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Introduction

Let f : X → Y be a morphism between to topological spaces. A classical theorem
in homotopy theory says that if f is a fibration [WH][Chapter IV, Corollary 8.6] and
F := f−1(y) is a fibre of some y ∈ Y , x ∈ F , then we have a long exact sequence of pointed
sets

· · · → πtop
2 (Y, y)→ πtop

1 (F, x)→ πtop
1 (X, x)→ πtop

1 (Y, y)→ πtop
0 (F, x)→ πtop

0 (X, x).

If the fibre F is connected then πtop
0 (F, x) = {x}, so we get an exact sequence of groups

· · · → πtop
2 (Y, y)→ πtop

1 (F, x)→ πtop
1 (X, x)→ πtop

1 (Y, y)→ 1.

The above sequence is called the homotopy sequence (for f and y).
If { Xα | α ∈ I } is a family of pathwise-connected topological spaces, xα ∈ Xα, then

the canonical morphism

πtop
n (

∏
α∈I

Xα,
∏

xα)→
∏
α∈I

πtop
n (Xα, xα)

is an isomorphism for all n ∈ N.
In [SGA1][Exposé V] Grothendieck constructed for any locally noetherian connected

scheme X and any geometric point x→ X a profinite group πét
1 (X, x) which is the analogue

of the topological fundamental group. In fact if X is a smooth connected complete scheme
over C then πét

1 (X, x) is just the profinite completion of πtop
1 (Xan, x). If f : X → S is a

separable proper morphism with geometrically connected fibres between locally noetherian
connected schemes, x→ X is a geometric point with image s→ S, Grothendieck shows in
[SGA1, Exposé X, Corollaire 1.4] that one has a homotopy exact sequence for the étale
fundamental group:

πét
1 (X̄s, x)→ πét

1 (X, x)→ πét
1 (S, s)→ 1.

A similar case is that one can take X, Y to be two locally noetherian connected k-schemes
with k = k̄ and suppose Y is proper over k, so if K is an algebraically closed field containing
k and if we take a K-point z = (x, y) : Spec (K) → X ×k Y , then we get a canonical
morphism of topological groups

πét
1 (X ×k Y, z)→ πét

1 (X, x)× πét
1 (Y, y).

Again Grothendieck shows in [SGA1, Exposé X, Corollaire 1.7] that the canonical homo-
morphism is an isomorphism. This is called the Künneth formula for the étale fundamental
group. If we take K to be k itself then the Künneth formula is a direct consequence of
the homotopy exact sequence. If k $ K then one has to apply the following base change
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2 INTRODUCTION

theorem [SGA1, Exposé X, Corollaire 1.8] to reduce to the case when k = K. The base
change theorem states that the canonical map

πét
1 (X ×k K, x×k K)→ πét

1 (X, x)

is an isomorphism between topological groups. Note that the base change theorem can be
thought of as a special case of the Künneth formula by taking Y = Spec (K), but it is not
a corollary for logical reasons.

Let X be a reduced connected scheme over a field k, x ∈ X(k) be a rational point. If
we set N(X, x) to be the category whose objects consist of triples (P,G, p) (where P is an
FPQC G-torsor over X, G is a finite group scheme, p ∈ P (k) is a k-rational point lying over
x), whose morphisms are morphisms of X-schemes which are compatible with the group
action. M.Nori proved in [Nori, Part I, Chapter II, Proposition 2] that the projective limit
lim←−N(X,x)

G exists in the category of k-group schemes (in the projective system we associate

to each index (P,G, p) the group G). Then he defined the fundamental group πN(X, x) to
be the projective limit lim←−N(X,x)

G which is called Nori’s fundamental group nowadays. If

X is in addition proper over k and if k is perfect, Nori gave in [Nori, Part I, Chapter I] a
Tannakian description of his fundamental group: he defined πN(X, x) to be the Tannakian
group of the neutral Tannakian category of Ess(X) (the essentially finite vector bundles
on X) with the fibre functor x∗ : V 7→ V |x, and he showed that this definition is the
same as the one defined by the projective limit. If X is smooth instead of proper and k
is a perfect field of characteristic p > 0, H.Esnault and A.Hogadi gave another Tannakian
description of Nori’s fundamental group in [EH][Section 3 and 4]. They defined πN(X, x)
to be the Tannakian category of finite generalized stratified bundles with the fibre functor
x∗ : (Vi, σi, i ≥ 0) 7→ V0|x, and they showed that this definition coincide with the one
defined via projective limit.

If X is a smooth connected scheme over a field k with a rational point x ∈ X(k), we can
consider the category of OX-coherent DX/k-modules which we will denote by Modc(DX/k).
Now let ωx be the functor Modc(DX/k) → Veck sending any OX-coherent DX/k-module
M to M |x. One can check that the category Modc(DX/k) together with ωx is a neutral
Tannakian category, then we define its Tannakian group πalg(X, x) to be the algebraic
fundamental group of (X, x).

Nori’s fundamental group and the algebraic fundamental group are all in some sense
generalizations of Grothendieck’s étale fundamental group. If X is a connected reduced
scheme over an algebraically closed field k, x ∈ X(k), then πét

1 (X, x) is the k-points of the
pro-étale quotient of πN(X, x). In particular if k has characteristic 0, then πét

1 (X, x) is just
the k-points of πN(X, x). If X is a smooth connected scheme over a field k, x ∈ X(k), then
πét

1 (X, x) is the k-points of the profinite completion of πalg(X, x). So it is a natural question
to ask how about the homotopy sequence and Künneth formula for Nori’s fundamental
group and the algebraic fundamental group. The main theme of this thesis is to answer
this question.

In Chapter 1 we collect some basic definitions, results which will be used in later
discussions. To start with, we introduce in §1 our major technical tool–Tannakian category.
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This is a very beautiful categorical characterization of the finite representations of an affine
group scheme. Most of the materials can be find in [De2] and [De3]. Since this theory has
been well developed and has very nice references, we only give a very brief introduction here
to make our thesis self-contained. Then we come to Nori’s fundamental group. This is our
major player. We start with the general definition of Nori’s fundamental group, where we
emphasize the existence of the projective limit lim←−N(X,x)

G. In fact this is not very hard to

prove, the main point is that N(X, x) is a filtered category if X is reduced and connected.
We then come to Nori’s functor. Nori observed that giving a pointed torsor (torsor with
a fixed rational point) is the same as giving a functor satisfying certain conditions. In
§2.2 we reformulate Nori’s idea in a more categorical language–the category of pointed
torsors N(X, x) is equivalent to the category of Nori’s functors. The construction of the
equivalence is very natural, but some details are not very easy to check. Next we give a
sketch for the Tannakian description of Nori’s fundamental group both in the proper case
and in the smooth case. The main tool for the construction is of course Nori’s functor.
The general philosophy is that a torsor π : P → X over a proper base X is somehow
determined by the corresponding vector bundle π∗OP while for a smooth base X one needs
a sequence of bundles to identify it.

In Chapter 2, we discuss the homotopy sequence for Nori’s fundamental group. Part
of this work is based on the earlier work of H.Esnault, P.H.Hai , E.Viehweg in [EHV].
In [EHV][Section 2] H.Esnault, P.H.Hai , E.Viehweg, give a counterexample which shows
that homotopy sequence of Nori’s fundamental group is not always exact even for X → S
projective smooth and S projective smooth as well. And then they give a necessary and
sufficient condition for the exactness of the homotopy sequence of Nori’s fundamental group
under the assumption that S is a proper k-scheme. But unfortunately there is a gap in
the argument for the necessary and sufficient condition. In this chapter, our first goal is to
reformulate some similar conditions to make everything work. These works are contained in
Theorem 1.0.23 and Theorem 2.0.4, where we correct the mistake, improve the arguments
and make the wonderful ideas hidden in that article right and clean. The upshot is that
in Theorem 1.0.23 we don’t have to assume S to be proper, so the result applies to the
general definition of Nori’s fundamental group.

Then we make two applications of Theorem 1.0.23 and Theorem 2.0.4. We first apply
the criterion to show that the homotopy sequence for the étale quotient of Nori’s funda-
mental group is exact. The argument is independent of Grothendieck’s theory of the étale
fundamental group which was developed in [SGA1, Exposé X], so it can be seen as a new
proof of the homotopy exact sequence for the étale fundamental group (in the language of
Nori’s fundamental group). In [MS][Theorem 2.3] V.B.Mehta and S.Subramanian proved
that Künneth formula holds for Nori’s fundamental group if both X and Y are proper
k-schemes. In §2, we apply Theorem 2.0.4 to give a neat proof for the Künneth formula of
the local quotient of Nori’s fundamental group. This can be thought of as a new proof of
[MS][Proposition 2.1] which is the key point for the proof of [MS][Theorem 2.3].

In the end of this chapter, we give a counterexample to show that [MS][Theorem 2.3]
does not work if X or Y is not proper, where we take X = A1

k and Y = E to be a
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supersingular elliptic curve and k to be an algebraically closed field of characteristic 2.
This also provides another counter example to show the failure of the exactness of the
homotopy sequence for Nori’s fundamental group (in the split case).

In Chapter 3, we proved that homotopy sequence is exact for the algebraic fundamental
group in characteristic 0. The proof is very tricky. Our major tool is the criterion for
the exactness of a sequence of affine group schemes provided by the properties of the
corresponding functors. There are three conditions (a), (b), (c) in the criterion, we have to
check them one by one. Among them (a) and (b) are relatively easy to check while condition
(c) is very difficult. We do not prove (c) directly, instead we prove (c) for a special case:
”the generic geometric point” (Chapter 3, §2), this part arises from a cleaning work of
the letter [E], the main idea is from that letter. Then we come back and say that if the
homotopy sequence is exact in this special case then it is exact in general. Unfortunately,
in the way we reduce our problem to the special case we used some transcendental method.

Although we strongly believe that the homotopy sequence is also exact in characteristic
p, we could not prove it at this moment. But in the end of this chapter we obtained the
exactness for a special case–the Künneth formula. This is an easy consequence of Phùng
Hô Hai’s work on 0-th Gauss-Manin for stratified bundles [Hai].
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CHAPTER 1

Preliminaries

1. Tannakian Formalism

The notion of a neutral Tannakian category can be thought of as a linearization of
the notion of a Galois category which is developped in [SGA1][Exposé V]. It gives a
characterization of the category of finite representations of an affine group scheme. In this
section we will recall briefly some basics about neutral Tannakian categories which will
serve as the main technical tool in our following discussions. For more details one can find
in [De2] and [De3].

Definition 1.0.1. Let C be a category and

⊗ : C× C→ C

(X, Y ) 7→ X ⊗ Y
a functor which satisfies

(1) ”A”: an associativity constraint for (C,⊗) is a functorial isomorphism

φX,Y,Z : X ⊗ (Y ⊗ Z)
∼=−→ (X ⊗ Y )⊗ Z

which satisfies the commutative diagram for all the objets X, Y, Z, T ∈ C

X ⊗ (Y ⊗ (Z ⊗ T ))
φ //

1⊗φ
��

(X ⊗ Y )⊗ (Z ⊗ T )
φ // ((X ⊗ Y )⊗ Z)⊗ T

X ⊗ ((Y ⊗ Z)⊗ T )
φ // (X ⊗ (Y ⊗ Z))⊗ T

φ⊗1

OO
.

(2) ”C”: a commutativity contraint for (C,⊗) is a funtorial isomorphism

ϕX,Y : X ⊗ Y
∼=−→ Y ⊗X

which satisfies
ϕY,X ◦ ϕX,Y = idX⊗Y .

Moreover φ and ϕ are compatible in the following sense: the diagram

X ⊗ (Y ⊗ Z)
φ //

1⊗ϕ

��

(X ⊗ Y )⊗ Z ϕ // Z ⊗ (X ⊗ Y )

φ
��

X ⊗ (Z ⊗ Y )
φ // (X ⊗ Z)⊗ Y ϕ⊗1 // (Z ⊗X)⊗ Y

is commutative.
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2 1. PRELIMINARIES

(3) ”U”: the unit: a pair (U, u) consists of an object U ∈ C and an isomorphism
u : U → U ⊗ U such that the functor X 7→ U ⊗ X induces an equivalence of
categories.

The category C which satisfies the conditions ”A”, ”C”, ”U” (”ACU” for short) above is
called a ⊗−category (tensor category).

Lemma 1.0.2. Let (U, u) be the unit object of a tensor category C. Then

(1) There is a unique functorial isomorphism

lX : X ∼= U ⊗X
which satisfies
(a) lU = u;
(b) The diagrams

X ⊗ Y l // U ⊗ (X ⊗ Y )

φ

��
X ⊗ Y l⊗1 // (U ⊗X)⊗ Y

X ⊗ Y l⊗1 //

1⊗l

��

(U⊗)X ⊗ Y
ϕ⊗1

��
X ⊗ Y

φ // (U ⊗X)⊗ Y
are commutative.

(2) If (U ′, u′) is another unit of C, one has a unique isomorphism t : U → U ′ such
that

U
u //

t

��

U ⊗ U
t⊗t
��

U ′ u′ // U ′ ⊗ U ′

is a commutative diagram.

Definition 1.0.3. A tensor category C is called rigid if

(1) for X, Y ∈ C the functor

Hom(X, Y ) : T → Hom(T ⊗X, Y )

is representable;
(2) any X ∈ C is reflexive, i.e. the canonical morphism

Hom(X,U)⊗X → U

which corresponds to the identity automorphism of Hom(X,U) induces an iso-
morphism

X → Hom(Hom(X,U), U);

(3) for all X1, X2, Y1, Y2 ∈ C the canonical morphism

Hom(X1, Y1)⊗ Hom(X2, Y2)→ Hom(X1 ⊗X2, Y1 ⊗ Y2),
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induced from
(Hom(X1, Y1)⊗ Hom(X2, Y2))⊗ (X1 ⊗X2)

∼=(Hom(X1, Y1)⊗X1)⊗ (Hom(X2, Y2)⊗X2)
ev1⊗ev2−−−−→ Y1 ⊗ Y2

(where evi corresponds to the identity automorphism of Hom(Xi, Yi) (i = 1, 2)) is
an isomorphism.

Definition 1.0.4. A tensor category C is called an abelian tensor category if it is
equipped with a structure of an abelian category which makes ⊗ a bi-additive functor.

Remark 1.0.5. Let C be an abelian tensor category. If R := End(U) is a commutative
ring, Hom(X,Y ) is naturally an R−modules for all the objets X, Y ∈ C.

Definition 1.0.6. Let k be a field. An abelian tensor category C is called k-linear if
there is an isomorphism End(U) ∼= k, where U is the unit of C.

Definition 1.0.7. A tensor functor between two tensor categories (C,⊗) and (C′,⊗′) is
a pair (F, c) which consists of a functor F and functorial isomorphisms cX,Y : F (X ⊗Y ) ∼=
F (X)⊗ F (Y ) with the following properties:

(1) A: for all X, Y, Z ∈ C, the diagram

F (X)⊗ (F (Y )⊗ F (Z))
id⊗c //

φ′

��

F (X)⊗ F (Y ⊗ Z)
c // F (X ⊗ (Y ⊗ Z))

φ
��

(F (X)⊗ F (Y ))⊗ F (Z)
c⊗id // F (X ⊗ Y )⊗ F (Z)

c // F ((X ⊗ Y )⊗ Z)

is commutative;
(2) C: for all X, Y ∈ C, the diagram

F (X ⊗ Y )
c //

F (ϕ)

��

F (X)⊗ F (Y )

ϕ′

��
F (Y ⊗X)

c // F (Y )⊗ F (X)

is commutative;
(3) U: (F (U), F (u)) = (U ′, u′), où (U, u) is the unit of C and (U ′, u′) is the unit of C′.

