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Suggested Solution of Assignment 3

1. Show that inf X > inf Y whenever X C Y (C R) and hence that m*(A4) 1 (i.e. m*(A) <
m*(B) if A C B(C R)).

Solution. Let x € X. Then z € Y, and hence by the definition of infimum, x > inf Y.
Since x € X is arbitrary, we have inf X > inf Y. The last statement follows immediately
from the definition

m*(A) := inf{z 0(1y) : {Ix}7=; is a countable open-interval cover of A},
k=1

and the fact that if A C B C R, then any countable interval cover of B is also a countable
interval cover of A. <

2. Let A be an algebra of subsets of X. Show that A is a o-algebra if (and only if) A is
stable with respect to countable disjoint unions:

UARE.A whenever A, € AVneNand A, N A, =0VYVm #n.

n=1

Solution. Suppose A is an algebra of subset of X that is stable with respect to countable
disjoint unions. To show that A is a o-algebra, it suffices to show that A is stable with
respect to countable (but not necessarily disjoint) union. Let B, € A for n € N. Define

n—1
Cy:=B; and C,:=DB,\ UBk for n > 2.
k=1

Clearly the collection {C), }7° ; is pairwise disjoint, and each C), € A since A is an algebra.

Moreover,
ClUCQZBlU(BQ\Bl) = B U Bs,
ClUCQUC;g:BlUBQU(Bg\(BlUBQ)) = By U By U Bs,
and so on. Hence |J;2 | B, = U, Cpn € A. <

3. Suppose [a,b] (C R) is covered by a finite family C of open intervals. Show that b — a <
sum of lengths of intervals in C (by MI to n := #(C), the number of elements of C).

Solution. Let P(n) be the statement: if [a,b] is a closed bounded interval that is covered
by a finite family C of open intervals with #(C) = n, then b — a < sum of lengths of
intervals in C.

Suppose #(C) =1 and C = {]¢,d]}. Then clearly b —a < d — c¢. Hence P(1) is true.

Assume that P(k) is true. Suppose [a, ] is a closed bounded interval that is covered by a
finite family C = {(¢;, d;) fill of open intervals. Without loss of generality, we may assume
that a € (c1,d1).

Ifb<dy,thenb—a<d —c < Zf:“ll |c; — d;|, and we are done.
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On the other hand, suppose b > d;. Then [d;,b] is a closed bounded interval covered by
{(c, di)}fi;. Now the induction assumption implies that

k+1
b—dl S Z|Ci_d’i|7
=2

and hence
k+1 k+1
b—a=(di—a)+(b—d)<|er—di|+ Y _lei—di| =D _|e; — di.
i=2 i=1
So P(k+1) is true.
By MI, P(n) is true for all n € N. <

4. (cf. Royden 3rd, p.52, Q51) Upper/Lower Envelopes of f : [a,b] — R.
Define h, g : [a,b] — [—00, 0] by

h(y) := inf{hs(y) : 6 > 0} for all y € [a, b],
where hs(y) := sup{f(x) : « € [a,b], |x — y| < d}; and

9(y) == sup{gs(y) : 6 > 0} for all y € [a, b],
where g5(y) ;= inf{f(x) : x € [a,b], |x — y| < J}. Prove the following:

(a) g < f < h pointwisely on [a,b], and for all x € [a,b], g(z) = f(z) if and only if f is
lower semicontinuous (l.s.c) at x (f(z) = h(z) if and only if f is upper semicontinuous
(u.s.c) at ), so g(z) = h(x) if and only if f is continuous at x.

(b) If f is bounded (so g, h are real-valued), then g is l.s.c and h is u.s.c.

(c) If ¢ is a L.s.c function on [a, b] such that ¢ < f (pointwise) on [a, b], then ¢ < g. State
and show the corresponding result for hA.

(d) Let Cy, := {z € [a,b] : h(z) — g(z) < L} for all n € N. Then C := 72, C,, is exactly
the set of all continuity points of f and is a Gs-set.

Note: More suggestive notations for g, h are f, f.

Solution. (a) Clearly g5(z) < f(z) < hs(x) for all z € [a,b] and § > 0. Hence g < f < h
pointwisely on [a, b].
Suppose f is l.s.c at x, that is, for all ¢ > 0, there exists 6 > 0 such that f(z)—e < f(y)
whenever y € [a,b] and |y — x| < §. Then f(z) —e < gs(x) < g(x). Since € > 0 is
arbitrary, we have f(z) < g(z), and hence f(z) = g(z).

