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1 Compact Sets in R

Throughout this section, let (x,) be a sequence in R. Recall that a subsequence (zp, )7,
of (x,) means that (n;)g2, is a sequence of positive integers satisfying n; < no < --- <
ng < ngy1 < ---, that is, such sequence (ny) can be viewed as a strictly increasing function
n:ke{l,2.}—n,e{l,2..}.

In this case, note that for each positive integer N, there is K € N such that nxg > N and thus
we have ng, > N for all kK > K.

Let us first recall the following two important theorems in real line.

Theorem 1.1 Nested Intervals Theorem Let (I, := [ay,b,]) be a sequence of closed and
bounded intervals. Suppose that it satisfies the following conditions.

(i) : 11 2, 2132 ---.
(i) : limy, (b, — a,) = 0.
Then there is a unique real number & such that (o, I, = {£}.

Proof: See [1, Theorem 2.5.2, Theorem 2.5.3]. O

Theorem 1.2 (Bolzano-Weierstrass Theorem) Every bounded sequence in R has a con-
vergent subsequence.

Proof: See [1, Theorem 3.4.8]. O

Definition 1.3 A subset A of R is said to be compact (more precise, sequentially compact) if
every sequence in A has a convergent subsequence with the limit in A.

We are now going to characterize the compact subsets of R. The following is an important
notation in mathematics.

Definition 1.4 A subset A is said to be closed in R if it satisfies the condition:

if (zy,) is a sequence in A and lim x,, exists, then limz,, € A.

Example 1.5 (i) {a};[a,b];[0,1] U{2}; N; the empty set () and R all are closed subsets of
R.



(ii) (a,b) and Q are not closed.

The following Proposition is one of the basic properties of a closed subset which can be directly
shown by the definition. So, the proof is omitted here.

Proposition 1.6 Let A be a subset of R. The following statements are equivalent.

(i) A is closed.

(ii) For each element x € R\ A, there is 0, > 0 such that (x — 6y, x + ;) N A =0.

The following is an important characterization of a compact set in R. Warning: this result is
not true for the so-called metric spaces in general.

Theorem 1.7 Let A be a closed subset of R. Then the following statements are equivalent.
(i) A is compact.
(ii) A is closed and bounded.

Proof: 1t is clear that the result follows if A = (). So, we assume that A is non-empty.

For showing (i) = (i7), assume that A is compact.

We first claim that A is closed. Let (z,) be a sequence in A. Then by the compactness of A,
there is a convergent subsequence (z,,) of (z,) with limy x,, € A. So, if (z,) is convergent,
then lim,, x,, = limy, x,,, € A. Therefore, A is closed.

Next, we are going to show the boundedness of A. Suppose that A is not bounded. Fix an
element 27 € A. Since A is not bounded, we can find an element x5 € A such that |zo — x| > 1.
Similarly, there is an element z3 € A such that |zg — zx| > 1 for kK = 1,2. To repeat the same
step, we can obtain a sequence (x,) in A such that |z, — x| > 1 for m # n. From this,
we see that the sequence (x,) does not have a convergent subsequence. In fact, if (z,) has a
convergent subsequence (zp, ). Put L := limy z,,. Then we can find a pair of sufficient large
positive integers p and ¢ with p # ¢ such that |z,, — L| < 1/2 and |z,, — L| < 1/2. This
implies that |z,, — z,,| < 1. It leads to a contradiction because |z,, — z,,| > 1 by the choice
of the sequence (x,). Thus, A is bounded.

It remains to show (i7) = (7). Suppose that A is closed and bounded.

Let (zy,) be a sequence in A. Thus, (x,). Then the Bolzano-Weierstrass Theorem assures that
there is a convergent subsequence (z,, ). Then by the closeness of A, limy x,, € A. Thus A is
compact.

The proof is finished.