Proposition 1.0.8. Let (F, c) be a tensor functor between two rigid tensor categories C
and C′. The canonical morphism F (Hom(X, Y ))→ Hom(F (X), F (Y )) is an isomorphism
for all X, Y ∈ C.

Definition 1.0.9. A tensor functor (F, c) : C → C′ is called a tensor equivalence if F
is an equivalence of categories. Let (G, d) : C→ C′ be another tensor functor. A morphism
of tensor functors (F, c) → (G, d) is a morphism of functors λ : F → G which makes the
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following diagram commutative:

⊗i∈IF (Xi)
c //

λXi

��

F (⊗i∈IXi)

λ(⊗i∈IXi)

��
⊗i∈IG(Xi)

d // G(⊗i∈IXi)

,

for I = {1, 2} or I = ∅, Xi ∈ C.

Proposition 1.0.10. Let (F, c) : C → C′ be a tensor equivalence. There is a tensor
functor (G, d) : C′ → C such that G◦F ∼= idC and F ◦G ∼= idC′, where all the isomorphisms
of functors are tensor isomorphisms.

Definition 1.0.11. Let k be a field. A neutral Tannakian category is a rigid k-linear
abelian tensor category C equipped with a k-linear exact faithful tensor functor

ω : C→ Veck,

where Veck is the category of finite dimensional k-vector spaces.

Definition 1.0.12. Let C be a neutral Tannakian category with the fibre functor
ω : C → Veck. We denote by Aut⊗(ω) the functor from the category of k-schemes to the
category of groups which associates to each k-scheme X the group of tensor automorphisms
of the following functor

C // Mod(OX)

T 7→ ω(T )⊗k OX .

Theorem 1.0.13. Let C be a neutral Tannakian category with the fibre functor ω : C→
Veck. Then

(1) Aut⊗(ω) is representable by an affine group scheme G over k;
(2) There is a k-linear tensor equivalence h : C→ Repk(G) such that F ◦h = ω, where

F is the forgetful functor Repk(G)→ Veck.

Theorem 1.0.14. Let G, G′ be affine group schemes over a field k, ω, ω′ be the forgetful
functors Repk(G) → Veck, Repk(G

′) → Veck respectively. For any tensor functor T :
Repk(G

′)→ Repk(G) such that ω ◦ T ∼= ω′ (tensor k-linear isomorphic), there is a unique
morphism of k-group schemes f : G→ G′ such that the functor ωf : Repk(G

′)→ Repk(G)
induced from f is tensor k-linear isomorphic to T .

Definition 1.0.15. ([De2][6.16]) Let C be a rigid abelian tensor category. For an
object X ∈ C, the tensor category generated by X is the full sub-category of C which
consists of the sub-quotients of the direct sums of {X⊗n|n ∈ Z}, where X⊗n for n negative
stands for Hom(X⊗(−n), U).

Theorem 1.0.16. Let G be an affine k-group scheme.

(1) G is finite over k if and only if there exists an object X ∈ Repk(G) such that each
object of Repk(G) is isomorphic to a sub-quotient of Xn (n−th direct sum of X)
for n ≥ 0.
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(2) G is algebraic if and only if there is an object X ∈ Repk(G) such that X is a tensor
generator of Repk(G).

Definition 1.0.17. Let C be a rigid k-linear abelian tensor category, S a k-scheme. A
fibre functor of C over S is a k−linear exact tensor functor ω from C to the category of
quasi-coherent sheaves on S.

Theorem 1.0.18. Let C be a rigid k-linear abelian tensor category, S = Spec (B) a
k-scheme. Then any two fibre functors of C over S are locally isomorphic in the FPQC-
topology, i.e. there exists S ′ = Spec (B′) on S, faithfully flat, such that all fibre functors
ω1 and ω2 becomes isomorphic after an extension of scalars from S to S ′.

Theorem 1.0.19. ([EPS][Appendix Theorem A.1]) Let L
q−→ G

p−→ A be a sequence of
homomorphisms of affine group schemes over a field k. It induces a sequence of functors:

Repk(A)
p∗−→ Repk(G)

q∗−→ Repk(L),

where Repk(−) denotes the category of finite dimensional representations of − over k. Then
we have

(1) The group homomorphism p : G→ A is faithfully flat if and only if p∗Repk(A) is
a full subcategory of Repk(G) and closed under taking subquotients.

(2) The group homomorphism q : L→ G is a closed immersion if and only if any object
of Repk(L) is a subquotient of an object of the form q∗(V ) for some V ∈ Repk(G).

(3) Assume that q is a closed immersion and that p is faithfully flat. Then the sequence

L
q−→ G

p−→ A is exact if and only if the following conditions are fulfilled:
(a) For an object V ∈ Repk(G), q∗V ∈ Repk(L) is trivial if and only if V ∼= p∗U

for some U ∈ Repk(A)
(b) Let W0 be the maximal trivial subobject of q∗V in Repk(L). Then there exists

V0 ⊆ V in Repk(G), such that q∗V0
∼= W0.

(c) Any W in Repk(L) is embeddable in q∗V for some V ∈ Repk(G).

2. Nori’s Fundamental Group

Nori’s fundamental group scheme is in some sense a generalization of Grothendieck’s
étale fundamental group. If X is a connected reduced locally noetherian scheme over an
algebraically closed field k which admits a rational point, then the étale fundamental group
is just the k-points of the pro-étale quotient of Nori’s fundamental group. In this section
will follow Nori’s influential paper [Nori] and also include some recent development [EH].
We first give the most general notion of Nori’s fundamental group for a connected reduced
scheme over a field. Then we introduce a very powerful tool–Nori’s functor–using which
we can get the Tannakian descriptions of Nori’s fundamental group for X proper and X
smooth respectively.

2.1. The General Definition.

Definition 2.1.1. Let X be a scheme over a field k, x ∈ X(k). We denote by N(X, x)
the category whose objects consist of triples (P,G, q), where P is an FPQC G-torsor
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over X, G is a finite k-group scheme, q ∈ P (k) is a k-rational point lying over x, whose
morphisms between two objects (P,G, q) and (P ′, G′, q′) are pairs (φ, h), where h : G→ G′

is a homomorphism of k-group schemes and φ : P → P ′ is an X-scheme morphism sending
q to q′ which is also compatible with the group actions. Note that N(X, x) is equivalent
to a small category.

Definition 2.1.2. Let I be a category which is equivalent to a small category. We say
I is filtered if it satisfies the following:

(1) for any i, j ∈ I there exist an object k and two morphisms k → i, k → j in I;

(2) for any two arrows u, v : j → i there exists an arrow w : k → j such that
u ◦ w = v ◦ w in Hom(k, i).

If I admits a final object, then the above is equivalent to the following: for any two
morphisms u : j → i and v : k → i in I, there are two morphisms a : l → j and b : l → k
such that u ◦ a = v ◦ b.

Proposition 2.1.3. [Nori][Chapter II, Lemma 1] If X is a reduced connected locally
noetherian scheme over a field k, x ∈ X(k), then N(X, x) is a filtered category.

Proof. It is enough to see that for any two morphisms

(φi, hi) : (Pi, Gi, pi)→ (Q,H, q) ∈ N(X, x)

where i = 1, 2, the triple (P1×QP2, G1×HG2, p1×qp2) is an object in our category N(X, x).
First note that the triple (P1×X P2, G1×k G2, p1×k p2) is in N(X, x) and that one has

two closed imbeddings:
P1 ×Q P2 ↪→ P1 ×X P2

and
G1 ×G G2 ↪→ G1 ×k G2.

Furthermore, the action of G1×kG2 on P1×XP2 induces an action of G1×GG2 on P1×QP2.
In fact one can check easily that the following morphism

(P1 ×Q P2)×k (G1 ×G G2)→ (P1 ×Q P2)×X (P1 ×Q P2)

which is induced by the isomorphism

(P1 ×X P2)×k (G1 ×k G2)→ (P1 ×X P2)×X (P1 ×X P2)

is an isomorphism itself. Now let Y be the quotient of P1 ×Q P2 by G1 ×G G2,

q : P1 ×Q P2 → Y

be the quotient map. Then there is a canonical finite morphism of schemes i : Y → X
(because X is invariant under the action of G1×GG2). Consider the following commutative
diagram:

(P1 ×Q P2)×k (G1 ×G G2)
∼= //

q◦pr1

��

(P1 ×Q P2)×X (P1 ×Q P2)

q×q

��
Y

∆ // Y ×X Y

.
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Since q is finite faithfully flat, the vertical arrows in the above diagram are all finite and
faithfully flat, so ∆ is also faithfully flat. But ∆ is a closed immersion, thus it must be an
isomorphism. Hence the finite morphism i : Y → X is a monomorphism in the category
of schemes. Thus it has to be a closed immersion. Now look at the following diagram

P1 ×Q P2
� � //

q
����

P1 ×X P2

����
Y

i // X

.

Since P1 ×Q P2 is the fibre of the neutral element of G under the following map

P1 ×X P2
(φ1×φ2)−−−−→ Q×X Q

∼=−→ Q×k G
pr2−−→ G,

so it must be both open and closed in P1×XP2. But the map P1×XP2 → X is finite flat, so
Y , as the image of P1×QP2 under P1×XP2 → X is both open and closed. AsX is connected
and reduced we have Y → X is an isomorphism. Now we have q : P1 ×Q P2 → Y = X is
finite flat and the map

(P1 ×Q P2)×k (G1 ×G G2)→ (P1 ×Q P2)×X (P1 ×Q P2)

is an isomorphism, so the triple

(P1 ×Q P2, G1 ×H G2, p1 ×q p2) ∈ N(X, x).

�

Lemma 2.1.4. Let I be a filtered category, X be a scheme. Let Aff(X) be the category
of affine schemes over X (i.e. the category of affine morphisms to X) and F : I → Aff(X)
be a functor. Then the projective limit

lim←−
i∈I

F (i)

exists in the category of affine schemes over X.

Remark. This lemma is a very standard fact in scheme theory, the proof is quite easy,
we will leave it to the reader.

Theorem 2.1.5. [Nori][Chapter II, Proposition 2] Let X be a reduced connected locally

noetherian scheme over a field k, x ∈ X(k). Then there exists a triple (X̃x, π
N(X, x), x̃),

where πN(X, x) is a profinite k-group scheme, X̃x is a πN(X, x)-torsor in FPQC topology

over X, x̃ ∈ X̃x(k) is a rational point lying above x, which satisfies for any (P,G, q) ∈
N(X, x) there exists a unique morphism

(φ, h) : (X̃x, π
N(X, x), x̃)→ (P,G, q),

where h : πN(X, x) → G is homomorphism of k-group schemes and φ : X̃x → P is a
morphism of X-schemes sending x̃ to q which is also compatible with the group actions.
The group scheme πN(X, x) is usually called the Nori’s fundamental group.
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Proof. We have two functors

FX : N(X, x)→ Aff(X), (P,G, q) 7→ P

and
πX : N(X, x)→ Aff(Spec (k)), (P,G, q) 7→ G.

By the lemma above we have two projective limits

X̃x := lim←−
i∈N(X,x)

FX(i) and πN(X, x) := lim←−
i∈N(X,x)

πX(i).

X̃x is an affine scheme overX which admits a rational k-point x̃ obtained by the universality
of the projective limit. πN(X, x) is an affine scheme over k, but it also carries a structure
of an affine group scheme over k. This follows from the following simple formula:

lim←−
i∈N(X,x)

πX(i)×k lim←−
i∈N(X,x)

πX(i) ∼= lim←−
i∈N(X,x)

(πX(i)×k πX(i)).

This canonical isomorphism defines for us the multiplication of lim←−i∈N(X,x)
πX(i):

lim←−
i∈N(X,x)

πX(i)×k lim←−
i∈N(X,x)

πX(i)→ lim←−
i∈N(X,x)

πX(i).

Furthermore with this group scheme structure πN(X, x) becomes a projective limit of these
πX(i), i ∈ N(X, x) in the category of affine group schemes.

Now the triple (X̃x, π
N(X, x), x̃) has the property that for any i := (P,G, q) ∈ N(X, x)

there is a map

(φi, hi) : (X̃x, π
N(X, x), x̃)→ (P,G, q)

defined by seeing i = (P,G, q) ∈ N(X, x) as an index. To see that the map (φi, hi) is
unique we suppose there is another map

(φ, h) : (X̃x, π
N(X, x), x̃)→ (P,G, q).

Considering the construction of πN(X, x) in terms of Hopf-algebras, it is clear that there
is an index j := (P ′, G′, q′) ∈ N(X, x) such that h factors the canonical map

hj : πN(X, x)→ G′.

Thus we get a commutative diagram

(X̃x, π
N(X, x), x̃)

(φ,h)

((PPPPPPPPPPPP
(φj ,hj)

vvmmmmmmmmmmmm

(P ′, G′, q′)
(ϕ,g)

// (P,G, q)

.

But by the very definition of a projective limit, we know that (ϕ, g) ◦ (φj, hj) = (φi, hi).
Thus (φi, hi) = (φ, h). This completes the proof. �

Proposition 2.1.6. [Nori][Chapter II, Proposition 4] Let X be a connected reduced
locally notherian scheme over a field k, x, y ∈ X(k). Then πN(X, x) is an inner twist
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of πN(X, y) and they are isomorphic (non-canonically) after pulling back to the algebraic
closure of k.

Proposition 2.1.7. [Nori][Chapter II, Proposition 5]Let X be a connected locally
noetherian scheme separable over a field k, x ∈ X(k). If k ⊂ l is a separable algebraic
extension, then the canonical map

πN(X ×k l, x×k l)→ πN(X, x)×k l

is an isomorphism of l-group schemes.

Proposition 2.1.8. [Nori][Chapter II, Proposition 6]Let f : X → S be a proper
separable surjective morphism between two connected reduced locally noetherian schemes
over a field k with geometrically connected fibres, s ∈ S(k), x ∈ X(k) such that f(x) = s.
Then the induced map

πN(X, x)→ πN(S, s)

is surjective.

Proof. We only have to show that for any (P,G, q) ∈ N(S, s) which corresponds to
a surjection πN(S, s) � G remains a surjection after composing with the canonical map
πN(X, x)→ πN(S, s).

Let H be the image of the composition πN(X, x)→ πN(S, s)→ G. This map gives us
via Theorem 2.1.5 a morphism

(P ′, H, q′)→ f ∗(P,G, q) ∈ N(X, x).

Let V be the 0-th direct image of the structure map P ′ → X. Then by the conditions we
have imposed on f , there is a vector bundle W on S such that f ∗W ∼= V . One checks
readily that W is a sheaf of OS-algebras and it carries an action from H which makes it
a H-torsor. Thus if we write P1 := Spec (W ) then we get an object (P1, H, q1) ∈ N(S, s)
and a morphism

(P1, H, q1)→ (P,G, q) ∈ N(S, s)

extending the inclusion H ⊆ G. So by Theorem 2.1.5 we get a morphism πN(S, s) → H
which factors the surjection πN(S, s) � G. This impliesH ⊆ G is actually an isomorphism.

�

2.2. Nori’s Functor.

Definition 2.2.1. Let X be a scheme over a field k, x : S → X be a k-morphism. We
will use P (X, x) to denote the category whose objects consist of triples (P,G, q), where P
is an FPQC G-torsor over X, G is an affine k-group scheme, p : S → P is a k-morphism
which after composing with the projection P → X is x, whose morphisms between two
objects (P,G, q) and (P ′, G′, q′) are pairs (φ, h), where h : G→ G′ is a homomorphism of
k-group schemes and φ : P → P ′ is an X-scheme morphism sending q to q′ which is also
compatible with the group actions.

