-group $\lhd D_4$ but $\langle s \rangle$ is not a normal subgroup of D_4 .

◀

3. Recall: Let H be a subgroup of G. Then

$$aHa^{-1} \subseteq H$$
 for all $a \in G \Longrightarrow aHa^{-1} = H$ for all $a \in G$.

What if we only consider a single element a of G: Is it true that $(aHa^{-1} \subseteq H \Longrightarrow aHa^{-1} = H)$ (a) if G is finite? (b) if G is infinite?

- **Solution.** (a) Yes. Suppose $aHa^{-1} \subseteq H$. Then the map $\phi : G \to G : x \mapsto axa^{-1}$, when restricted to H, gives rise to the map $\phi' : H \to H$. It is injective because ϕ is. Since G is finite, ϕ is also surjective and hence bijective. It follows that for every $h \in H$, there is $x \in H$ such that $\phi'(x) = h$, that is $axa^{-1} = h$. This shows that $aHa^{-1} = H$.
- (b) No, because of the following counter-example: Let $G = (\mathbb{Z} \times \mathbb{Q}, *)$ where * is not the direct product but defined by

$$(m,s) * (n,t) = (m+n,2^ns+t)$$

for any $m, n \in \mathbb{Z}$ and $s, t \in \mathbb{Q}$.

I leave to you the task of showing that G is indeed a group. Note that the identity of G is (0,0) and the inverse of $(m,s) \in G$ is $(-m,-2^{-m}s)$. Now let $H = \{0\} \times \mathbb{Z}$ and a = (-1,0). Then H is a subgroup of G and $aHa^{-1} = \{0\} \times 2\mathbb{Z}$ which is a proper subgroup of H. This shows that $aHa^{-1} \neq H$.

4. Show that S_n $(n \ge 3)$ has no normal subgroup of order 2.

Solution.

Let $H < S_n$ have order 2. Then $H = {\text{Id}, \sigma}$ where $\sigma \neq \text{Id}$ is a permutation. If H is normal in S_n , then for any $\tau \in S_n$, $\tau \sigma \tau^{-1} \in H$. The last expression cannot be the identity, for otherwise $\sigma = \text{Id}$. Hence $\tau \sigma \tau^{-1} = \sigma$, or equivalently $\tau \sigma = \sigma \tau$. It implies that σ commutes with every element of S_n . It is impossible for $n \geq 3$. (why?) It follows that no subgroup of order 2 of S_n is normal.

5. Let p be the smallest prime dividing the order of group G. If H is a subgroup of G with index p then H is normal.

Solution. Let H be a subgroup of index p where p is the smallest prime that divides |G|. Let $\phi : G \times G/H \to G/H$ the map given by $\phi(x, gH) = xgH$. This induces a homomorphism $\phi^* : G \to S_p$. Note that the kernel is contained in H. Denote the kernel by K. Then $G \setminus K$ is a subgroup of S_p , so |G/K||p!. Since

$$|G/K| = |G/H||H/K| = p|H/K|,$$

we have p divides |G/K|.

We claim that |G/K| = p. |G/K| cannot have prime factor less than p for p is the smallest prime dividing |G|. There is no prime larger than p dividing |G/K| as |G/K| divides p!.

So it forces that |H/K| = 1 saying that H is indeed a kernel which is always normal.

6. Give a list of all non-isomorphic abelian groups of order 180 but not isomorphic to $\mathbb{Z}_6 \times \mathbb{Z}_{30}$.

Solution. $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_5, \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5, \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5$