O

2 Appendix: Compact sets in R, Part 2

For convenience, we call a collection of open intervals {J, : @« € A} an open intervals cover
of a given subset A of R, where A is an arbitrary non-empty index set, if each .J, is an open



interval (not necessary bounded) and

Theorem 2.1 Heine-Borel Theorem: Any closed and bounded interval [a,b] satisfies the
following condition:

(HB) Given any open intervals cover {Ju}aen of [a,b], we can find finitely many Jo,, .., Jay
such that [a,b] C Jo, U---U Jqy

Proof: Suppose that [a,b] does not satisfy the above Condition (HB). Then there is an open
intervals cover {Jy}aen Of [a,b] but it it has no finite sub-cover. Let I} := [a1,b1] = [a,b] and
m1 the mid-point of [a1,b1]. Then by the assumption, [a1,m;] or [m1,b;] cannot be covered
by finitely many J,’s. We may assume that [a;,m1] cannot be covered by finitely many J,’s.
Put Iy := [ag, be] = [a1, m1]. To repeat the same steps, we can obtain a sequence of closed and
bounded intervals I,, = [ay,, b,] with the following properties:

(a) (21232 - ;
(b) limy, (b, — ay,) = 0;
(c) each I,, cannot be covered by finitely many J,’s.

Then by the Nested Intervals Theorem, there is an element ¢ € (), I, such that lim, a,, =
lim, b, = £. In particular, we have a = a; <& <b; =b. So, there is ap € A such that £ € J,,.
Since J,, is open, there is € > 0 such that (§ —,§ +¢) C J,,. On the other hand, there is
N € N such that ay and by in (§ — &,& + ¢) because lim, a,, = lim,, b, = £. Thus we have
In = [an,bn] C (£ — &, + &) C Jy,. It contradicts to the Property (c¢) above. The proof is
finished.

O

Remark 2.2 The assumption of the closeness and boundedness of an interval in Heine-Borel
Theorem is essential.

For example, notice that {.J,, := (1/n,1) : n = 1,2...} is an open interval covers of (0,1) but
you cannot find finitely many .J,,’s to cover the open interval (0, 1).

The following is a very important feature of a compact set.

Theorem 2.3 Let A be a subset of R. Then the following statements are equivalent.

(i) For any open intervals cover {Jo}taca of A, we can find finitely many Jo,, .., Jay Such
that A C Jo, U---U Jyy -

(ii) A is compact.
(iii) A is closed and bounded.



Proof: The result will be shown by the following path

For (i) = (ii), assume that the condition (¢) holds but A is not compact. Then there is a
sequence (x,) in A such that (x,) has no subsequent which has the limit in A. Put X =
{zy, :m=1,2,..}. Then X is infinite. Also, for each element a € A, there is d, > 0 such that
Jo := (a—04,a+0,)N X is finite. Indeed, if there is an element a € A such that (a—d,a+d)NA
is infinite for all § > 0, then (z,) has a convergent subsequence with the limit a. On the other
hand, we have A C | J,c 4 Ja- Then by the compactness of A, we can find finitely many ar, ..., ay
such that A C J,, U---U J,,. So we have X C J,, U---UJ,,. Then by the choice of J,’s, X
must be finite. This leads to a contradiction. Therefore, A must be compact.

The implication (ii) = (i77) follows from Theorem 1.7 at once.

It remains to show (i7i) = (7). Suppose that A is closed and bounded. Then we can find a closed
and bounded interval [a, b] such that A C [a,b]. Now let {J, }aeca be an open intervals cover of
A. Notice that for each element = € [a, b \ A, there is d, > 0 such that (x —d,,2+0,)NA =10
since A is closed by using Proposition 1.6. If we put I, = (x — 0, 2 + ;) for x € [a,b] \ A, then

we have
b C | JJu J L
a€cl z€[a,b]\ A

Using the Heine-Borel Theorem 2.1, we can find finitely many J,’s and I,’s, say Ju,, ..., Jay
and I, ..., Iy, , such that A C [a,b] C Jo, U---UJyy Ul U---UI,,. Note that I, N A =1
for each = € [a,b] \ A by the choice of I,. Therefore, we have A C J,, U---UJ,, and hence A
is compact.

The proof is finished. O

Remark 2.4 In fact, the condition in Theorem 2.3(i) is the usual definition of a compact set
for a general topological space. More precise, if a set A satisfies the Definition 1.4, then A is
said to be sequentially compact. Theorem 2.3 tells us that the notation of the compactness and
the sequentially compactness are the same as in the case of a subset of R. However, these two
notation are different for a general topological space.