Definition 2.2.2. Let X and S be schemes over a field k, x : S → X be a k-morphism.
We will use F (X, x) to denote the category whose objects are triples (Fib, G, ψ), where G
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is an affine k-group scheme,

Fib : Repk(G)→ Coh(X)

is a fibre functor (faithful exact k-linear tensor functor), ψ is an isomorphism of tensor
functors between x∗◦Fib : Repk(G)→ Coh(S) and the composition of the forgetful functor
with the canonical pull-back functor, as is indicated in the following 2-commutative diagram

Repk(G) //

��

Coh(X)

x∗

��
Veck

// Coh(S)

,

whose morphisms between two objects (Fib, G, ψ) and (Fib′, G′, ψ′) are pairs (φ, h), where
h : G → G′ is morphisms of k-group schemes, φ is an isomorphism of tensor functors
making the diagram

Repk(G
′)

h∗

��

Fib′

((QQQQQQQ

Coh(X)

Repk(G)
Fib

66mmmmmmm

2-commutative and is compatible with ψ and ψ′ in the obvious way.

Theorem 2.2.3. [Nori][Chapter I, Proposition 2.9] There is a natural equivalence be-
tween P (X, x) and F (X, x).

Proof. We will set up two functors

∆ : P (X, x)→ F (X, x) and ∇ : F (X, x)→ P (X, x)

and then prove that they are quasi-inverse to each other.
Given (P,G, q) ∈ P (X, x), by lemma 1.31 below we know that for any V ∈ Repk(G)

the scheme P ×G AV (AV := Spec (Symk(V ))) is a vector bundle of rank dimk V , and this
operation is functorial in V . So we have defined a functor

Fib : Repk(G)→ Coh(X) sending V 7→ P ×G AV .

Now we pull back the vector bundle P ×G AV along x : S → X. Then we get

ψV : S ×X P ×G AV
∼= S ×k G×G AV

∼= S ×k AV ,

where the first isomorphism is given by the section p : S → P and the second isomorphism
is canonical. This gives us the desired isomorphism of functors ψ from x∗ ◦ Fib to the
composition of the forgetful functor with the pull-back functor. If we have a morphism

(φ, h) : (P,G, q)→ (P ′, G′, q′) ∈ P (X, x),

then for any V ∈ Repk(G), φ induces a morphism

P ×G AV → P ′ ×G AV .
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This gives the desired isomorphism of functors which makes the diagram

Repk(G
′)

h∗

��

Fib′

((QQQQQQQ

Coh(X)

Repk(G)
Fib

66mmmmmmm

commutative. And one can check that this isomorphism is also compatible with ψ and ψ′.
So we get the functor ∆.

Now suppose we have a triple (Fib, G, ψ) ∈ F (X, x). Let k[G] ∈ Repk(G) be the right
regular representation. Then Fib(k[G]) is a coherent sheaf on X. By [De2][2.8] Fib(k[G])
is a vector bundle. Since Fib is tensor functor we get a ring structure on Fib(k[G]) by
defining the multiplication as

Fib(k[G])⊗OX
Fib(k[G])→ Fib(k[G]) := Fib(k[G]⊗k k[G]→ k[G]),

the unit as
Fib(k)→ Fib(k[G]) := Fib(k → k[G]).

Since Fib(k[G]) is a vector bundle, P := Spec OX
(Fib(k[G])) is finite faithfully flat X-

scheme. Because the right regular representation of k[G] comes from the left translation
of G and the map

G1 ×k G2

∼=−→ G3 ×k G4 (x, y) 7→ (x, xy)

is G-invariant (where G1 = G2 = G3 = G4 = G as k-group schemes but G2 is equipped
with the trivial G-action while the others are equipped with the left translation), so we
can apply Fib(−) to the corresponding map

k[G3]×k k[G4]
∼=−→ k[G1]×k k[G2]

and get

Fib(k[G3])⊗OX
Fib(k[G4])

∼=−→ Fib(k[G1])⊗OX
Fib(k[G2]).

As k[G2] is equipped with the trivial G-action, Spec OX
(Fib(k[G2])) = G ×k X. So if we

apply Spec OX
(−) to the above isomorphism, we will get an isomorphism of X-schemes

P ×k G
∼=−→ P ×X P.

One checks readily that this map composing with the second projection P ×X P → P gives
an action of G on P . So P equipped with this action is an FPQC G-torsor over X. As ψ
is an isomorphism of tensor functors so it induces an isomorphism

x∗Fib(k[G]) ∼= k[G]⊗k OS

as sheaves of OS-algebras. Taking spectrum on both sides we get an isomorphism

G×k S
∼=−→ P ×X S.
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The identity point of G ×k S gives us an S-point p : S → P lifting x : S → X. Now
suppose we have a morphism

(φ, h) : (Fib, G, ψ)→ (Fib′, G′, ψ′) ∈ F (X, x).

We have canonical morphisms of OX-algebras

Fib′(k[G′]) ∼= Fib(k[G′])→ Fib(k[G]),

where the first arrow is induced by φ and the second k[G′] is equipped with the action of
G induced by h. These morphisms will induce a morphism of X-schemes ϕ : P → P ′. It
is very easy to see that ϕ is compatible with the actions, and since φ is compatible with ψ
and ψ′ we also see that ϕ sends p 7→ p′. This gives the functor ∇.

One can check that ∆ and∇ are quasi-inverse to each other. So we have the equivalence
of categories. �

Remark. Let (P,G, q) ∈ P (X, x), (Fib, G, ψ) := ∆(P,G, q) ∈ F (X, x). The fibre
functor Fib is usually called Nori’s functor in the literature.

Proposition 2.2.4 (Definition-Proposition). Let X be a scheme, G be a group scheme
over X, P be a right G-torsor in FPQC-topology, F/X be an affine X-scheme with a
G-action, then there exists an affine X-scheme P ×G F and a morphism of X-schemes
P ×F → P ×GF which can be regarded as the quotient of P ×F (as FPQC-sheaves) under
the G-action: g × (p, x) 7→ (pg, g−1x). This P ×G F is called the contracted product of P
and F .

Proof. In the following we set P1 = P2 = P . Let φ : P1 × P2 × F → P1 × P2 × F be
the P1 × P2-map sending (p, pg, f) to (p, pg, g−1f). It is not hard to check φ satisfies the
cocycle condition, thus the P−scheme P ×F can be descent to an affine X-scheme P ×GF
and we have a cartesian diagram:

P × F λ //

��

P ×G F

��
P // X

.

Now consider the following map

ρ : P × P × F −→ P × F sending (p, pg, f) 7→ (pg, g−1f).

If we regard the X-scheme P × F as the descent of the P -scheme

pr2 : P × P × F → P,

then it is easily seen that ρ is compatible with the descent data on both sides. Thus ρ
descends to an X-scheme morphism ϕ : P × F → P ×G F making the following diagram:

P × P × F
pr13

��

ρ // P × F
λ
��

pr1 // P

��
P × F

ϕ // P ×G F // X
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commutative. But the diagram

P × P × F
pr13

��

ρ // P × F
ϕ

��
P × F

ϕ // P ×G F

is already commutative as one can see this by pulling the diagram back along λ : P ×F →
P ×G F . This implies ϕ = λ (because ρ is FPQC). So the left square of the commutative
diagram

P × P × F
pr13

��

ρ // P × F
λ
��

pr1 // P

��
P × F λ // P ×G F // X

is cartesian (because it is the case for the left square and the composition of the two
squares). This implies λ is the FPQC-quotient. �

Lemma 2.2.5. Let G be a group scheme over a field k, P be a right G-torsor in FPQC-
topology over an k-scheme X, V ∈ Repk(G), AV = Spec (Symk(V )), then P ×G AV is a
dimk V dimensional vector space over X.

Proof. In the proof of the above proposition we set F = AV ×kX, G/X = G×kX. If
we know φ : P1×P2×F → P1×P2×F is induced from an automorphism of V ⊗kOP1×P2 then
we can descent V ⊗kOP to a locally free OX−module E and the symmetric OX-algebra of it
can be identified with P ×G AV in the category of X-schemes. Then by definition P ×G AV

is a vector bundle of dimk V over X. So, now our task is to prove φ is induced from an
automorphism of the k−vector space V . Let Fn be the X−scheme Spec(S0 +S1 + · · ·+Sn),
where Si are the homogenous components of SymOX

(OX ⊗k V ). Then for each n we have
natural closed immersion in making the following diagram commutative:

P1 × P2 × Fn

φn //

in
��

P2 × P1 × Fn

in
��

P1 × P2 × F
φ
// P2 × P1 × F

This tells us the automorphism of SymOX
(OX ⊗k V ) induced by φ is a homogenous map,

thus there exists an automorphism of V ⊗k OP1×P2 as OP1×P2−modules which induces φ.
This concludes the proof. �

2.3. Nori’s Fundamental Group on a Proper Base. In this subsection we assume
X is a proper reduced connected scheme over a perfect field k. All the results in this section
are taken from [Nori][Chapter II, §2].

Definition 2.3.1. A vector bundle V on X is called finite if there are two polynomials
f(X), g(X) ∈ N(X) (i.e. polynomials with non-negative integer coefficients) such that
f(X) 6= g(X) but f(V ) = g(V ).
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Lemma 2.3.2. Let V be a vector bundle on X, S(V ) be the set of all isomorphic classes
of the indecomposable components of V ⊗n for n ∈ N, then V is finite if and only if S(V )
is a finite set.

Remark. In the proof of this lemma one needs Krull-Remak-Schmidt theorem for
coherent sheaves. So it is crucial that the base X is proper. Note that if a vector bundle
V can be written as a direct sum V = M ⊕ N of coherent sheaves then M and N are
automatically vector bundles, so we can apply the theorem here.

Corollary 2.3.3. The category of finite vector bundles is stable under taking finite
direct sums, direct summands, finite tensor products, duals. More specifically we have for
any two vector bundles V1 and V2 on X

(1) V1, V2 is finite ⇒ V1 ⊕ V2, V1 ⊗ V2, V
∨
1 are finite;

(2) V1 ⊕ V2 is finite ⇒ V1 is finite.

Proof. The proofs of the items of (1) are quite similar, we take V1⊗V2 as an example.
Since S(V1) and S(V2) are all finite, we can take all isomorphic classes of the indecomposable
components of E1 ⊗ E2 for all E1 ∈ S(V1) and E2 ∈ S(V2). This set is finite by Krull-
Remak-Schmidt theorem. And one can see easily that this set is precisely S(V1 ⊕ V2).

For (2) one just has to observe that S(V1) ⊆ S(V1 ⊕ V2). �

Lemma 2.3.4. If X is a proper smooth geometrically connected curve over k, then a
finite vector bundle on X is semistable of degree 0.

Definition 2.3.5. Let X be a proper connected reduced scheme over a perfect field
k. A vector bundle V on X is called semi-stable of degree 0 if for any proper smooth
geometrically connected curve and any morphism f : Y → X which is birational onto
its image the pull-back f ∗V is semi-stable of degree 0. Since any complete curve is also
projective so it makes sense to talk about semi-stable bundles on X by just assuming X
proper (not projective).

Corollary 2.3.6. A finite vector bundle on X is always semi-stable of degree 0.

Proposition 2.3.7. The full subcategory SS(X) ⊆ Coh(X) of the category of coherent
sheaves on X which consists of semi-stable vector bunldes of degree 0 as objects is an abelian
category.

Proof. First note that the claim is true if X is a proper smooth connected curve. So
if V → W is an injective map of semi-stable vector bundles of degree 0 over X then it is
enough to show that both the kernel and cokernel are vector bundles. But each two closed
points of X are contained in a integral closed sub-scheme of dimension 1 in X, and each
integral closed sub-scheme of dimension 1 is the image of some proper smooth connected
curve f : Y → X with f birational. So the map V → W has constant rank after restricting
to each closed point. This tells us that the kernel and cokernel of V → W are all vector
bundles. �
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Remark. This proposition is not true if X is not proper. For example if X is affine,
then the only connected closed sub-schemes which are proper over k are the closed points.
This implies for any map f : Y → X with Y a proper smooth connected curve, the image
is just a closed point. So all vector bundles on X are semi-stable of degree 0. But all the
vector bundles certainly does not form an abelian category in general. So the properness
is crucial here.

Definition 2.3.8. We use Ess(X) to denote the full sub category of SS(X) consists
of objects which are subquotients of finite vector bundles. Objects in Ess(X) are called
essentially finite vector bundles.

Proposition 2.3.9. Ess(X) is a k-linear abelian tensor category. If X admits a k-
rational point x then End(OX) = k and we have a canonical fibre functor V 7→ V |x, so
then Ess(X) equipped with this fibre functor is a neutral Tannakian category.

Proof. Ess(X) is obviously an abelian category and is k-linear. The fact that it is
also a tensor category is from Corollary 1.34. If X admits a k-rational point then it is
geometrically connected, so End(OX) = Γ(X,OX) = k. So Ess(X) is a neutral Tannakian
category. �

Lemma 2.3.10. Let x ∈ X(k) be a rational point. Let P → X be a G-torsor in
FPQC-topology with G a finite group scheme over k. By 1.2.2 there exists a fibre func-
tor Repk(G) → Coh(X). This functor factors through the inclusion Ess(X) ⊆ Coh(X).
Conversely, if V ∈ Ess(X), then there exists a G-torsor P → X in FPQC-topology with
G a finite group scheme over k such that V is in the essential image of the induced fibre
functor.

Remark. The first part of this lemma is basically from the fact that any finite rep-
resentation is embeddable into a direct sum of regular representations. The second part
of this lemma is from the fact that V is a subquotient of finite vector bundles so the sub
Tannakian category generated by this object is represented by a finite group scheme over
k.

Theorem 2.3.11. Let X be a proper reduced connected scheme over a perfect field k.
x ∈ X(k) be a k-rational point. N(X, x) be the category of pointed torsors as in 1.2.1.
Then for each object i = (P,G, p) ∈ N(X, x) there exists a functor Repk(G)→ Ess(X) and
a 2-commutative diagram

Repk(G) //

$$JJJJJJJJJ
Ess(X)

zzuuuuuuuuu

Veck

.
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Since the correspondence is functorial (1.2.2) we can pass to the 2-direct limit and get a
2-commutative diagram

Repk(π
N(X, x)) = lim−→i∈N(X,x)

Repk(Gi) //

**UUUUUUUUUUUUUUUUUUU
Ess(X)

{{vvv
vv

vv
vv

v

Veck

.

Then the horizontal arrow in the above diagram is a tensor equivalence. Furthermore, the

above diagram corresponds via 1.2.2 to the universal triple (X̃x, π
N(X, x), x̃) which we have

discussed in 1.2.1.

Remark. The above theorem follows easily from the above lemma and the universality

of the triple (X̃x, π
N(X, x), x̃). It gives a Tannakian description of πN(X, x). But unfor-

tunately, there are two crucial points where properness is used. So it is a very interesting
question to ask about the Tannakian description of πN(X, x) for non-proper X. In the
next subsection we will discuss the Tannakian description of πN(X, x) for X smooth which
was developed by H.Esnault and A.Hogadi.

2.4. Nori’s Fundamental Group on a Smooth Base. In this subsection we assume
X is a smooth connected scheme over a perfect field k of characteristic p > 0. All the results
in this section are taken from [EH].

Definition 2.4.1. For i ∈ N, we have the relative Frobenius φi : X(i) → X(i+1) starting
with X(0) = X. Let t ∈ N. A t-stratified bundle (E(i), σ(i), i ∈ N) consists of a sequence of
vector bundles E(i) on X(i), and a sequence of OX(i)-isomorphisms

σi : E(i) → φ∗iE
(i+1)

for all i ≥ 1 and for i = 0,

σ0 : φ∗(−t,0)E
(i) → φ∗(−t,1)E

(i+1)

is an OX(−t)-isomorphism, where φ(−t,0) : X(−t) → X(0) is the composition of relative
Frobenius and similarly for φ(−t,1).

