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Suggested Solution of Assignment 2

In this assignment, {x,} and {y,} are sequences of real numbers. E is a subset of R.
Recall that the limit superior of {z,} is defined by

lim sup z,, := inf sup x.
" g>n

Clearly z, := supjs,, % is monotone decreasing, and hence

lim z, = inf 2z, = lim sup x,,, (1)
n n

where the limit is taken in the extended real number. Similarly the limit inferior of {x,} is given
by

liminf z,, := sup Iirzlfb Tp = h};n égi Tk (2)
1% (3rd: P.39, Q12)

Show that z = lim z,, if and only if every subsequence of {x,} has in turn a subsequence
that converges to z. How about z € {—o00,00}?

Solution. ( =) Suppose limz,, = z. Then every subsequence {z,, } of {x,} converges
to x. Therefore {x,, } has itself as a further subsequence that converges to x.

( <= ) Suppose on the contrary that {z,} does not converge to x. Then there exists
go > 0 such that for all N € N, there is n > N such that

|z, — x| > ep.

Take N = 1, then we can find n; > 1 such that |x,, —z| > eg. Take N = n;, we can find
ng > ny such that |x,, — x| > 9. Continue in this way, we can find a subsequence {z,, }
of {z,,} such that

|z, — x| > €9 forall ke N.
Now {zp, } has no further subsequence that converges to z.

Similar results hold if x = —o0 or oo. |

2. (3rd: P.39, Q13)

Show that the real number [ is the limit superior of the sequence {z,} if and only if (i)
given € > 0, dn such that z; <+ ¢ for all £ > n, and (ii) given € > 0 and n, Ik > n
such that z, > 1 —¢.

Solution. We show that
(a) limsupx, <! if and only if (i) holds ; and
(b) limsupz, > [ if and only if (ii) holds.

(a): By the definition of supremum and infinmum,

limsupz, <! = (Ve > 0)(limsupz, <l+¢e) = (Ve > 0)(infsupzy <l +¢)
" g>n

= (V5>0)(Eln)(2upxk<l+€) = Ve>0)3n)(Vk >n)(zp <l+e);
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while on the other hand,
Ve>0)3n)(Vk>n)(zp <l+e) = (Ve >0)(3n)(supxy <l+¢)
k>n
= (Ve >0)(infsupzy < l+¢) = (Ve >0)(limsupzy <l+¢e) = limsupz, <.
" k>n
(b): Similarly,
limsupz, > = (Ve > 0)(limsupz, >1—¢) = (Ve > 0)(infsupxy > 1 —¢)
" k>n

= (Ve>0)(Vn)(supxg >1—¢) = (Ve >0)(Vn)(Tk >n)(z >1—¢);
k>n

while on the other hand,
Ve>0)(Vn)(Fk>n)(xp>1l—¢c) = (Ve >0)(Vn)(supxg >1—¢)
k>n
= (Ve >0)(infsupzy > 1 —¢) = (Ve > 0)(limsupx, > [ —¢) = limsupz, > [.
" k>n
Now the desired statement follows from (a) and (b) immediately.

Similarly, one can show that

(¢) liminfx, > [ if and only if Ve > 0, 3n such that z; > [ —¢ for all £k > n ; and
(c) liminfz, <! if and only if Ve > 0, Vn, 3k > n such that z;, <l +e.

(3rd: P.39, Q14)
Show that lim sup z,, = oo if and only if given A and n, Ak > n such that xx > A.

Solution. The statement follows immediately from (b) in question 2 and the fact that
x = oo if and only if z > A for any A € R. Indeed,

limsupz, =00 = (VA € R)(limsupz,, > A) = (VA € R)(Vn € N)(supzy > A)
k>n

= VA eR)(VneN)( Tk >n)(z > A).
while on the other hand,
VA eR)(VneN)(Fk>n)(xp >A) = (VA eR)(Vn e N)(supzxp > A)

k>n
— (VA € R)(limsupz,, > A) = limsupz, = oo.
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(3rd: P.39, Q15)

Show that liminf xz,, < limsupx, and liminf z, = limsup x, = [ if and only if [ = lim x,,.

Solution. Clearly

inf z; < x, <supxg for all n > 1. (3)
k>n k>n

Hence, by (1) and (2), and letting n — oo, we have

liminf z,, = lim inf x; < limsup x; = limsup z,,.

Suppose liminf x,, = limsupx,, = [. Then it follows from (3) and the Squeeze Theorem
that limz,, = [.