Strongly recommended: take the courses: MATH 3060; MATH3070 for the next step.

3 Continuous functions defined on compact sets

Throughout this section, let A be a non-empty subset of R and f: A — R a function defined
on A.

Proposition 3.1 Let f be a continuous function defined on a compact subset A of R. Then
f(A) is a compact subset of R.

Proof: Method I: By using Theorem 2.3 (i) < (iii), it suffices to show that f(A) is a closed
bounded subset of R.

Claim 1: f(A) is bounded.

Suppose not. Then for each positive integer n, there is an element x,, € A such that |f(z,)| > n.



Since A is compact, there is a convergent subsequence (z,, ) with a := limy, ,,, € A. This gives
limy, f(zy,) = f(a) because f is continuous on a and hence, (f(xy,)) is a bounded sequence.
This leads to a contradiction to the choice of (x,) which satisfies | f(z,, )| > ny forall k = 1,2....
Claim 2: f(A) is a closed subset of R, that is, y € f(A) whenever, a sequence (z,) in A
satisfying lim,, f(z,) = y.

In fact, there is a convergent subsequence (zy) with z := limy 2 € A by using the compactness
of A again. This gives y = limy, f(xy,) = f(2) € f(A) as desired since f is continuous on A.
Method II: Alternatively, we are going to use Theorem 2.3 (i) < (it).

Let {J;}icr be an open interval covers of f(A). We may assume J; N f(A) # () for each i € I.
Notice that since J; is an open interval and f is continuous, we see that if f(x) € J;, then we
can find ¢, > 0 such that f(z) € J; whenever z € A with |z — z| < J,. Notice that we have
A C U,en Jo, where V, := (x — 05,2 + d,) and hence, {V, : x € A} forms an open intervals
cover of A. By using the equivalence (i) < (ii) in Theorem 2.3, we can find finitely many
Z1,...,Tn in A such that A C V, U---UV,,. For each k = 1,..,n, then f(zx) € J;, for some
ir. € I. Now if x € A, then x € V,, for some k = 1,...,n. This gives f(x) € J;, and thus,
f(A) C J;; U---UJ;,. The proof is finished. O

Corollary 3.2 If f : A — R is a continuous injection and A is compact, then the inverse map
1 f(A) — A is also continuous.

Proof: Let B = f(A)and g = f~!: B — A. Suppose that g is not continuous at some b € B.
Put a = ¢g(b) € A. Then there are n > 0 and a sequence (y,,) in B such that limy, = b but
lg(yn) — g(b)] > n for all n. Let =, := g(yn) € A. So, by the compactness of A, there is a
convergent subsequence (z,, ) of (z,) such that limy z,,, € A. Let o’ = limy z,,,. Then we have
f(a') = limy, f(xp,) = limg y,, = b. On the other hand, since |g(y,) — g(b)| > n for all n, we
see that
|2, — al = [9(yn,) —9(0) =0 >0

for all k£ and hence |’ — a| > 0. This implies that a # &’ but f(a’) = b= f(a). It contradicts
to f being injective.

The proof is finished. O

Remark 3.3 The assumption of the compactness in the last assertion of Proposition 3.2 is
essential. For example, consider A = [0,1) U [2,3] and define f : A — R by

{x if x€[0,1)

TO=N021 itrepy

Then f(A) = [0,2] and f is a continuous bijection from A onto [0,2] but f=1:[0,2] — A is
not continuous at y = 1.

Example 3.4 By Proposition 3.2, it is impossible to find a continuous surjection from [0, 1]
onto (0,1) since [0, 1] is compact but (0,1) is not. Thus [0, 1] is not homeomorphic to (0, 1

Proposition 3.5 Suppose that f is continuous on A. If A is compact, then there are points c
and b in A such that

fle) =max{f(z) :z € A} and f(b) = min{f(x):x € A}.



Proof: By considering the function —f on A, it needs to show that f(c) = max{f(x):z € A}
for some ¢ € A.