Definition 2.4.2. Let t ∈ N, Strat(X, t) be the category whose objects consist of
t-stratified bundles, whose morphisms between two objects

Hom((E(i), σ(i), i ∈ N), (F (i), τ (i), i ∈ N))

is the set of morphisms E(i) → F (i) for i ∈ N which are compatible with σ(i) and τ (i) in
a natural way. Because of the faithful flatness of the relative Frobenius, one has a fully
faithful imbedding Strat(X, t) ⊆ Strat(X, t + 1). Now taking the 2-direct limit in the
category of categories, one gets a new category Strat(X,∞) := lim−→t≥0

Strat(X, t).
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Construction 2.4.3. Let x ∈ X(k), (P,G, p) ∈ N(X, x). We want to construct out
of (P,G, p) a k-linear tensor functor ηG making diagram

Repk(G)
ηG //

FG $$JJJJJJJJJ
Strat(X,∞)

ωxxxqqqqqqqqqq

Veck

2-commutative, where ωx is the functor sending (E(i), σ(i), i ∈ N) 7→ E(0)|x and FG is the
forgetful functor.

Now for each X(i) with i ∈ N, by (1.2.2) we have a triple (Fib(i), G(i), ψ(i)) ∈ F (X(i), x)
corresponding to the triple (P (i), G(i), p(i)) ∈ N(X(i), x). Since G(i) is a finite group scheme
over a perfect field k, we have the following decomposition:

1→ G
(i)
0 → G(i) → G

(i)
ét → 1,

and this exact sequence splits into a semi-direct product by a canonical section

ι(i) : G
(i)
ét = G

(i)
red → G(i).

We will denote by (Fib
(i)
ét , G

(i)
ét , ψ

(i)
ét ) the triple corresponding to (P

(i)
ét , G

(i)
ét , p

(i)) ∈ N(X(i), x).

For any V ∈ Repk(G), we define E(0) = Fib(0)(V ). Because we have canonical isomor-

phisms φ(i,i+1) : G
(i)
ét
∼= G

(i+1)
ét , V can be regarded as an object in Repk(G

(i)
ét ) for all i ∈ Z

via the section ι(0) : Gét → G. Hence we can definie for i > 0 E(i) = Fib
(i)
ét (V ). Since the

diagram

P
(i)
ét

//

��

P
(i+1)
ét

��

X(i) // X(i+1)

is cartesian, we get isomorphisms

σ(i) : E(i) ∼= φ∗iE
(i+1), i ∈ N \ {0}.

For i = 0 we know that there is a large enough nature number t such that the relative
Frobenius G(−t) → G(0) = G factors through ι : Gét → G. Thus we get an isomorphism

φ∗(−t,0)E
(0) = φ∗(−t,0)Fib(0)(V ) ∼= Fib

(−t)
ét (V ) ∼= Fib

(0)
ét (V ) ∼= Fib

(0)
ét (V ) = φ∗(−t,1)E

(1).

In this way we get a t-stratified bundle (E(i), σ(i), i ∈ N) out of the triple (P,G, p) and V ∈
Repk(G). One can check that the association is functorial with respect to V ∈ Repk(G).
One can also check easily that we have the 2-commutative diagram as claimed above, so
we have defined the functor ηG.
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Note that our construction of ηG is functorial with respect to (P,G, p), so taking 2-direct
limit in the 2-category of categories we get a functor η and a 2-commutative diagram

lim−→i∈N(X,x)
Repk(Gi)

η //

F
''PPPPPPPPPPPP

Strat(X,∞)

ωx
yyrrrrrrrrrrr

Veck

.

Theorem 2.4.4. (Esnault and Hogadi). Let X be a smooth connected scheme over
a perfect field k of positive characteristic with a rational point x ∈ X, t ∈ N. Then
the categories Strat(X, t), Strat(X,∞) together with the fibre functor (E(i), σ(i), i ∈ N) 7→
E(0)|x are neutral Tannakian categories. The functor η defined above is a fully faithful
imbedding of tensor k−linear categories. If we set Stratfin(X) to be the full subcategory
of Strat(X,∞) whose objects consists of those whose Tannakian groups are finite, then
Stratfin(X) is the essential image of η. In other words η induces an equivalence between
lim−→i∈N(X,x)

Repk(Gi) and Stratfin(X).

Remark. In [EH], they define πalg,∞(X, x) to be the Tannakian group of Strat(X,∞).
Since Stratfin(X) as a subcateogry of Strat(X,∞) is stable under subquotient, so we get a
surjection πalg,∞(X, x) → πN(X, x). So πN(X, x) is the profinite quotient of πalg,∞(X, x).
Now we get a Tannakian description of πN(X, x) under the smoothness assumption of X/k.

3. The Algebraic Fundamental Group

The algebraic fundamental group for a smooth geometrically connected scheme X over
a field k is defined to be the Tannakian group of the neutral Tannakian category of OX-
coherent D-modules over X/k. But before we proceed any further we have to make sense
of the tensor and internal Hom structures in the category of OX-coherent D-modules. To
do this we have to split our problem to two cases–characteristic 0 and characteristic p.
In characteristic 0 the category of D-modules is equivalent to the category of integrable
connections so we can do our job there. In characteristic p, by a theorem of Katz, the
category of OX-coherent D-modules is equivalent to the category of stratified bundles, so
we will just concentrate on stratified bundles in characteristic p.

Definition 3.0.5. Let f : X → S be a morphism of schemes. Then we have the
diagonal map ∆ : X ↪→ X ×S X. This gives us an exact sequence of OX-modules:

0→ I → ∆−1OX×SX → OX → 0.

We call the sheaf Pn
X/S := ∆−1OX×SX/In+1 the sheaf of principal parts of order n of X/S.

We will regard Pn
X/S as an OX-module using the first projection pr1 : X ×S X → X. We

call
Diffn

X/S(OX) := HomOX
(Pn

X/S, OX)

the sheaf of differential operators of order ≤ n of X/S. HomOX
(Pn

X/S, OX) can also be

seen as a subsheaf of Endf−1OS
(OX) consisting of sections which factor through the map
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OX → Pn
X/S defined by the second projection pr2 : X ×S X → X. One has canonical

inclusions Diffn
X/S(OX) ⊆ Diffn+1

X/S (OX), one can take direct limit in the category of

OX-modules:
DiffX/S(OX) := lim−→

n∈N
Diffn

X/S(OX).

DiffX/S(OX) is anOX-module which also carries anOX-algebra structure (non-commutative).

Definition 3.0.6. Let f : X → S be a morphism of schemes, E be sheaf of OX-
modules. A D-module structure on E is a left OX-algebra homomorphism

∇ : DiffX/S(OX)→ Endf−1OS
(E).

We will use Modc(DX/S) to denote the category of all OX-coherent D-modules over X/S.

Lemma 3.0.7. Let f : X → S be a morphism of schemes, D ∈ Diffn
X/S(OX) a

differential operator with n > 0. Then for any section a ∈ Γ(X,OX), the function
Da ∈ Endf−1(OS)(OX) defined by

Da(t) := D(at)− aD(t) ∀ t ∈ Γ(X,OX)

is a differential operator of order ≤ n− 1.

Lemma 3.0.8. Let f : X → S be a morphism of schemes, U ⊆ X an open subset, D be a
section of the sheaf Diffn

X/S(OX) on U , (E,∇) be a D-module, t ∈ Γ(U,E), a ∈ Γ(U,OX),
then we have the following Leibniz’s rule:

∇(D)(at) = a∇(D) +∇(Da)(t).

Remark 3.0.9. The proof of the above lemma is immediate from the definition. But
it is quite handy if one wants to prove something using induction on the order of the
differential operators. For example, one can show that if (E,∇) is a differential operator
over X/S, then ∇ factors though the natural inclusion DiffX/S(E) ⊆ Endf−1OS

(E), where
DiffX/S(E) is defined similarly as DiffX/S(OX): one takes the tensor product Pn

X/S⊗OX
E

via the second projection OX → Pn
X/S and views the tensor product as an OX-module via

the first projection, then one defines Diffn
X/S(E) := HomOX

(Pn
X/S ⊗OX

E,E), now one

passes to the limit and defines DiffX/S(E).

Proposition 3.0.10. Let X be a scheme locally of finite type over a field k, E be a
coherent sheaf on X. If E carries a structure of a D-module over X/k then E is necessarily
a vector bundle.

Definition 3.0.11. Let f : X → S be a morphism of schemes, DerX/S(OX) be the
sheaf of derivations of OX , E a sheaf of OX-module on X. An integrable connection ∇ on
E is an OX-linear map

∇ : DerX/S(OX)→ Endf−1OS
(E)

satisfying the following conditions:

(1) ∇(D)(fs) = f∇(D)(s) +D(f)s (∀f ∈ OX , D ∈ DerX/S(OX), s ∈ E)
(2) ∇([D1, D2]) = [∇(D1),∇(D2)] (∀D1, D2 ∈ DerX/S(OX), s ∈ E).
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Remark 3.0.12. There is a tensor structure in the category of integrable connections
over X/S. Given (E,∇E) and (F,∇F ) we can define an integrable connection

∇E⊗OX
F : DerX/S(OX)→ Endf−1OS

(E ⊗OX
F )

as follows: for any e ∈ E, f ∈ F and D ∈ DerX/S(OX),

e⊗ f 7→ ∇E(D)(e)⊗ f + e⊗∇F (D)(f).

We can also define for each two integrable connections (E,∇E) and (F,∇F ) an inte-
grable connection

∇HomOX
(E,F ) : DerX/S(OX)→ Endf−1OS

(HomOX
(E,F ))

as follows: for any D ∈ DerX/S(OX), φ ∈ HomOX
(E,F ) and e ∈ E, we have

(∇HomOX
(E,F )(D)(φ))(e) = ∇F (D)(φ(e))− φ(∇E(D)(e)).

Note that if X is locally noetherian then the above definition gives an internal Hom functor
in the category of coherent sheaves with integrable connections.

The neutral object in this category is of the form (OX ,∇) where ∇ is the natural
inclusion

∇ : DerX/S(OX)→ Endf−1OS
(OX)

sending a derivation to itself (viewing as an f−1OS-linear endomorphism of OX).
Furthermore, one can also define the wedge product of an integrable connections (E,∇E)

with ifself
∇E∧E : DerX/S(OX)→ Endf−1OS

(E ∧ E)

as follows: for any e ∈ E, f ∈ E and D ∈ DerX/S(OX),

e ∧ f 7→ ∇E(D)(e) ∧ f + e ∧∇E(D)(f).

This is well defined as one can check that for any e ∈ E,

a(e⊗ e) 7→ ∇E(D)(ae) ∧ e+ ae ∧∇E(D)(e)

= a(∇E(D)(e) ∧ e+ e ∧∇E(D)(e)) +D(a)e ∧ e
= 0.

Proposition 3.0.13. If f : X → S is smooth, then an integrable connection is equiv-
alent to an f−1OS-linear map ∇ : E → E ⊗OX

Ω1
X/S satisfying:

(1) ∇(fs) = f∇(s) + s⊗ df ∀f ∈ OX , s ∈ E.
(2) If ∇1 denotes the map

∇1 : E ⊗OX
Ω1

X/S → E ⊗OX
Ω2

X/S

sending s⊗ ω 7→ s⊗ dω −∇(s) ∧ ω for all s ∈ E, ω ∈ Ω1
X/S, then ∇ ◦∇1 = 0.

Proposition 3.0.14. If f : X → S is smooth, and S is a scheme over Q, then the
category of integrable connections over X/S is equivalent to the category of D-modules over
X/S.
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Remark. The idea of the proof of the above proposition is quite simple. This is just
because in characteristic 0 the differential operators of order ≤ 1 generate the whole ring
of differential operators as a non-commutative left OX-algebra.

Theorem 3.0.15. Let X be a smooth scheme over a field k of characteristic 0, then
Modc(DX/k) is a rigid k-linear abelian tensor category. If X is connected and x ∈ X(k)
then Modc(DX/k) equipped with the functor E 7→ E|x from Modc(DX/k) to Veck is a neutral
Tannakian category whose Tannakian group πalg(X, x) is called the algebraic fundamental
group.

Proof. This follows immediately from Remark 1.54, Proposition 1.52 and Proposition
1.56. �

Definition 3.0.16. Let f : X → S be a morphism of schemes, S is a scheme over Fp.
For i ∈ N, we have the relative Frobenius φi : X(i) → X(i+1) starting with X(0) = X. A
stratified bundle (E(i), σ(i), i ∈ N) consists of a sequence of coherent sheaves E(i) on X(i),
and a sequence of OX(i)-isomorphisms

σi : E(i) → φ∗iE
(i+1)

for all i ∈ N. Now we obtained a category Strat(X/S) whose objects consist of stratified
bundles, whose morphisms between two objects

Hom((E(i), σ(i), i ∈ N), (F (i), τ (i), i ∈ N))

is the set of morphisms E(i) → F (i) for i ∈ N which are compatible with σ(i) and τ (i) in a
natural way. We denote by Stratv(X/S) the full subcategory of Strat(X/S) consisting of
objects (E(i), σ(i), i ∈ N) where E(i) are vector bundles.

Remark 3.0.17. There is an obvious tensor structure on Strat(X/S). We can also
define the Hom object for two objects in Strat(X/S). If X is locally noetherian then
this defines the internal Hom functor in Strat(X/S). The identity object is of the form
(E(i), σ(i), i ∈ N) where E(i) = OX for all i ∈ N and σ(i) are all identities.

Theorem 3.0.18. [Gies][Theorem 1.3] Let f : X → S be a smooth morphism of
schemes, S is a scheme over Fp. Then there is an equivalence of categories between
Stratv(X/S) and the full subcategory Modv(DX/S) of Modc(DX/S) consisting of D-modules
of the form (E,∇) where E is a vector bundle.

Proof. We will set up two functors:

F : Modc(DX/S)→ Stratv(X/S) and G : Stratv(X/S)→ Modc(DX/S)

which are quasi-inverse to each other.
The construction of F is proceeded by induction. Suppose we have an object (E,∇) ∈

Modv(DX/S). We set E(i) to be the subsheaf of abelian groups of E consisting of sections
which are annihilated by all ∇(D) where D is a differential operator order < pi and
D(1) = 0. Since the action of differential operators of order < pi on E commutates with
the action of OX(i) via the relative Frobenius, E(i) carries a structure of an OX(i)-module.
Suppose E(i) is a vector bundle, we want to show that E(i+1) is also a vector bundle and
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there is an isomorphism σi : E(i) → φ∗iE
(i+1). We first define a connection ∇(i) on E(i) over

X(i)/S and then use Cartier descent. ∇(i) can be defined as follows: Let U be an open
affine of U which admits local coordinates (x1, x2, · · · , xn). and let D =

∑
fk(∂/∂xk) be

a derivation over U/S and D′ be a differential operator of degree ≤ pi so that

D′(fpi

) = (D(f))pi

.

Such an operator could be given by ∑
k

fp
k

∂pi
/∂xpi

k

pi!
.

If D′′ is another operator of degree ≤ pi satisfying D′(fpi
) = (D(f))pi

, then D′ − D′′ is
in the ring generated by operators of degree < pi. Thus if we set ∇(i)(D)(s) := ∇(D′)(s)

then this ∇(i) is well defined. Since
∑

k f
p
k

∂pi
/∂xpi

k

pi!
commutes with all monomials DI with

|I| < pi, so ∇(D)(s) is a section of E(i), and hence ∇(i)(D) ∈ Endf−1OS
(E(i)). Now let

f (i) ∈ OX(i) then we write f for the image of f (i) under the relative Frobenius OX(i) → OX .
Then we have:

∇(i)(D)(f (i)s) = ∇(D′)(fs)

= f∇(D′)(s) +∇(D′
f )(s)

= f (i)∇(D′)(s) + (D(f (i)))s,

where the last equation comes from

D′
f (g) = D′(fg)− fD′(g)

= D′
g(f) + gD′(f)− fD′(g)

= fD′
g(1) + gD′(f)− fD′(g)

= fgD′(1)− fD′(g) + gD′(f)− fD′(g)

= gD(f (i)).