On the other hand, suppose f(x) = g(x). Then, by the definition of g and gs, given
any € > 0, there exists 6 > 0 such that

flz) —e=g(x) —e < gs(x) < f(y) whenever y € [a,b] and |y — x| < 0.

Thus f is l.s.c at =x.
Similarly, one can show that f(z) = h(z) if and only if f is u.s.c at z.

The last assertion now follows immediately from above and the simple fact that f is
continuous at x if and only if it is both l.s.c and u.s.c at x.
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(b)

Let = € [a,b] and € > 0. Since g is real-valued, we can find § > 0 such that
g(z) < gs(x) + . Note that (y — /2,y +6/2) C (x — 4,z +9) if |z —y| < §/2. It

follows from the definition of g and gs that whenever y € [a, b] with |y — x| < §/2, we
have

9(z) —e < gs(x) < gss2(y) < g(v).
Therefore g is 1.s.c at « and hence on [a, b].
Similarly one can show that A is u.s.c on [a, b].

It suffices to prove that if ¢ is l.s.c at z and ¢ < f on [a, b], then ¢(z) < g(x). From
the definition,

¢(z) :=sup inf ¢(y) <sup inf f(y)=g(x).
5>0 ly—=z]<6 §>0 ly—z|<d

Since ¢ is Ls.c at x, we have ¢(z) = ¢(z) by (a), and the result follows.

Similarly, one can prove the corresponding result for h: if ¢ is a u.s.c function on
[a, b] such that f <) on [a,b], then h < .

By (a), we have

{z € [a,b] : f continuous at x} = {z € [a,b] : g(x) = h(z)}

= ({z € [a,b] : h(z) — g(x) < 1/n}
_r Cp=C

Note that k := h — g is u.s.c on [a,b] \ {z : h(x) = +o0 or g(z) = —o0}.

To see that C is a Gg-set (in [a,b]), it suffices to show that, given any A € R,
A:={z € [a,b] : k(x) < A} is an open set in [a, b].

Let x € A. Then k(z) # +o0. Set g9 := (A —k(z))/2 > 0. Since k is u.s.c at z, there
exists 6 > 0 such that if y € [a,b] and |y — x| < §, then

A—k(z) A+ k(x)
2 2

Thus Bs(z) N [a,b] € A. Hence A is open in [a, b].

k(y) < k(z) + €0 = k(z) + <A

<

5. Let f : [a,b] — [m,M]. For each P € Par|a,b], let u(f; P) and U(f;P) denote the
lower /upper Riemann-sum functions. Let {P, : n € N} be a sequence of partitions such
that P, C Py+1 Vn and ||P,|| — 0 (]| P is the max subinterval length of P). Show that,
Vo€ la,b]\ A

lim (u(f; Po)) (2) = f(@) and T (U(f; Pa)) (2) = T(a),

where A denotes the union of all end-points of P, Vn.

Solution. Let P be the partition a = tg < t; < --- < tx = b. Then the lower and upper
Riemann-sum functions can be defined as follow:

k k
u(f,P):=>_ inf f@)X@_np  UWEP) =D sup  f(@)X@yu)-

=1 (I?G(tifl»ti] i1 l'e(tifl,ti]
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Let {P,} be a sequence of partitions such that P, C P,y; Vn and ||P,|| — 0. Then
u(f; Pp) is an increasing sequence of functions, so that limu(f; P,) exists. Since u(f; Py)
n

is bounded above by f on (a,b] and is l.s.c at x € [a,b] \ A, it follows from (the proof of)
4(c) that
u(f; Po)(x) < f(z), forallz€fa,b]\ A, necN. (1)
Fix = € [a,b] \ A. Let € > 0. Since f is L.s.c at x, there exists § > 0 such that
flx)—e < f(y) < fly) whenever y € [a,b] and |y — x| < 4.

Choose N so large such that ||Py|| < . Suppose a = tg < t; < --- < t = b are the
end-points of Py. Then

b —5<Z inf YIX(ti1,0:(2) = u(f; Pn) (). (2)

< ye (i1t
Combining (1) and (2), we have

F(@) —e < ulf; Py)(x) < u(f; P)(z) < f(z) forn > N,
and hence limu(f; P,)(z) = f(z).
Similarly Wencan show that im U(f; P,)(x) = f(z) for @ € [a,b]\ A.