Conversely, if [ = lim z,,, then for any £ > 0, there exists n € N such that | —e < zj, <l+¢
for all £ > n, so that

l—e<infxp <zp <supxp <l+e forall k>n.
kzn k>n

Letting n — oo, we have [ — e < liminf x,, < limsupz, <[+e¢e. As ¢ is arbitrary, we have
liminf x,, = limsup z,, = [.

<

(3rd: P.39, Q16)
Prove that

lim sup ,, + liminf y,, < limsup(x,, + y,) < limsup z,, + lim sup yy,,

provided the right and left sides are not of the form oo — co.

Solution. For all n > 1,

T + igf y; < xp +yr whenever k > n,
Jj=zn

so that

sup zy, + inf y; < sup(xy + yg)-
k>n jzn k>n

By (1) and (2), we can let n — oo on both sides and obtain

lim sup z,, + lim inf y,, < lim sup(x,, + yn),

provided the left side is not of the form oo — co.
On the other hand, for all n > 1,

xrj+y; <supxy +supy, whenever j > n,
k>n k>n

so that

sup(zx + yr) < sup xy + sup y.
k>n k>n k>n

Again letting n — oo, we obtain
lim sup(z,, + y,,) < limsup z,, + lim sup y,,

provided the right side is not of the form oo — co.
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(3rd: P.39, Q17)
Prove that if z,, > 0 and y,, > 0, then

limsup(z,yn) < (limsup z, ) (imsup yn),

provided the product on the right is not of the form 0 - co.

Solution. For alln > 1,

0<xp<supz; and O0<y,<supy; whenever k>n,
jzn jzn

so that

0 < zpyr < (supzj)(supy;) whenever k > n.
jzn jzn

Thus, for all n > 1,

sup(zgyx) < (sup zx)(sup yi)-
k>n k>n k>n

Using (1) and (2), and letting n — oo, we have
lim sup(z,y,) < (limsup x,,)(lim sup yy,),

provided the right side is not of the form 0 - co. |

(3rd: P.46, Q27)

x € R is called a point of closure of E if each neighbourhood of x intersects E. Show
that x is a point of closure of E if and only if there is a sequence {y,} with y, € E and
r = limy,.

Solution. Suppose z is a point of closure of E. Then the open ball B(z,1/n), which is
centred at x and of radius 1/n, intersects E for all n > 1. Pick y, € EN B(x,1/n) for
each n. Then {y,} is a sequence in E such that limy,, = x, since |y, — x| < 1/n for all n.

On the other hand, suppose {y,} is a sequence in F such that z = limy,. Let U be a
neighbourhood of z. Then y, — x implies that y, € U for all sufficiently large n. In
particular, U N E # (). <

(3rd: P.46, Q28; 4th: P.20, Q30(i))

A number z is called an accumulation point of a set E if it is a point of closure of E\ {x}.
Show that the set E’ of accumulation points of E is a closed set.

Solution. We would like to show that the complement of E’ is open. Let z € (E’)¢. Then
x is not a point of closure of E'\ {x}. Hence, by definition, there is an open neighbourhood
U of z such that U N (E \ {z}) = 0. We claim that every y € U is not an accumulation
point of E, so that z € U C (E’), and hence (E’)¢ is open.

Let y € U \ {z}. Since U \ {z} is open, there is a neighbourhood V of y such that
V C U\ {z}. Hence

VA(E\{y}) CU\{z})nE=0.
Thus y is not a point of closure of E \ {y}, that is, y is not an accumulation point of E.

<
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(3rd: P.46, Q29; 4th: P.20, Q30(ii))
Show that E = EU F'.

Solution. Recall that E is the set of all point of closure of E. From the definitions, it is
clear that £ U E’ C E. On the other hand, if x € E \ E, then for every neighbourhood U

of x,
UN(E\{z})=UNE#0.

Hence x € E'. Therefore E C EUF'. <

(3rd: P.46, Q30; 4th: P.20, Q31)

A set E is called isolated if EN E' = (). Show that every isolated set of real numbers is
countable.

Solution. Suppose F is isolated. Then no point in F is an accumulation point of E,
whence, for all x € E, there is r, > 0 such that (z — rp,xz +r;) N (E\ {z}) = 0. Let
I, = (x —r3/2,2 4+ ry/2). Then {I, : x € E} is a collection of open intervals such that

I,NL,=0 ifzx,yecE, z#y.

For otherwise, u € I, NI, = |z —y| < |z —u|+ |u —y| < rz/2+1y/2 < max{ry,ry},
contradicting ¢ I, and y & I,.

By the density of Q, for every x € E, we can find p(z) € Q such that p(z) € I,. Now
¢ : E — Q is an injection since {I, : x € E} are pairwise disjoint. Therefore E is
countable.

<