It is not hard to check that ∇(i)(Dp) = (∇(i)(D))p, and that the sheaf of all sections
annihilated by ∇(i) is precisely E(i+1). Now one can apply Cartier descent and get the
functor F .

Conversely, if we have an object (E(i), σ(i), i ∈ N) ∈ Stratv(X/S). If U ⊆ X is an open
affine where s1, · · · , sr ∈ Γ(U,E(i)) give a trivialization of E(i). Then any section s ∈ E
can be written as

s =
∑

k

fkϕi(sk)

where ϕi is the canonical imbedding E(i) → E(0). If D is a differential operator of order
< pi, then we set

∇(D)(s) =
∑

k

D(fk)ϕi(sk).
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Since the operation of D on OX commutates with the action of OX(i) via the relative
Frobenius OX(i) → OX , the construction above does not depend on the choice of the basis.
One can check that the above construction really gives us a D-module structure on E(0).
This defines G. Now it is not hard to check that F and G are quasi-inverse to each
other. �

Proposition 3.0.19. Let X be a smooth scheme over a field k of characteristic p > 0.
Then Stratv(X/k) = Strat(X/k).

Theorem 3.0.20. Let X be a smooth connected scheme over a field k of characteristic
p > 0, x ∈ X(k). Then Strat(X/k) is a k-linear rigid abelian tensor category and the
functor

(E(i), σ(i), i ∈ N) 7→ E(0)|x
is a fibre functor. So Strat(X/k) equipped with this fibre functor is a neutral Tannakian
category whose Tannakian group is denoted by πalg(X, x). This group scheme is called the
algebraic fundamental group.





CHAPTER 2

The Homotopy Sequence for Nori’s Fundamental Group

In this chapter we will study the Homotopy sequence for Nori’s fundamental group.
The question is the following: If we have a separable proper morphism X → S with
geometrically connected fibres between two reduced connected locally noetherian schemes
over a field k, x ∈ X(k), s ∈ S(k), f(x) = s, then by functoriality of Nori’s fundamental
group we get a sequence of maps in the category of k-group schemes:

πN(Xs, x)→ πN(X, x)→ πN(S, s)→ 1.

We have already known from Chapter 1 §2 that the above sequence is exact on the right,
so the question is whether or not it is exact in the middle. We are not trying to show the
arrow at the very left is injective because that is already false for étale fundamental group
and the topological fundamental group, that is a place for the higher homotopy groups.

1. The general criterion

In this section, we will give a necessary sufficient condition for the exactness of the
homotopy sequence for the general base (i.e. we will not assume the base scheme is proper
or smooth). And then we will apply the necessary sufficient condition to the étale quotient
of Nori’s fundamental group and get the exactness of the homotopy sequence there. This
is can thought as a different proof of the exactness of the étale fundamental group.

Definition 1.0.21. Let X be a reduced connected scheme over a field k, x ∈ X(k) be
a rational point. We call a triple (P,G, p) ∈ N(X, x) a G-saturated torsor if the canonical
map πN(X, x)→ G is surjective.

Remark. Here we are using the terminology in [EHV][Definition 3.2], where they
defined a G-saturated bundle to be a pointed torsor (P,G, p) ∈ N(X, x) with the property
that OP (P ) = k. Nori has proved in [Nori][Part I, Chapter II, Proposition 3] that if X
is (in addition) proper then the two definitions above are equivalent, where he called a
G-saturated torsor ”reduced” [Nori][Part I, Chapter II, Definition 3].

Definition 1.0.22. Let f : X → S be a map of schemes, F be a sheaf of OX-modules,
s : Spec (κ(s)) ↪→ S a point, then we get a Cartesian diagram:

Xs
t //

g

��

X

f

��
Spec (κ(s))

s // S

.

25



26 2. THE HOMOTOPY SEQUENCE FOR NORI’S FUNDAMENTAL GROUP

We say F satisfies base change at s if the canonical map

s∗f∗F → g∗t
∗F

is surjective. Note that if f is proper, S is locally noetherian, F is coherent and flat over S
then F satisfies base change at s if and only if the above canonical map is an isomorphism
(see [Hart][Chapter III, Theorem 12.11]).

Theorem 1.0.23. (H.Esnault, P.H.Hai , E.Viehweg) Let f : X → S be a separable
proper morphism with geometrically connected fibres between two reduced connected locally
noetherian schemes over a perfect field k. We suppose further that S is irreducible. Let
x ∈ X(k), s ∈ S(k) and assume f(x) = s. Then the following conditions are equivalent:

(1) the sequence

πN(Xs, x)→ πN(X, x)→ πN(S, s)→ 1

is exact;
(2) for any G-saturated torsor (P,G, p) with structure map π : P → X, π∗OP satisfies

base change at s and the image of the composition πN(Xs, x)→ πN(X, x)→ G is
a normal subgroup of G;

(3) for any G-saturated torsor (P,G, p) with structure map π : P → X, π∗OP satisfies
base change at s and there is a G′-saturated torsor π′ : P ′ → S together with a

morphism (P,G)
θ−→ (P ′, G′) satisfy that the θ-induced map (π′∗OP ′)s → (f∗π∗OP )s

is an isomorphism.

Proof. ”(1) =⇒ (2)” If the homotopy sequence is exact then clearly the image of
πN(Xs, x) → πN(X, x) → G (which is denoted by H) is normal in G. The exactness also
gives us a commutative diagram

πN(X, x) //

��

πN(S, s)

��

G // G/H

.

This commutative diagram gives us a G/H-saturated torsor (P ′, G/H, p′) over S and a
morphism in N(X, x):

λ : (P,G, p)→ (P ′ ×S X,G/H, p
′ ×S X) ∼= (P/H,G/H, p).

Let W ′ be the push forward of the structure sheaf of P ′ to S, V := π∗OP , W := f ∗W ′. Let
λ∗ : W → V be the map induced by λ. If we pull-back λ∗ to Xs then we get a morphism in
the category of essentially finite vector bundles because V |Xs (resp.W |Xs) is the 0-th direct
image of the structure sheaf of the torsor P ×X Xs (resp.P ′ ×S Xs). From [Nori][Part I,
Chapter I, Proposition 2.9], this λ∗ corresponds, via Tannakian duality, to the morphism

k[G]π
N (Xs,x) = k[G]H = k[G/H]→ k[G]

in the category of Repk(π
N(Xs, x)). Hence W |Xs is the maximal trivial subbundle of V |Xs .

But H0(Xs, V |Xs) ⊗k OXs ⊆ V |Xs is the maximal trivial sub embedding (see lemma 2.3
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below), thus the canonical map

W |Xs = H0(Xs,W |Xs)⊗k OXs → H0(Xs, V |Xs)⊗k OXs

is an isomorphism. But note that the above map factors W |Xs → f ∗f∗V |Xs . This implies
f ∗f∗V |Xs → H0(Xs, V |Xs)⊗k OXs is an isomorphism, so base change is satisfied.

”(2) =⇒ (3)” Let H ⊆ G be the image of the composition πN(Xs, x)→ πN(X, x)→ G.
Since it is normal we get a G/H-torsor P/H on X. If W is the push-forward of the
structure sheaf of P/H to X and V := π∗OP , then we know from our assumption that W
and V satisfy base change at s. Let λ : W ↪→ V be the imbedding induced P → P/H,
then we have the following commutative diagram of sheaves on Xs:

f ∗f∗W |Xs

a1 //

f∗f∗λ
��

H0(Xs,W |Xs)⊗k OXs

H0(Xs,λ|Xs )
��

a2 // W |Xs

λ|Xs

��
f ∗f∗V |Xs

a3 // H0(Xs, V |Xs)⊗k OXs

a4 // V |Xs

.

By base change a1, a3 are isomorphisms. Since λ|Xs corresponds via Tannakian duality
to k[G]H ↪→ k[G] (in the category Repk(π

N(Xs, x))), W |Xs is imbedded as the maximal
trivial subbundle of V |Xs . Hence a2 and H0(Xs, λ|Xs) are isomorphisms. So f ∗f∗λ is also
an isomorphism. In particular

(f∗λ)x : (f∗W )x → (f∗V )x

is an isomorphism. Let r ∈ N be the rank of W . For any point t ∈ S, since

H0(Xt,W |Xt)⊗k OXt → W |Xt

is always an imbedding (lemma 2.3), we have dimk(H
0(Xt,W |Xt)) ≤ r. But on the other

hand, since W satisfies base change at s, r = dimk(H
0(Xs,W |Xs)) reaches the minimal

dimension (the dimension at the generic point), so by semi-continuity theorem we have

dimk(H
0(Xt,W |Xt)) ≥ dimk(H

0(Xs,W |Xs)) = r.

This implies H0(Xt,W |Xt) has constant dimension r, and hence W satisfies base change
all over S. So f∗W a vector bundle. Since f ∗f∗W → W is injective after restricting to
all the points of X, we have it is an embedding as a subbundle (i.e. injective and locally
split). But since a1, a2 are isomorphisms, we have f ∗f∗W → W is an isomorphism. Now
we can check easily that Spec (f∗W ) → S with the canonical G/H-action induced from
P/H is an FPQC-torsor which satisfies all our conditions in (3).

”(3) =⇒ (1)” Let N be the image of Ker(πN(f)) in G (where πN(f) is the map
πN(X, x) → πN(S, s)), N ′ be the kernel of G → G′, and H ⊆ G be the image of the
composition πN(Xs, x) → πN(X, x) → G. We also write W := π′∗OP ′ and V := π∗OP .
We first note that the θ-induced map f ∗W |Xs → V |Xs corresponds to k[G/N ′] → k[G]
in Repk(π

N(Xs, x)). But from base change of V and the fact that the θ-induced map
Wx → (f∗V )x is an isomorphism we know that f ∗W |Xs → V |Xs should be the same as
H0(Xs, V |Xs) ⊗k OXs → V |Xs as subobjects. Thus the canonical imbedding k[G/N ′] ↪→
k[G/H] should be an isomorphism. Hence N ′ = H as subgroups. But since we have
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H ⊆ N ⊆ N ′, so H = N as well. Because the equality holds for all G-saturated torsor
(P,G, p), we have πN(Xs, x)→ Ker(πN(f)) is surjective. This completes the proof. �

Lemma 1.0.24. If X is a reduced connected proper scheme over a perfect field k with a
rational point x ∈ X(k), then for any essentially finite vector bundle V on X the canonical
morphism Γ(X,V )⊗k OX → V imbeds Γ(X,V )⊗k OX as the maximal trivial subbundle of
V .

Proof. Let Ess(X) be the category of essentially finite vector bunldes, ωx : Ess(X)→
Veck be the fibre functor. Then applying ωx to the canonical morphism Γ(X,V )⊗k OX →
V we get HomOX

(OX , V ) ∼= Γ(X,V ) → Vx ⊗OX,x
k = ωx(V ). But note that we have

HomOX
(OX , V ) ∼= HomπN (X,x)(k, ωx(V )) where k stands for the dim 1 vector space with

trivial πN(X, x) action. One checks readily that under these isomorphisms we get exactly
the canonical injection HomπN (X,x)(k, ωx(V ))→ ωx(V ) sending any morphism k → ωx(V )
to the image of 1 ∈ k. Since this map imbeds HomπN (X,x)(k, ωx(V )) as the maximal trivial
sub of ωx(V ). Using Tannakian duality we get our result. �

1.1. Application to the étale quotient.

Definition 1.1.1. Let X be a connected reduced locally noetherian scheme over a
perfect field k which admits a rational point x ∈ X(k). Let N ét(X, x) be the full subcate-
gory of N(X, x) whose objects consist of those (P,G, p) with G finite étale. We define the
étale quotient of πN(X, x) to be πét(X, x) := lim←−N ét(X,x)

G. We have an obvious surjection:

πN(X, x) � πét(X, x).

Lemma 1.1.2. Let X be a connected reduced scheme over a perfect field k which admits
a rational point x ∈ X(k). Let (P,G, p) be an étale torsor over (X, x). This torsor is
G-saturated if and only if P is connected.

Proof. Since P has a rational point so connectedness is equivalent to geometrical
connectedness, and also the formation of Nori’s fundamental group is compatible with
separable field extensions, thus we can reduce to the case when k is algebraically closed.

”=⇒” Let’s take Q ⊆ P to be the connected component of P containing p. Now G
is an abstract group we can write the action ρ : P ×k G → P as

∐
G P → P where each

component in the direct union is mapped to P via a unique element in G. Since P is an
G-torsor we have the following cartesian diagram:∐

G P
ρ //

idG

��

P

��
P // X

.
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If we let H ⊆ G be the maximal subgroup of G which fix Q, then we can see by definition
that Q×k H ⊆ P ×k G is the intersection of ρ−1(Q) and (idG)−1(Q). Thus the square∐

H Q
ρ //

idH

��

Q

��
Q // X

is cartesian. Hence Q is an H-torsor. But from the assumption the imbedding H → G
should be surjective. This tells us H = G. But then the map of G-torsors Q ⊆ P should
also be an isomorphism. So P is connected.

”⇐=” Let (P ′, G′, p′)→ (P,G, p) be any morphism in N(X, x). Since P → X is étale,
we know P ′ → P is finite flat. Thus the image must be both open and closed, and hence it
must be the whole of P . But if we pull-back the surjective map P ′ → P via x ∈ X(k), we
will get the group homorphism G′ → G. Thus this homorphism must be surjective. Since
(P ′, G′, p′) is taken arbitrarily, it actually shows that (P,G, p) is G-saturated. �

Theorem 1.1.3. Let f : X → S be a separable proper morphism with geometrically
connected fibres between two reduced connected locally noetherian schemes over a perfect
field k. Let x ∈ X(k), s ∈ S(k) and assume f(x) = s. Then the homotopy sequence:

πét(Xs, x)→ πét(X, x)→ πét(S, s)→ 1

is exact.

Proof. Without loss of generality one may assume k = k̄ [Nori][Part I, Chapter II,
Proposition 5]. Now let (P,G, p) be a G-saturated étale torsor over X, π : P → X be the

structure map V := π∗OP . Let P
φ−→ Q

$−→ S be the stein factorization of the proper map

P
π−→ X

f−→ S. Since f ◦ π is proper separable $ is finite étale. Thus φ is proper separable
surjective with geometrically connected fibres. But then the pull back φs : Ps → Qs along
the rational point s ↪→ S is also proper separable surjective with geometrically connected
fibres. Hence OQs → (φs)∗OPs is an isomorphism. This tells us base change is satisfied for
P at s.

The action P ×k G → P induces a map V → V ⊗k k[G]. Push it to S we get f∗V →
f∗V ⊗k k[G]. Thus there is an action of G on Q which makes φ G-equivariant. If we pull
back the map P → Q ×S X along the rational point x ∈ X(k), we get a G-equivariant
map t : G → G′ (where the identity point e of G comes from p and G′ is a G-set with a
distinguished point q). One checks readily that H := t−1(q) is the stabilizer of t(e), hence
a subgroup of G. Now let h ∈ H be an element. Considering the S-isomorphism Q → Q
induced by h. Evidently h sends q to q, and since Q is a connected finite étale cover of S,
the S-isomorphism induced by h must be the identity. Hence H acts trivially on Q and in
particular it also acts trivially on G′. So for any x ∈ G, we have t(e)xhx−1 = t(x)hx−1 =
t(x)x−1 = t(xx−1) = t(e). As a consequence, H is a normal subgroup of G. But since
t : G→ G′ is faithfully flat, we actually know that G′ is the quotient of G by H (and t is
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the quotient map). Thus we get a commutative diagram:

P ×k G
∼= //

��

P ×X P

��
Q×k G

′ ρ // Q×S Q

.