Method I:

We first claim that f is bounded on A, that is, there is M > 0 such that |f(z)] < M for
all z € A. Suppose not. Then for each n € N, we can find a,, € A such that |f(ay,)| > n.
Recall that A is compact if and only if it is closed and bounded (see Theorem ?7?). So, (a,)
is a bounded sequence in A. Then by the Bolzano-Weierstrass Theorem, there is a convergent
subsequence (ay, ) of (a,). Put a = limga,,. Since A is closed and f is continuous, a € A,
from this, it follows that f(a) = limy f(ayp,). It is absurd because ny < |f(an,)| — |f(a)| for
all k£ and ny — oo. So f must be bounded. So L := sup{f(x) : © € A} must exist by the
Axiom of Completeness.

It remains to show that there is a point ¢ € A such that f(¢) = L. In fact, by the definition
of supremum, there is a sequence (z,,) in A such that lim,, f(z,) = L. Then by the Bolzano-
Weierstrass Theorem again, there is a convergent subsequence (zy, ) of (z,) with limy z,, € A.
If we put ¢ := limy x,,, € A, then f(c) = limy, f(x,,) = L as desired. The proof is finished.
Method II:

We first claim that f is bounded above. Notice that for each z € A, there is 6, > 0 such that
f(y) < f(x) + 1 whenever y € A with |z — y| < 0, since f is continuous on A. Now if we put
Jy = (=04, v+6;) for each € A, then A C J,c 4 J=- So, by the compactness of A, we can find
finitely many x1,...,zx in A such that A C J,, U---UJ,, and it follows that for each x € A, we
have f(z) < 1+ f(zy) for some k = 1,..., N. Now if we put M := max{1+ f(z1),....,1+ f(zn)},
then f is bounded above by M on A.

Put L := sup{f(x) : © € A}. It remains to show that there is an element ¢ € A such that
f(e¢) = L. Suppose not. Notice that since f(z) < L for all x € A, we have f(x) < L for all
x € A under this assumption. Therefore, by the continuity of f, for each x € A, there are
ez > 0 and 7y > 0 such that f(y) < f(z) + e, < L whenever y € A with |y — x| < 0. Put
I = (x =0z, x+n;). Then A C J, 4 L. By the compactness of A again, A can be covered by
finitely many I, ..., I . If welet L' := max{f(x1)+ez,.... f(xN)+Ezy}, then f(z) < L' < L
for all z € A. It contradicts to L being the least upper bound for the set {f(z): x € A}. The
proof is complete. O

Definition 3.6 We say that a function f is upper semi-continuous (resp. lower semi-continuous)
on A if for each element z € A and for any € > 0, there is 6 > 0 such that f(z) < f(z) +¢
(resp. f(2) —e < f(x)) whenever z € A with |z — 2| < 4.

Remark 3.7 (i) It is clear that a function is continuous if and only if it is upper semi-
continuous and lower semi-continuous. However, an upper semi-continuous function need
not be continuous. For example, define a function f: R — R by

Fa) = {1 if xel0,1]

0 otherwise.

(ii) From the Method II above, we see that if f is upper semi-continuous (resp. lower
semi-continuous) on a compact set A, then the function f attains the supremum (resp.
infimum) on A.



4 Uniform Continuous Functions

Definition 4.1 A function f: A — R is said to be uniformly continuous on A if for any € > 0,
there is ¢ > 0 such that |f(x) — f(y)| < € whenever z,y € A with |z —y| <.

Remark 4.2 It is clear that if f is uniformly continuous on A, then it must be continuous on
A. However, the converse does not hold. For example, consider the function f : (0,1] — R
defined by f(z) := 1/z. Then f is continuous on (0, 1] but it is not uniformly continuous on
(0,1]. Notice that f is not uniformly continuous on A means that

there is € > 0 such that for any § > 0, there are x,y € A with |x —y| < § but |f(x) — f(y)| > e.

Notice that 1/x — oo as * — 0+. So if we let € = 1, then for any 6 > 0, we choose n € N
such that 1/n < 0 and thus we have |1/2n — 1/n| = 1/2n < 6 but |f(1/n) — f(1/2n)| =n >
1 = ¢. Therefore, f is not uniformly continuous on (0, 1].

