THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Tutorial 1

Date: 12th September 2019

1. Find the sign of each of the following permutations:

(a)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 2 & 1 \end{pmatrix}$$

(b) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 8 & 2 & 4 & 1 & 3 & 7 \end{pmatrix}$

Solution. (a) Noting that

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix},$$

the sign is -1.

(b)

$$\sigma = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 6 & 8 & 2 & 4 & 1 & 3 & 7
\end{pmatrix}
= (1 & 5 & 4 & 2 & 6) (3 & 8 & 7) = (1 & 6) (1 & 2) (1 & 4) (1 & 5) (3 & 7) (3 & 8),$$

the sign is 1.

2. Find all the subgroups of S_3 and D_3 .

Solution. Note that D_3 can be views as a subgroup of S_3 because D_3 can be considered as a group permuting the three vertices of an equilateral triangle. So D_3 is isomorphic to S_3 as they both have six elements. It suffices to find all the subgroups of S_3 only. By Lagrange's Theorem, the order of subgroup should be 1, 2, 3 or 6. First of all, subgroups of order 1 or 6 are $\{Id\}$ and S_3 respectively. For the subgroup of order 2 or 3, it found that it is cyclic by using the corollary of theorem of Lagrange as it is of prime order. We list those subgroups of order 2 or 3 below: $\langle \begin{pmatrix} 1 & 2 \end{pmatrix} \rangle$, $\langle \begin{pmatrix} 1 & 3 \end{pmatrix} \rangle$, $\langle \begin{pmatrix} 2 & 3 \end{pmatrix} \rangle$, and $\langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \rangle$. To conclude, all the subgroups of S_3 are $\{Id\}$, $\langle \begin{pmatrix} 1 & 2 \end{pmatrix} \rangle$, $\langle \begin{pmatrix} 1 & 3 \end{pmatrix} \rangle$, $\langle \begin{pmatrix} 2 & 3 \end{pmatrix} \rangle$, $\langle \begin{pmatrix} 1 & 2 \end{pmatrix} \rangle$, and $\langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \rangle$ and $\langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \rangle$.

3. List all the elements of S_4 according to its cycle patterns.

Solution. S_4 has 5 cycle patterns: (i) trivial element; (ii) cycles of length 2; (iii) products of two disjoint cycles of length 2; (iv) cycles of length 3; (v) cycles of length 4. A complete list of elements in S_4 (in cycle notation) is

4. Show that for $n \geq 3$ A_n is generated by all 3-cycles in S_n .

Solution. Let H be the subgroup generated by all 3-cycles in S_n . We wish to show that $H = A_n$.

⊆: All 3-cycle and its inverse are even and are 3-cycles.

 \supseteq : Every element in A_n can be written as the product of an even number of 2-cycles. We then pair up the adjacent 2-cycles and thus it suffices to show that the product of any pair of 2-cycles can be written as the product of some 3-cycles. For distinct i, j, k, ℓ , we have the following three possibilities:

$$(i \ j) (i \ j) = Id,$$

 $(i \ j) (j \ k) = (i \ j \ k),$

and

$$(i \ j)(k \ \ell) = (i \ j \ k)(j \ k \ \ell).$$

•