Let r be the degree of the connected finite étale cover $ : Q → S. Then one sees easily
that both Q×kG

′ and Q×SQ are finite étale of degree r. This shows that the Q-morphism
ρ is finite étale of degree 1, and hence an isomorphism. Now $ : Q → S has a structure
of a G′-torsor which satisfies all the conditions in (3) of our main theorem. So we can use
the same argument we have used in ”(3) =⇒ (1)” to conclude our theorem. �

2. The proper case

Under the properness assumption for the base S, the necessary sufficient condition for
the exactness of the homotopy sequence is a kind of neat:

Theorem 2.0.4. (H.Esnault, P.H.Hai , E.Viehweg) Let f : X → S be a proper separable
morphism with geometrically connected fibres between two reduced connected proper schemes
over a perfect field k, x ∈ X(k), s ∈ S(k), f(x) = s. Assume further that S is irreducible.
Then the homotopy sequence

πN(Xs, x)→ πN(X, x)→ πN(S, s)→ 1

is exact if and only if for any G-saturated torsor (P,G, p) ∈ N(X, x) with structure map
π : P → X, V := π∗OP satisfies base change at s and f∗V is essentially finite.

Proof. ” ⇐= ” Since f∗V satisfies base change, the canonical map f ∗f∗V → V is of
the form

Γ(Xs, V |Xs)⊗k OXs → V |Xs

after restricting to the fibre Xs. Because f ∗f∗V → V is a map of essentially finite vector
bundles, the kernel of it is also a vector bundle. But the kernel is trivial on Xs, so the
kernel itself is trivial. Thus f ∗f∗V ⊆ V is a subobject in the category of essentially finite
vector bundles on X and it becomes the maximal trivial suboject after restricting to Xs.
Now let G′ be the Tannakian group of the sub Tannakian category of Ess(S) generated by
f∗V . The imbedding f ∗f∗V → V gives us a surjection λ : G → G′. Let H be the kernel
of λ. Then f ∗f∗V → V corresponds via Tannakian duality to an inclusion M ⊆ k[G]
in Repk(G). Note that since M comes from an object in Repk(G

′) via λ : G → G′, so
M ⊆ k[G] factors through the inclusion k[G]H ⊆ k[G]. On the other hand, since we have
a surjection πN(S, s)→ G′, by [Nori][Chapter I, Proposition 3.11] we have a G′-saturated
torsor (P ′, G′, p′) ∈ N(S, s) with a map

θ : (P,G, p)→ f ∗(P ′, G′, p′)

in N(X, x) extending λ. Let V ′ := π′∗OP ′ , π
′ : P ′ → S. Then since P → P ′ ∼= P/H is

faithfully flat, f ∗V ′ ⊆ V is a subbundle, and this subbundle corresponds via Tannakian
duality to the inclusion k[G]H ⊆ k[G]. But clearly f ∗V ′ ⊆ V factors f ∗f∗V → V , so
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k[G]H ⊆ k[G] factors M ⊆ k[G], which means k[G]H = M . So we have V ′ ∼= f∗V . Now
the triple (P ′, G′, p′) satisfies all our conditions in Theorem 1.0.23 (3), so we get the exact
sequence.

” =⇒ ” By Theorem 1.0.23 we have a G′-saturated torsor (P ′, G′, p′) ∈ N(S, s) and a
morphism

θ : (P,G, p)→ f ∗(P ′, G′, p′) ∈ N(X, x)

such that the induced map V ′
s → (f∗V )s is an isomorphism, where V ′ := π′∗OP ′ and

π′ : P ′ → S is the structure map. Because V satisfies base change at s, there is a
neighborhood s ∈ U such that f∗V is a vector bundle on U and the adjunction map
f ∗f∗V → V is a sub bundle (locally split) on f−1(U). But f ∗V ′ → V is a sub vector
bundle and f ∗V ′ → V factors through the adjunction map, so f ∗V ′ → f ∗f∗V is a sub
vector bundle on f−1(U). Since V ′

s
∼= (f∗V )s, f

∗V ′ → f ∗f∗V is an isomorphism on f−1(U).
Hence the injective map V ′ → f∗V is also an isomorphism on U . Now by [?][Théorème
7.7.6] there is a coherent sheaf Q on S such that

f∗(V/f
∗V ′) ∼= HomOS

(Q, OS).

Since locally HomOS
(Q, OS) is contained in a vector bundle and we have

f∗V/V
′ ⊆ f∗(V/f

∗V ′) = HomOS
(Q, OS),

so if there is t ∈ S \ U such that (f∗V/V
′)t 6= 0, then we can choose an open affine

t ∈ Spec (A) ⊆ S such that

(f∗V/V
′)|Spec (A) ⊆

n⊕
i=0

Ai,

where Ai is a rank 1 free A-module for all 0 ≤ i ≤ n. Notice that since S is integral
Spec (A) is non-empty, so A is an integral ring. This implies f∗V/V

′ is non-zero at the
generic point which contradicts to the fact that f∗V/V

′ has support in S \U . So V ′ → f∗V
is an isomorphism on S. But V ′ is certainly essentially finite. This completes the proof. �

2.1. Application to the Künneth formula.

Definition 2.1.1. Let X be a reduced connected scheme over a field k with a rational
point x ∈ X(k). Let NF (X, x) be the full subcategory of N(X, x) whose objects consist
of pointed torsors with finite local groups. This category is also filtered so we can write
πF (X, x) := lim←−NF (X,x)

G. If X is also proper and k is perfect, then πF (X, x) is the

Tannakian group of the full subcategory of the category of essentially finite vector bundles
Ess(X) consisting of F -trivial bundles, i.e. vector bunldes which are trivial after pull back
along some relative Frobenius φ(−t) : X(−t) → X with t ∈ N.

Corollary 2.1.2. Let X and Y be two reduced connected proper schemes over a perfect
field k. Let x ∈ X(k), y ∈ Y (k). Then the canonical map

πF (X ×k Y, (x, y))→ πF (X, x)×k π
F (Y, y)

is an isomorphism of k-group schemes.
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Proof. We will use the obvious analogues of Theorem 2.0.4 to prove this theorem.
Note that after replacing πN(X, x) by πF (X, x), ”torsor” by ”local torsor” (torsors whose
groups are local), essentially finite vector bundle by F -trivial vector bundle, Theorem 1.0.23
and Theorem 2.0.4 are still true.

To prove this corollary we only need to show that the sequence

1→ πF (Y, y)→ πF (X ×k Y, (x, y))→ πF (X, x)→ 1

is exact. So we have to check that for any G-saturated local torsor (P,G, p) ∈ NF (X, x),
V := π∗OP (π : P → X is the structure map) satisfies base change at x and f∗V is an
F -trivial vector bundle.

Now suppose that V is trivialized by

X(−t) ×k Y
(−t) = (X ×k Y )(−t) → X ×k Y.

Consider the following commutative diagram

Y
y // X(−t) ×k Y

φ(−t)×id

��

p1 // X(−t)

φ(−t)

��
Y

y // X ×k Y
f // X

.

Let W be the pull back of V via X(−t)×kY → X×kY . Since W has trivial fibres along the
projection p2 : X(−t)×k Y → Y and X(−t) is proper separable and geometrically connected
scheme, so there exists a vector bundle on E on Y such that p∗2E

∼= W , so V has constant
fibres along f : X ×k Y → X. Consequently base change is satisfied for V along f (at any
point of X). On the other hand we have the following trivial cartesian diagram

X ×k Y
p2 //

p1

��

Y

b
��

X
a // Spec (k)

,

where a and b are structure maps. Because of base change we have a∗b∗E ∼= p1∗p2
∗E. This

implies p1∗W = p1∗p2
∗E is a trivial vector bundle. But since φ(−t) : X(−t) → X is faithfully

flat, so we have a canonical isomorphism

p1∗W = p1∗(φ(−t) × id)∗V ∼= φ∗(−t)f∗V.

Thus φ∗(−t)f∗V is a trivial vector bundle. By definition f∗V is F -trivial. �

Remarks 2.1.3. (1) Here we didn’t assume X or Y is irreducible, this is because we
have only used the sufficiency part of Theorem 2.0.4 in which only the citation of Theorem
1.0.23 used the irreduciblity. But the irreduciblity in Theorem 1.0.23 is only used for
extending base change at one point to base change at all points. Since in the above proof
we have already showed that base change holds for all F -trivial bundles at all points, so
we don’t need the irreduciblity.
(2) This corollary gives another way to see [MS][Proposition 2.1] which is the key point
in the proof of the Künneth formula for Nori’s fundamental group. But unfortunately, for
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the full proof of of Künneth formula we have to use the same trick employed in [MS] to
reduce the problem for πN to the problem for πF . At the moment, I can not find any easy
way to reduce the problem to πF using our language here.

3. The smooth case

We have seen in Chapter 1 §2.3 that there is a Tannakian description of Nori’s funda-
mental group if we assume the base is smooth. In this section we will use this Tannakian
description to give more criterion to determine the exactness of Nori’s fundamental group.
It turns out that the exactness of the homotopy sequence of Nori’s fundamental group is
equivalent to the constancy of the image of the following canonical map

πN(Xs, x)→ πN(X, x)

when s varies in S. So as a consequence if all fibres Xs have trivial Nori’s fundamental
group then the sequence is exact, this is just [Nori][Part I, Chapter II, Proposition 9].
We will also apply the criterion to the special case when the morphism f : X → S is
a projection from a product (i.e.X = T ×k S and f is the second projection), where the
exactness becomes the Künneth formula. The criterion for homotopy sequence tells us that
Künneth formula holds if and only if the canonical map of group schemes

πN(T, t)→ πN(T ×k S, (t, s))

is constant when s varies in S, but this is true if both S and T are proper smooth, this gives
another proof of [MS][Proposition 2.1]. In the end we will show that if we take S = A1

and T to be a supersingular elliptic curve then the canonical map

πN(T, t)→ πN(T ×k S, (t, s))

may not be constant.
The notion of ”fibrewise constancy” was first brought to my mind from Vikram Mehta

through a discussion on Künneth formula. I thank him for this very helpful discussion.

Proposition 3.0.4. If S is a connected scheme smooth over a field k = k̄ of positive
characteristic, f : X → S is a smooth proper morphism with geometrically connected fibres,
s ∈ S(k), x ∈ X(k) such that f(x) = s, then the homotopy sequence

πN(Xs, x)→ πN(X, x)→ πN(S, s)→ 1

is exact if and only if for any G-saturated torsor (P,G, p) ∈ N(X, x) with structure map
π : P → X, π∗OP satisfies base change at s and there is a neighborhood U of s and an
object (Wi, τi, i ≥ 0) ∈ Stratfin(U/k) which satisfies

(1) W0 = f∗π∗OP |U ;
(2) there is an imbedding f ∗(Wi, τi, i ≥ 0) ⊆ (Vi, σi, i ≥ 0)|f−1(U) such that f ∗W0 →

V0|f−1(U) is the canonical map f ∗f∗π∗OP → π∗OP restricting to f−1(U), where

(Vi, σi, i ≥ 0) ∈ Stratfin(X) is the stratified object corresponding to (P,G).

Proof. ”=⇒” According to [EPS][Appendix A.1 (iii) (a)(b)], there is an object (Wi, σi, i ≥
0) ∈ Stratfin(S/k) which satisfies
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(1) there is an imbedding f ∗(Wi, τi, i ≥ 0) ⊆ (Vi, σi, i ≥ 0);
(2) if we restrict the imbedding f ∗W0 → V0 to Xs then it gives the maximal trivial

subbundle of V0|Xs .

In other words f ∗W0|Xs is equal toH0(Xs, V0|Xs)⊗kOXs as subbundles of V0|Xs (see Chapter
2, 1.0.24). Thus the composition of maps

f ∗W0|Xs → f ∗f∗V0|Xs → H0(Xs, V0|Xs)⊗k OXs

is an isomorphism. So each arrow is an isomorphism. Thus f∗V0 has base change at s, so
it is a vector bundle in a neighborhood U of s, and the map W0 → f∗V0 is an isomorphism
on U . Hence the stratified sheaf (Wi, σi, i ≥ 0)|U/k satisfies our conditions.

”⇐=” LetG′ be the Tannakian group of the Tannakian category generated by (Wi, τi, i ≥
0) ∈ Stratfin(U) with fibre functor s∗. Then we get a surjection G → G′ because of the
embedding condition (2). Moreover one has the following commutative diagram

πN(Xs, x) //

����

πN(f−1(U), x)

��

// πN(U, s) //

��

1

H // G // G′ // 1

,

where H denotes the image of πN(Xs, x) in G. Now let V be an object in Repk(G
′)

corresponding to (Wi, τi, i ≥ 0). Then by our condition (2) we have an imbedding V → k[G]
in Repk(G). Again by condition (2) together with base change we have V = k[G]H as
subojects of k[G] in Repk(π

N(Xs, x)) (see also Chapter 2, 1.0.24). But if we denote the
kernel of G → G′ by N then we have V ⊆ k[G]N (since V was in Repk(G

′)). Thus the
canonical inclusion k[G]N ⊆ k[G]H is an isomorphism. This shows H = N . So the image
H is a normal subgroup of G. This together with base change at s implies the exactness
(Chapter 2, 1.0.23). �

Definition 3.0.5. Let f : X → S be a smooth map between two geometrically con-
nected smooth schemes over a field k = k̄ of positive characteristic with geometrically
connected fibres, x ∈ X(k), s ∈ S(k) and f(x) = s. Let (P,G, p) ∈ N(X, x) with structure
map π : P → X. In the following we will make precise the meaning that the image of
πN(Xs, x)→ πN(X, x)→ G is constant when s varies in S.

If s′ is another k-point in S and x′ ∈ f−1(s′), p′ ∈ π−1(x′), and if there is a k-linear
tensor isomorphism between the fibre functors x∗ to x′∗ from Stratfin(X) to Veck, then
there are isomorphisms πN(X, x) ∼= πN(X, x′), πN(S, s) ∼= πN(S, s′) and G ∼= G which
are induced by the chosen isomorphism between the fibre functors x∗ and x′∗ (because by
definition we have πN(X, x) := Aut⊗(x∗), πN(S, s) := Aut⊗(s∗), and there is a canonical
functor Repk(G) → Stratfin(X) induced from (P,G, p) (see Chapter 1 §2.2)). So we get
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two commutative diagrams:

πN(Xs, x) // πN(X, x) //

∼=
��

πN(S, s)

∼=
��

πN(Xs′ , x
′) // πN(X, x′) // πN(S, s′)

πN(X, x)
∼= //

��

πN(X, x′)

��
G

∼= // G

.

We say f has fiberwise constant fundamental group at s with respect to (P,G, p) if ∃ a
neighborhood s ∈ U ⊆ S such that for any s′ ∈ U(k), there exists x′ ∈ f−1(s′), p′ ∈ π−1(x′)
and an isomorphism between fibre functors x∗ to x′∗ such that the image of πN(Xs, x) and
πN(Xs′ , x

′) in G coincide under the induced automorphism G ∼= G as above.

Theorem 3.0.6. If S is a connected scheme smooth over a field k = k̄ of positive
characteristic, f : X → S is a smooth proper morphism with geometrically connected
fibres, s ∈ S(k), x ∈ X(k) such that f(x) = s, then the homotopy sequence

πN(Xs, x)→ πN(X, x)→ πN(S, s)→ 1

is exact if and only if for any G-saturated torsor (P,G, p) ∈ N(X, x) with structure map
π : P → X, f has fiberwise constant fundamental group at s with respect to (P,G, p).

