MATH 2060 Mathematical Analysis II Tutorial Class 7

Lee Man Chun

1. Let f, g be continuous function defined on [a, b]. Suppose that $f(x) \ge g(x)$ for all $x \in [a, b]$ and $g(x) \ne f(x)$. Show that

$$\int_{a}^{b} f > \int_{a}^{b} g.$$

- 2. (a) Define the improper integral $\int_{a}^{\infty} f$.
 - (b) Let $p \in \mathbb{R}$, show that $\int_{1}^{\infty} x^{p} dx$ exists if and only if p < -1.
- 3. (a) Let $f:[a,\infty)\to\mathbb{R}$ be a function such that $f\in R[a,b]$ for all b>a. Show that $\int_a^\infty f$ exists if and only if $\forall \ \epsilon>0$, there exists K>a such that for all x,y>K, $\int_x^y f<\epsilon$.
 - (b) Let $f,g:[a,\infty)\to\mathbb{R}$ be two function such that $f,g\in R[a,b]$ for all b>a and $0\leq f\leq g$ on $[a,\infty)$.. Show that $\int_a^\infty f$ exists if $\int_a^\infty g$ exists.
- 4. (a) Show that $\int_1^\infty \frac{\sin x}{x}$ exists.
 - (b) Show that $\int_{1}^{\infty} \frac{|\sin x|}{x}$ does not exists.
- 5. (a) Let a < b. Suppose $f: (a, b] \to \mathbb{R}$ satisfies $f \in R[c, b]$ for all $c \in (a, b]$. Define the improper integral $\int_a^b f$.
 - (b) Let $f:(0,1]\to\mathbb{R}$ be a continuous function. Suppose there exists C>0 and p>-1 such that $|f(x)|\leq Cx^p$ for all $x\in(0,1]$. Show that $\int_0^1 f$ exists.