Example 4.3 Let 0 < a < 1. Define f(z) = 1/z for = € [a,1]. Then f is uniformly continuous
on [a,1]. In fact for z,y € [a, 1], we have

1 1 _ eyl _ |-y
— =|—-——|= < .
@) =t =12 - 1=~ ==&
So for any € > 0, we can take 0 < § < ac. Thus if z,y € [a, 1] with |z — y| < J, then we have
|f(xz) — f(y)| < € and hence f is uniformly continuous on [a, 1].

Proposition 4.4 If f is continuous on a compact set A, then f is uniformly continuous on

A.

Proof: Compactness argument:

Let ¢ > 0. Since f is continuous on A, then for each x € A, there is d, > 0, such that
|f(y)—f(z)] < e whenever y € A with |[y—z| < §,. Now for each € A, set J, = (x— %, 2+%).
Then A C |J,c4 Jo- By the compactness of A, there are finitely many z1,...,2x € A such

that A C Jy, U--- U Jg,. Now take 0 < § < min(‘s%l,..., &EQN). Now for z,y € A with

|z —y| < 0, then € I, for some k = 1,.., N, from this it follows that |z — x| < 6%’“ and

ly—z| < |y—z|+|r—xk| < %Tk+%7k = 0,. So for the choice of d,, , we have |f(y) — f(zx)| < e
and |f(z) — f(zx)| < . Thus we have shown that |f(z) — f(y)| < 2¢ whenever z,y € A with
|z —y| < d. The proof is finished.

Sequentially compactness argument:

Suppose that f is not uniformly continuous on A. Then there is ¢ > 0 such that for each
n=1,2,.., we can find z, and y, in A with |z, — y,| < 1/n but |f(x,) — f(yn)| > €. Notice
that by the sequentially compactness of A, (z,) has a convergent subsequence (x,,) with
a := limy z,, € A. Now applying sequentially compactness of A for the sequence (y, ), then
(yn, ) contains a convergent subsequence (ynk]) such that b := lim; Yny,, € A. On the other

hand, we also have lim; Tny, = @ Since ]wnkj — ynkj\ < 1/ny,; for all j, we see that @ = b. This
implies that lim; f (xnkj) = f(a) = f(b) = lim; f (ynk]) This leads to a contradiction since we
always have |f (mnk7) —f (ynk])| > e > 0 for all j by the choice of x,, and y,, above. The proof
is finished. O



Proposition 4.5 Let f be a continuous function defined on a bounded subset A of R. Then
the following statements are equivalent.

(i): f is uniformly continuous on A.

(ii): There is a unique continuous function F defined on the closure A such that F(z) = f(x)

forall x € A.

Proof: Notice that since A is bounded then so is A. This implies that A is compact. The Part
(73) = (i) follows Proposition 4.4 at once.
The proof of Part (i) = (éi) is divided by the following assertions. Assume that f is uniformly
continuous on A.
Claim 1. If (z,,) is a sequence in A and lim z,, exists, then lim f(z,,) exists.
It needs to show that (f(x,)) is a Cauchy sequence. Indeed, let £ > 0. Then by the uniform
continuity of f on A, thereis d > 0 such that | f(z)—f(y)| < € whenever z,y € A with |[z—y| < J.
Notice that (z,) is a Cauchy sequence since it is convergent. Thus, there is a positive integer
N such that |z, —z,| < § for all m,n > N. This implies that |f(x,,) — f(z,)| < € for all
m,n > N and hence, Claim 1 follows.
Claim 2. If (x,) and (y,) both are convergent sequences in A and limx, = limy,, then
lim f () = lim f(yn).
By Claim 1, L := lim f(z,) and L' = lim f(y,) both exist. For any £ > 0, let 6 > 0 be found
as in Claim 1. Since limz,, = limy,, there is N € N such that |z, — y,| < 0 for all n > N
and hence, we have |f(z,,) — f(yn)| < € for all n > N. Taking n — oo, we see that |[L — L'| <e
for alle > 0. So L = L'. Claim 2 follows.
Recall that an element z € A if and only if there is a sequence () in A converging to z.
Now for each = € A, we define

F(z) :=lim f(x,)

if (x,,) is a sequence in A with limz,, = z. It follows from Claim 1 and Claim 2 that F'is a
well defined function defined on A and F(x) = f(x) for all z € A.