Proof. ”⇒” Let (P,G, p) ∈ N(X, x). Then by Proposition 3.0.4, there is a neighbor-
hood s ∈ U ⊆ S such that ∀s′ ∈ U the image of πN(Xs′ , x

′) and the image of the kernel
of πN(X, x′)→ πN(S, s′) are coincide in G. So if x′ ∈ f−1(s′) then any k-linear tensor iso-
morphism between x∗ and x′∗ would make the image of πN(Xs′ , x

′) and πN(Xs, x) coincide
in G under the automorphism G ∼= G which is induced by the isomorphism between x∗

and x′∗. So f has fiberwise constant fundamental group at s with respect to (P,G, p).
”⇐” Suppose we have a G-saturated torsor (P,G, p) ∈ N(X, x) with structure map

P
π−→ X. Let V := π∗OP . then by Chapter 2, 1.0.24 the maximal trivial subbundle

H0(Xs, V |Xs) ⊆ V |Xs

which corresponds via Tannakian duality to

k[G]π
N (Xs,x) → k[G]

is constant when s varies in S. Hence V as a vector bundle on X satisfies base change at
s, so by Proposition 3.0.4 we only have to show that f∗V can be naturally extended to a
t-stratified sheaf in a neighborhood of s for some t ≥ 0.

For simplicity we may assume the neighborhood U in Definition 3.0.5 is S. Suppose
the torsor P corresponds to a n-stratified bundle (V, V1, V2, · · · , σ, σ1, σ2, · · · ), and suppose
the étale quotient Pét of P corresponds to the stratified bundle (Vi, σi, i ≥ 0) (see Chapter
1, Construction 2.4.3). Now look at the following commutative diagram:

X(−n)
v //

g

��

X

f

��
S(−n)

u // S

.
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One gets two maps

u∗f∗V
λ // g∗v

∗V

∼=
��

u∗f∗V0
λ0 // g∗v

∗V0

on S(−n) and a commutative diagram of k-group schemes:

πN(X
(−n)
t , xt)

//

��

πN(X(−n), xt) //

��

πN(S(−n), t) //

��

1

πN(Xt, xt) // πN(X, xt) // πN(S, t) // 1

for any t ∈ S(k) = S(−n)(k). Using the lemma below and Chapter 2 Lemma 1.0.24, one
can check that the pull back of λ and λ0 along the rational point t are isomorphic to the
maps k[G]Ht ↪→ k[G]Nt and k[G]H

′
t ↪→ k[G]Nt respectively, where Ht and H ′

t are the image
of πN(Xt, xt) in G and Gét respectively and Nt is the image of

πN(X
(−n)
t , xt)→ πN(X(−n), xt)→ Gét ⊆ G.

Since the object (Vi, σi, i ≥ 0) corresponds to an étale Tannakian group and the homo-
topy sequence is exact for étale fundamental groups, there is an object (Wi, τi, i ≥ 0) ∈
Stratfin(S) such that W0 = f∗V0 and there is an embedding f ∗(Wi, τi, i ≥ 0) ⊆ (Vi, σi, i ≥ 0)
with the 0-th map f ∗W0 ⊆ V0 equal to the canonical map f ∗f∗V0 → V0.

We claim that there is a unique arrow η : u∗f∗V → u∗f∗V0 which is compatible with λ
and λ0 under the isomorphism g∗v

∗V ∼= g∗v
∗V0 and that there is a vector bundle M1 on S(1)

with an imbedding M1 → W1 such that the pull back of this imbedding along S(−n) → S(1)

is precisely η under the identification τ0 : φ∗0W1
∼= W0 = f∗V0.

The first statement is easy to show because H ′
t ⊆ Ht under the canonical section

H ′
t = (Ht)ét ⊆ Ht. Thus we have k[G]Ht ⊆ k[G]H

′
t ⊆ k[G]. Hence the composition

u∗f∗V
λ−→ g∗v

∗V
∼=−→ g∗v

∗V0 → g∗v
∗V0/u

∗f∗V0

is 0 on each fibre of t ∈ S(−n), so itself is 0. This implies our first statement.
For the second statement we first note that the faithful flatness of the relative Frobenius

gives us the uniqueness of the map M1 → W1 (if it exists). So we can construct M1 and
the imbedding locally can then glue them together. Hence we may assume our bundles
W1, f∗V are all free. Now we choose a basis {u1, u2, · · · , ur} in W1 then it is naturally a
basis in u∗φ∗1W1

∼= u∗W0 = u∗f∗V0. We also fix a basis {v1, v2, · · · , vs} in f∗V , then it
naturally becomes a basis in u∗f∗V . The map η will give us a r × s matrix T with entries
in Γ(S(−n), OS(−n)). But for all t ∈ S(k) = S(−n)(k), the fibres of η on t are all of the
form k[G]Ht ⊆ k[G]H

′
t which is constant when t varies in S since f has fibrewise constant

fundamental group in S. Since S is reduced, T is a matrix with entries in k. Because k
is perfect, this tells us that we can descent η to a morphism M1 → W1. This proves our
second statement. Let’s denote the isomorphism u∗φ∗1M1

∼= u∗f∗V by δ.
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Now we use the same method employed in the proof of the second statement to de-
scent η to Mi → Wi for all i ≥ 1. And since our relative Frobenius are all finite
faithfully flat, we also get isomorphisms δi : φ∗iMi+1 → Mi for i ≥ 1. This makes
(f∗V,M1,M2, · · · , δ, δ1, δ2, · · · ) a n-stratified bundle. This stratified sheaf obviously sat-
isfies all our requirements so our proof is completed. �

Lemma 3.0.7. If S is a connected scheme smooth over a field k = k̄ of positive char-
acteristic, f : X → S is a smooth proper morphism with geometrically connected fibres,
s ∈ S(k), x ∈ X(k) such that f(x) = s, then for any 0-stratified bundle (Vi, σi, i ≥ 0) ∈
Stratfin(X, 0), Vi satisfies base change at s for all i ≥ 0.

Proof. We just have to show base change for V0 because (V1, V2, · · · , σ1, σ2, · · · ) is
also in Stratfin(X, 0). Since the Tannakian group which corresponds to (Vi, σi, i ≥ 0) is
étale and we have showed that the étale quotient of Nori’s fundamental group has exact
homotopy sequence, thus one can use the argument which we employed in the proof of
Proposition 3.0.4 ( necessity part) to show that V0 satisfies base change at s. �

Corollary 3.0.8. Let S be a connected scheme smooth over a perfect field k of positive
characteristic, f : X → S be a smooth proper morphism with geometrically connected fibres,
s ∈ S(k), x ∈ X(k) such that f(x) = s. Assume further that ∃ a neighborhood s ∈ U ⊆ S
such that for ∀t ∈ U(k) ∃y ∈ Xt(k) satisfying πN(Xt, y) = 1. Then πN(X, x) → πN(S, s)
is an isomorphism.

Remark 3.0.9. This easily follows from the above theorem, and it yields a new proof
of [Nori][Part I, Chapter II, Proposition 9] under the extra smoothness assumption for S.

Lemma 3.0.10. If X and Y are smooth (or proper reduced) connected schemes over an
algebraically closed field k, then

πN(X ×k Y, (x, y))→ πN(X, x)×k π
N(Y, y)

is an isomorphism at some x ∈ X(k) and y ∈ Y (k) if and only if it is an isomorphism for
all such x and y.

Proof. Assume the Künneth formula holds for some (x, y), by symmetry one only
has to show for any x1 ∈ X(k) the Künneth formula still holds for (x1, y). Now chose an
isomorphism of fibre functors u : x∗ ∼= x∗1. This u will induce a commutative diagram:

πN(X, x)

∼=
��

// πN(X ×k Y, (x, y)) //

∼=
��

πN(Y, y)

∼=
��

πN(X, x1) // πN(X ×k Y, (x1, y)) // πN(Y, y)

.

Since the first row is exact by Künneth formula for (x, y) so the second row is also exact.
Hence we also have Künneth formula for (x1, y). �

Corollary 3.0.11. If X and Y are smooth connected schemes over an algebraically
closed field k and Y is proper over k, then Künneth formula holds if and only if for any
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x, x1 ∈ X(k) there is an isomorphism of additive tensor functors (x× id)∗ ∼= (x1 × id)∗:

Stratfin(Y )
(x1×id)∗

00

(x×id)∗
..
Stratfin(X ×k Y )

Proof. Let’s first fix an isomorphism of fibre functors u : x∗ ∼= x∗1, then it induces a
diagram:

πN(X ×k Y, (x, y))

ũ

��

// πN(X, x))×k π
N(Y, y))

ũ×id

��

πN(Y, y))

x×id 44iiiiiiiiii

x1×id **UUUUUUUUUU

πN(X ×k Y, (x1, y)) // πN(X, x1))×k π
N(Y, y))

.

The right side square in the diagram is always commutative while the left triangle is
commutative if and only if (x × id)∗ and (x1 × id)∗ are isomorphic as additive tensor
functors.

Since πN(Y, y)→ πN(X, x))×k π
N(Y, y)) is always of the form e× id regardless of what

x ∈ X(k) is, so dropping the mid-arrow ũ, the diagram is commutative. But if Künneth
formula holds then all the maps in the square of the above diagram are isomorphisms.
Hence the left triangle must commute. Conversely if the left triangle commutes then using
theorem 3.0.6 we conclude that Künneth formula holds. �

Definition 3.0.12. Let X be a reduced connected scheme over a perfect field k with a
rational point x ∈ X(k). Let NF (X, x) be the full subcategory of N(X, x) whose objects
consists of pointed torsors with finite local groups. We write πF (X, x) := lim←−NF (X,x)

G.

If X is also proper, we will define CF (X) to be the full subcategory of the category of
essentially finite vector bundles (which is denoted by Ess(X)) consists of vector bunldes
which are trivial after pull back along some relative Frobenius φt : X(−t) → X. If X is also
smooth (may not be proper), we define CF (X) to full subcategory of Stratfin(X) consists
of t-stratified bundles (Ei, σi, i ≥ 0) with Ei and σi trivial (i.e. Ei = ⊕OX(i) and σi = id)
for all i ≥ 1.

Lemma 3.0.13. Let X be a proper reduced (or smooth) connected scheme over a perfect
field k with a rational point x ∈ X(k). Then πF (X, x) is the Tannakian group of CF (X)
with the fibre functor x∗.

Proof. If V ∈ CF (X) an object which is trivialized by φt : X(−t) → X with t ∈ N.
Then the full sub abelian tensor category of Ess(X) (or Stratfin(X)) generated by V with
x∗ correspond to a finite group scheme G over k. Thus we have an additive tensor functor

λ : Repk(G)→ Ess(X)

which 2-commutes with the fibre functors. This gives us a G-torsor P which admits a
rational point p over x. But if we compose λ with the canonical pull-back functor φ∗ :
Ess(X) → Ess(X(i)) then the result is just the ”free” functor, i.e. sending W ∈ Repk(G)
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to W ⊗k OX(i) . Thus P → X is a trivial G-torsor after pull back to X(i). This means the
group homomorphism G(i) → G is trivial. This implies G is a local group scheme. Hence
V is contained in the essential image of the imbedding

Repk( lim←−
NF (X,x)

(G)) = lim−→
NF (X,x)

Repk(G) −→ Ess(X).

But the imbedding clearly factors CF (X) ⊆ Ess(X). Thus we have

lim−→
NF (X,x)

G −→ CF (X) ⊆ Ess(X)

is an equivalence of categories. This concludes our proof. �

Corollary 3.0.14. If X and Y are proper smooth connected schemes over a perfect
field k, x ∈ X(k) and y ∈ Y (k), then the canonical map

πF (X ×k Y, (x, y))→ πF (X, x)×k π
F (Y, y)

is an isomorphism.

Proof. We may assume k = k̄. One checks readily that 3.0.4-3.0.11 hold well if we
replace πN by πF and arbitrary torsor (P,G, p) by local torsor (i.e. torsor with local group
scheme). So we only have to construct an isomorphism of functors between (x× id)∗ and
(x′ × id)∗

CF (Y ) −→ CF (X ×k Y )

for some x′ ∈ X(k). Suppose E := (Ei, σi, i ≥ 0) ∈ CF (X ×k Y ) ⊆ Stratfin(X ×k Y ), then
there is a nature number t ≥ 0 such that the pull-back of E along the relative Frobenius
X(−t) ×k Y

(−t) → X ×k Y is a trivial object. This implies the pull-back of E along the
map δ : X(−t) ×k Y → X ×k Y has trivial fibres over Y . Since X(−t) is also smooth proper
connected there exists a canonical object E ′ = (p∗Ei, p∗σi, i ≥ 0) ∈ CF (Y ) such that the
pull-back of it along the projection p : X(−t) ×k Y → Y is canonically isomorphic to E.
Thus we have x∗E ∼= E ′ ∼= x′∗E. One checks readily that this isomorphism does not
depend on the choice of t and that the isomorphism is functorial in E. This defines an
isomorphism of functors. �

Remark 3.0.15. This corollary gives another way to see [MS][Proposition 2.1] which
is the key point in the proof of Künneth formula. But unfortunately, we have to put
extra smoothness assumption. For the full proof of of Künneth formula we have to use the
same trick employed in [MS] to reduce the problem for πN to the problem for πF . At the
monent, I can not find any easy way to reduce the problem to πF using our language here.

3.1. A counterexample. Now consider k an algebraically closed field of characteristic
2, X = A1

k, Y = E a supersingular elliptic curve. We want to find an object in CF (A1
k×kE)

such that the condition in Corollary 3.0.11 does not hold.
Suppose π : P → E is a non-trivial α2-tosor over E. Let V := π∗OP . Let L be the

cokernel of the structure map OE → V , then L is an essentially finite line bundle, so it has
degree 0. If L was not OE, then H1(E,L−1) = Ext1(OX ,L−1) 6= 0, so by Riemann-Roch
h0(E,L−1) = h1(E,L−1) 6= 0. But this implies L−1 is OE which is impossible. Hence we
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have L ∼= OE. This gives us an exact sequence

0→ OE → V → OE → 0.

We know that for i = −1, P → E has already became a trivial torsor after pulling back
along the relative Frobenius φi : E(i) → E. Thus after choosing a section E(i) → P ×E E

(i)

we get an E(i)-scheme isomorphism P ×E E
(i) ∼= α2 ×k E

(i) which gives us a trivialization
δ : φi

∗V ∼= OE(i) ⊕OE(i) making the diagram

0 // OE(i)
// φi

∗V //

δ
��

OE(i)
// 0

0 // OE(i)
// OE(i) ⊕OE(i)

// OE(i)
// 0

commutative. By Grothendieck’s FPQC descent theory there is an essentially unique
descent isomorphism ε corresponding to V

p∗1φi
∗V

p∗1δ

��

∼= // p∗2φi
∗V

p∗2δ

��
OE(i)×EE(i) ⊕OE(i)×EE(i)

ε // OE(i)×EE(i) ⊕OE(i)×EE(i)

,

where p1 and p2 are the two projections of E(i) ×E E
(i). This ε is expressible by a matrix

in GL2(Γ(E(i) ×E E
(i), OE(i)×EE(i))) (

1 a
0 1

)
.

Since P is not a trivial torsor a 6= 0.
Let x be the indeterminate in X = A1

k = Spec (k[x]). Then the 2× 2-matrix:(
1 ax
0 1

)
in GL2(Γ(X ×k E

(i) ×E E
(i), OX×kE(i)×EE(i))) determines an isomorphism

ε′ : OX×kE(i)×EE(i) ⊕OX×kE(i)×EE(i)
∼= OX×kE(i)×EE(i) ⊕OX×kE(i)×EE(i) .