So, it remains to show that F is continuous. Then F is a continuous extension of f to A as
desired.

Now suppose that F is not continuous at some point z € A. Then there is ¢ > 0 such that for
any § > 0, there is © € A satisfying |z — z| < & but |F(z) — F(z)| > e. Notice that for any
§ > 0 and if |z — z| < § for some z € A, then we can choose a sequence (z;) in A such that
limz; = x. Therefore, we have |z; — z| < § and |f(x;) — F(2)| > ¢/2 for any ¢ large enough.
Therefore, for any § > 0, we can find an element x € A with |z —z| < d but |f(z)—F(2)| > ¢/2.
Now consider § = 1/n for n = 1,2.... This yields a sequence (z,) in A which converges to z
but |f(z,) — F(2)| > ¢/2 for all n. However, we have lim f(z,,) = F(z) by the definition of F'
which leads to a contradiction. Thus F is continuous on A.

Finally the uniqueness of such continuous extension is clear.

The proof is finished. O

Example 4.6 By using Proposition 4.5, the function f(z) := sin% defined on (0, 1] cannot be
continuously extended to the set [0, 1].



Definition 4.7 Let A be a non-empty subset of R. A function f : A — R is called a Lipschitz
if there is a constant C' > 0 such that |f(z) — f(y)| < Clx — y| for all x,y € A. In this case.
Furthermore, if we can find such 0 < C < 1, then we call f a contraction.

It is clear that we have the following property.
Proposition 4.8 FEvery Lipschitz function is uniformly continuous on its domain.

Example 4.9 (i) : The sine function f(x) = sinz is a Lipschitz function on R since we
always have |sinz —siny| < |z — y| for all z,y € R (by using the equation sinx — siny =

2 cos Z¥ sin ¥ and the fact [sinz| < |z for all 2 € R.)

(ii) : Define a function f on [0,1] by f(x) = zsin(1/x) for z € (0,1] and f(0) = 0. Then f is
continuous on [0, 1] and thus f is uniformly continuous on [0, 1]. But notice that f is not
a Lipschitz function. In fact, for any C' > 0, if we consider z,, = m and y, = ﬁ,
then |f(xn) — f(yn)| > Clan, — ynl if and only if

(2nm + 5)(2nm)
2nm + 5

2
—. =4n > C.
T

Therefore, for any C' > 0, there are z,y € [0,1] such that |f(z) — f(y)| > C|z — y| and
hence f is not a Lipschitz function on [0, 1].

Proposition 4.10 Let A be a non-empty closed subset of R. If f : A — A is a contraction,
then there is a fived point of f, that is, there is a point a € A such that f(a) = a.

Proof: Since f is a contraction on A, there is 0 < C' < 1 such that |f(z) — f(y)| < Clx — y|
for all z,y € A. Fix x; € A. Since f(A) C A, we can inductively define a sequence (z,) in A
by zp4+1 = f(zy,) for n = 1,2... Notice that we have

|Tnt1 — zn| = |f(2n) = f(@n_1)| < Clay — 2p1]

for all n = 2,3... This gives
|Tng1 — | < O™ g — 21

forn =2,3,.... So, for any n,p =1, 2.., we see that

n+p—1 n+p—1
|Zn+p — Tn| < Z |Tit1 — x| < |w2 — 4] Z cl
i=n =n

Since 0 < C < 1, for any € > 0, there is N such that Z?If_l C~! <eforalln > N

and p = 1,2,... Therefore, (z,) is a Cauchy sequence and thus the limit a := lim,, z,, exists.
Since A is closed, we have a € A and hence f is continuous at a. On the other hand, since
Znt1 = f(xzp). Therefore, we have a = f(a) by taking n — co. The proof is finished. O

Remark 4.11 The Proposition 4.10 does not hold if f is not a contraction. For example, if
we consider f(z) =x — 1 for z € R, then it is clear that |f(z) — f(y)| = |z — y| and f has no
fixed point in R.



5 Continuous functions defined on intervals

Theorem 5.1 (Intermediate Value Theorem): Let f : [a,b] — R be a continuous func-
tion. Suppose that f(a) < z < f(b). Then there is ¢ between a and b such that f(c) = z.

Proof: Notice that if we consider the function x € [a,b] — f(z)— 2z, then we may assume that
z=0.
Method I: Let

S:={x € [a,b]: f(x) <O0}.

Notice that the set S is non-empty since a € S and is bounded. Then by the axiom of
completeness, the supremum c := sup{x € S} exists. Then ¢ € [a,b] and there is a sequence in
S such that x,, — ¢. This, together with the continuity of f, imply that f(c) = lim,, f(z,) <0
since z,, € S. On the other hand, since b ¢ S, we see that ¢ € [a,b). Therefore, we can find a
sequence (y,) with ¢ < y,, < b for all n such that y,, — c+ respectively. By using the continuity
of f again, we see that f(c) = lim, f(y,) > 0 because y,, ¢ S. Therefore, f(c) = 0. The proof
is finished.

Method II: Put #1 = a and y; = b. Now if f(%F2) = 0, then the result is obtained. If
f(aT*'b) > 0, then we set 9 = a and yo = C‘T‘H). Similarly, if f(aT‘H)) < 0, then we set z9 = “T*'b
and yo = b. To repeat the same procedure, if there are x and yy such that f (%) =0,
then the result is shown. Otherwise, we can find a decreasing sequence of closed and bounded
intervals [a,b] = [z1,y1] 2 [x2,y2] 2 -+ with lim(y, — z,) = 0 and f(z,) < 0 < f(y,) for all
n. Then by the Nested Intervals Theorem, we have (), [zn,yn] = {c} for some ¢ € [z1,y1] =
[a,b]. Moreover, we have lim, x,, = lim, y, = c¢. Then by the continuity of f, we see that
f(e) =lim f(z,) = lim f(y,). Since f(x,) <0 < f(y,) for all n, we have f(c) = 0. The proof
is finished. O

Remark 5.2 The assumption of the intervals in the Intermediate Value Theorem is essential.
For example, consider I = [0,1) U (2, 3] and define f: I — R by

K if z€][0,1)
f(x)_{x—l if ze (2,3

Then f(0) <1< f(3) but 1 ¢ f(I).

Recall that a non-empty subset I of R is called an interval if it has one of the following forms.
(i) R.
(ii) (—o0,a] or [a,00) or (—oo,a) or (a,o0) for some a € R.
(iii) (a,b) or (a,b] or [a,b) or [a,b] for some a,b € R with a < b.

Lemma 5.3 Let I be a non-empty subset of R. Suppose that there are different elements in I.
Then I is an interval if and only if for any a,b € I with a < b, we have [a,b] C I.
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Corollary 5.4 Let f;[a,b] — R. Suppose that M = sup{f(z) : = € [a,b]} and m = inf{f(x) :
x € [a,b]}. Then f([a,b]) = [m, M].

Proof: Notice that if m = M, then f is a constant function and hence, the result is clearly
true.

Now suppose that m < M. It is clear that f([a,b]) C [m, M] because m < f(x) < M for all
x € [a,b]. For the converse inclusion, notice that since [a,b] is compact, there are z; and z2
in [a,b] such that f(x1) = m and f(x3) = M. We may assume that x; < z9. To apply the
Intermediate Value Theorem for the restriction of f on [z1, 2], we have [m, M] C f([z1,x2]) C
f([a,b]). The proof is finished. O

Corollary 5.5 Let I be an interval and let f : I — R be a continuous non-constant function.
Then f(I) is an interval.

Proof: Notice that by Lemma 5.3, it needs to show that for any ¢,d € f(I) with ¢ < d implies
that [c,d] C f(I). Suppose that a,b € I with a < b satisfy f(a) = ¢ and f(b) = d. Notice that
[a,b] C I because I is an interval. If we put M = sup,c(q ) f(2) and m = inf,c(q ) f(2), then
by Corollary 5.4, we have

[C’d] - [m’ M] = f([a’ b]) - f(I)

The proof is finished. O

Example 5.6 It is impossible to find a continuous surjection from (a,b) onto (c¢,d) U (e, f)
where d < e.
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