One checks readily that the pair

(OX×kE(i) ⊕OX×kE(i) , ε′)

gives us a descent data. This descent data will give us a rank 2 vector bundle W on
X ×k E with a trivialization ξ : φi

∗W ∼= OX⊗kE(i) ⊕ OX⊗kE(i) on X ×k E
(i). Let λ be the

pull back of ξ along the relative Frobenius X(i)×k E
(i) → X ×k E

(i). Then the pair (W,λ)
is a 1-stratified bundle over X ×k E/k (See Definition 3.0.12). If the Tannakian group
corresponding to (W,λ) is finite, then (W,λ) ∈ CF (X ×k E) (Definition 3.0.12).

It is clear that this W does not have constant fibre along the projection X ×k E → X
(the fibre along x = 0 splits while the fibre along x = 1 does not). If it lies in CF (X ×k E),
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then it provides an example which does not satisfy the condition in Corollary 3.0.11. So
we only have to prove (W,λ) ∈ CF (X ×k E).

Now we consider the tensor product (W,λ)⊗(W,λ). We see that W⊗OE
W corresponds

to the descent data

A :=

(
1 ax
0 1

)
⊗

(
1 ax
0 1

)
=


1 ax ax a2x2

0 1 0 ax
0 0 1 ax
0 0 0 1


One the other hand we have (W,λ) ⊕ (W,λ), and W ⊕W corresponds to the following
descent data:

B :=


1 ax 0 0
0 1 0 0
0 0 1 ax
0 0 0 1


We will show that (W,λ)⊗ (W,λ) ∼= (W,λ)⊕ (W,λ), and hence (W,λ) sits in our category
CF (X ×k E).

We first come back to V . After fixing a section E(i) → P over E, there are two ways
to trivialize V ⊗OE

V : one way is to pull it back along φi : E(i) → E, then φ∗iV ⊗O
E(i)

φ∗iV

is trivialized via the canonical trivialization φ∗iV
∼= OE(i) ⊕ OE(i) ; the other way is to use

the canonical isomorphism P ×k G → P ×X P to write V ⊗OE
V ∼= V ⊕ V , then pull it

back to E(i) and trivialize V ⊕ V . We denote δ∗1 the first trivialization and δ∗2 the second
trivialization. We want to know what is the relation between them.

Now let P1 = P2 = P3 = P . Then the first trivialization of V ⊗OE
V can be reinterpreted

as the following isomorphisms:

δ−1
1 : P1×XP2×XP3

∼= (P1×XP2)×P1(P1×XP3) ∼= (P1×kα2)×P1(P1×kα2) ∼= P1×kα2×kα2.

This map sends (p1, p2, p3) to (p1, g12, g13) using funtorial viewpoint, where p1g12 = p2 and
p1g13 = p3. The second trivialization of V ⊗OE

V comes from the following identifications:

δ−1
2 : P1 ×X P2 ×X P3

∼= P1 ×X P2 ×k α2
∼= P1 ×k α2 ×k α2.

This map sends (p1, p2, p3) to (p1, g12, g23). Thus to identify our identifications we set an
isomorphism θ : α2×k α2 → α2×k α2 sending (x, y) 7→ (x, xy). Thus we get a commutative
diagram:

P1 ×k α2 ×k α2

P1 ×X P2 ×X P3

δ−1
1

33fffffffffffff

δ−1
2

++XXXXXXXXXXXXX

P1 ×k α2 ×k α2

id×θ

OO
.
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Pulling the diagram back along the chosen section E(i) → P1 we get our desired commu-
tative diagram:

OE(i) ⊕OE(i) ⊕OE(i) ⊕OE(i)

θ∗×id

��

φ∗iV ⊗O
E(i)

φ∗iV

δ∗1
55jjjjjjjjjjjjjj

δ∗2 ))TTTTTTTTTTTTTT

OE(i) ⊕OE(i) ⊕OE(i) ⊕OE(i)

.

Now it’s time to analyze the basis we have chosen for α2 ×k α2 and hence give the matrix
for θ∗.

θ∗ : k[x]/x2 ⊗k k[y]/y
2 → k[x]/x2 ⊗k k[y]/y

2

is determined by the association x 7→ x and y 7→ x⊗ 1 + 1⊗ y. To get the matrix

(
1 a
0 1

)
⊗

(
1 a
0 1

)
=


1 a a a2

0 1 0 a
0 0 1 a
0 0 0 1


we have chosen the basis as 1⊗ 1, 1⊗ y, x⊗ 1, x⊗ y. To get the second matrix

1 a 0 0
0 1 0 0
0 0 1 a
0 0 0 1


we have used the following basis 1⊗ 1, x⊗ 1, 1⊗ y, x⊗ y. Since we have θ∗(1⊗ 1) = 1⊗ 1,
θ∗(1⊗ y) = x⊗ 1 + 1⊗ y, θ∗(x⊗ 1) = x⊗ 1, θ∗(x⊗ y) = x2⊗ 1 + x⊗ y = x⊗ y. Thus the
matrix of θ∗ can be written as

C :=


1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1

 .

Since the commutative diagram (∗):

φ∗iV ⊗O
E(i)

φ∗iV

∼=
��

δ∗1 //

δ∗2
**

OE(i) ⊕OE(i) ⊕OE(i) ⊕OE(i)

θ∗

��
φ∗iV ⊕ φ∗iV ∼=

// OE(i) ⊕OE(i) ⊕OE(i) ⊕OE(i)
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is compatible with the descent data we should have an equality of matrix:
1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1




1 a a a2

0 1 0 a
0 0 1 a
0 0 0 1

 =


1 a 0 0
0 1 0 0
0 0 1 a
0 0 0 1




1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1

 .

That is, we should have 
1 a a a2

0 1 1 0
0 1 0 a
0 0 0 1

 =


1 a a 0
0 1 1 0
0 1 0 a
0 0 0 1

 .

Thus, in conclusion, we have a2 = 0, and in GL4(Γ(A1
k ×k E

(i) ×E E(i))) the following
equality:

1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1




1 ax ax a2x2

0 1 0 ax
0 0 1 ax
0 0 0 1

 =


1 ax 0 0
0 1 0 0
0 0 1 ax
0 0 0 1




1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1

 .

This tells us that we have obtained a commutative diagram of descent data

φ∗iW ⊗OA1
k
×kE(i)

φ∗iW

∼=
��

λ⊗λ // OA1
k×kE(i) ⊕OA1

k×kE(i) ⊕OA1
k×kE(i) ⊕OA1

k×kE(i)

θ∗∗

��
φ∗iW ⊕ φ∗iW λ⊕λ

// OA1
k×kE(i) ⊕OA1

k×kE(i) ⊕OA1
k×kE(i) ⊕OA1

k×kE(i)

.

There is a unique isomorphism W ⊗OE
W → W ⊕W corresponding to the map of descent

data θ∗∗. This isomorphism is also an isomorphism between (W,λ)⊗ (W,λ) and (W,λ)⊕
(W,λ) since the horizontal arrows in the above diagram are our trivializations.

Remark 3.1.1. Up to now the counterexample should have been finished, yet we find
something more when we were playing around. This W we have constructed is actually
from an α2-torsor over X ×k E.

One can see that the descent data (
1 ax
0 1

)
induces an X×kE

(i)×E E
(i)−automorphism of α2×kX×kE

(i)×E E
(i). That is to say the

descent data is a descent data for affine schemes. Thus W is a coherent sheaf of OX×kE-
algebra. Let Q = Spec (W ), then the matrix A is the descent data for Q×X×kE Q and the
matrix B is the descent data for Q×k α2. Since the scheme isomorphism

id× θ : X ×k E
(i) ×k (α2 ×k α2)→ X ×k E

(i) ×k (α2 ×k α2)

corresponds to the map θ∗∗, it is automatically a map of descent data for affine schemes.
Thus we get an X ×k E-isomorphism: ρ : Q×k α2 → Q×X×kE Q. By FPQC-descent, the
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composition of ρ with the second projection of Q×X×kE Q defines an action of α2 and the
composition of ρ with the first projection of Q×X×kE Q is the first projection of Q×k α2

(because they are the case after pulling back to X ×k E
(i)). This tells us that Q is an

α2-torsor over X ×k E.

Remark 3.1.2. Hélène Esnault and Andre Chatzistamatiou pointed to us the following
improvement of the above example. Thanks to their suggestion our counterexample may
work for any characteristic p > 0. Now we consider the exact sequence of abelian sheaves
in the flat topology

0→ αp → Ga
F−→ Ga → 0,

we then get a long exact sequence of abelian groups:

· · · → H0
fl(−,Ga)→ H1

fl(−, αp)→ H1
fl(−,Ga)

H1(F )−−−→ H1
fl(−,Ga)→ · · ·

If we put − to be an elliptic curve E and if there map H1(F ) has none trivial kernel (like
in our case), then we can choose some a 6= 0 in the that kernel. If we put − to be A1

k×k E
then

a⊗ x ∈ H1
fl(A1

k ×k E,Ga) = H1
fl(E,Ga)⊗k k[x].

If we choose an element b ∈ H1
fl(A1

k ×k E,αp) such that b 7→ a⊗ x, then b is an α2-torsor

with non-constant fibres along the projection A1
k ×k E → A1

k. This can not happen if
Künneth formula was true.



CHAPTER 3

The Homotopy Sequence for the Algebraic Fundamental Group

Let f : X → S be a proper smooth morphism between two smooth proper connected
schemes over C, x ∈ X(C), s ∈ S(C), and f(x) = s. Then there is a long exact sequence

· · ·πtop
2 (San, s)→ πtop

1 (Xan
s , x)→ πtop

1 (Xan, x)→ πtop
1 (San, s)→ 1,

where Xan (San etc.) is the associated analytic space of the scheme X, and πtop is the
topological fundamental group associated to the corresponding analytic topology. Since
the the algebraic fundamental groups are the algebraic completions of the topological ones,
so one should have a short exact sequence (since we don’t have πalg

2 so we only have short
exact sequence):

πalg(Xs, x)→ πalg(X, x)→ πalg(S, s)→ 1.

In the chapter we will prove the exactness for the algebraic fundamental groups over a field
characteristic 0. For characteristic p, although we still don’t have a proof yet, but we can
prove a special case–the Künneth formula. This also gives some evidence for the exactness
of the homotopy sequence in characteristic p.

1. The settings

1.1. The general criterion. In [EPS][Appendix Theorem A.1], Hélène Esnault,
Phùng Hô Hai, Xiaotao Sun formulated a necessary sufficient condition for the exactness
of Tannakian groups by looking at their corresponding tensor functors. Since the algebraic
fundamental group is defined by Tannakian duality, so to prove the exactness we have to
check the condition holds in our settings. For the convenience of the reader we rewrite the
condition in the following theorem. For the proof one has to look at that article.

Theorem 1.1.1. ([EPS][Appendix Theorem A.1]) Let L
q−→ G

p−→ A be a sequence of
homomorphisms of affine group schemes over a field k. It induces a sequence of functors:

Repk(A)
p∗−→ Repk(G)

q∗−→ Repk(L),

where Repk(−) denotes the category of finite dimensional representations of − over k. Then
we have

(1) The group homomorphism p : G→ A is faithfully flat if and only if p∗Repk(A) is
a full subcategory of Repk(G) and closed under taking subquotients.

(2) The group homomorphism q : L→ G is a closed immersion if and only if any object
of Repk(L) is a subquotient of an object of the form q∗(V ) for some V ∈ Repk(G).

(3) Assume that q is a closed immersion and that p is faithfully flat. Then the sequence

L
q−→ G

p−→ A is exact if and only if the following conditions are fulfilled:

45



46 3. THE HOMOTOPY SEQUENCE FOR THE ALGEBRAIC FUNDAMENTAL GROUP

(a) For an object V ∈ Repk(G), q∗V ∈ Repk(L) is trivial if and only if V ∼= p∗U
for some U ∈ Repk(A)

(b) Let W0 be the maximal trivial subobject of q∗V in Repk(L). Then there exists
V0 ⊆ V in Repk(G), such that q∗V0

∼= W0.
(c) Any W in Repk(L) is embeddable in q∗V for some V ∈ Repk(G).

1.2. The settings. Let f : X → S be a smooth proper morphism with geometrically
connected fibres between two smooth connected schemes of finite type over a field k, s ∈
S(k) be a rational point, Xs be the fibre, x ∈ X(k) be a rational point lying above s, then
by the functoriality of the algebraic fundamental group we get a sequence of affine group
schemes

πalg(Xs, x)→ πalg(X, x)→ πalg(S, s)→ 1,

which is called the homotopy sequence. We will show that the sequence is exact if k has
characteristic 0 by checking the conditions provided in the above theorem.

2. The homotopy exact sequence in characteristic 0

In this section k is always a field of characteristic 0. In this case the category Modc(DX/k)
is the same as the category of vector bundles with flat connections, so in the following
we will work purely in the category of vector bundles with flat connections and still use
Modc(DX/k) to denote this category.

2.1. The conditions (a), (b) and the surjectivity.

Theorem 2.1.1. Notations and assumptions being as in §1.2, then the homotopy se-
quence

πalg(Xs, x)→ πalg(X, x)→ πalg(S, s)→ 1

is a complex, and the arrow πalg(X, x)→ πalg(S, s) is surjective.

Proof. Since s ∈ S is a rational point, we know that any object in Modc(DS/k) is
trivial after pulling back to Modc(DXs/k), thus the sequence is a complex. To see the right
arrow is surjective, one has to show that the functor

f ∗ : Modc(DS/k)→ Modc(DX/k)

is fully faithful and stable under taking subquotient.
The fact that f ∗ is fully faithful follows readily from the projection formula, so we

only have to show that it is stable under taking subquotient. Suppose we have an object
(E,∇E) ∈ Modc(DS/k), and a subobject

(F,∇F ) ↪→ f ∗(E,∇E).

Then f∗F is a locally free sheaf of rank equal to that of F , f ∗f∗F → F is an isomorphism,
and the natural map f∗F → E imbeds f∗F as a subbundle of E (locally split). This can
be seen in the following way.

First of all, for any t ∈ S F |Xt is a free OXt-module. This is because f ∗(E,∇E)|Xt/κ(t)

is a trivial object in Modc(DXt/κ(t)), but

(F,∇F )|Xt/κ(t) ⊆ f ∗(E,∇E)|Xt/κ(t),
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thus (F,∇F )|Xt/κ(t) is also a trivial object, so F |Xt is a free OXt-module. This tells us f∗F
satisfies base change for any t ∈ S, hence is a vector bundle. Then the canonical map
f ∗f∗F → F is an isomorphism over all the fibres of t ∈ S, so itself is an isomorphism. This
finishes the proof of the above claim.

Now from the connection ∇F , we get a map:

f∗F → f∗(F ⊗OX
Ω1

X/k)
∼= f∗(f

∗f∗F ⊗OX
Ω1

X/k)
∼= f∗F ⊗OS

f∗Ω
1
X/k.

Since f : X → S is smooth, the exact sequence

0→ f ∗Ω1
S/k → Ω1

X/k → Ω1
X/S → 0

locally splits. Hence we have an induced injection

f ∗(E/f∗F )⊗OX
f ∗Ω1

S/k ↪→ f ∗(E/f∗F )⊗OX
Ω1

X/k,

which is just
E/f∗F ⊗OS

Ω1
S/k ↪→ E/f∗F ⊗OS

f∗Ω
1
X/k

by applying f∗ and the projection formula. Now look at the following commutative dia-
gramme with exact rows:

0 // f∗F ⊗OS
Ω1

S/k
//

��

E ⊗OS
Ω1

S/k
//

��

E/f∗F ⊗OS
Ω1

S/k

��

// 0

0 // f∗F ⊗OS
f∗Ω

1
X/k

// E ⊗OS
f∗Ω

1
X/k

// E/f∗F ⊗OS
f∗Ω

1
X/k

// 0

.

Since f∗F maps to f∗F ⊗OS
f∗Ω

1
X/k, its image in E/f∗F ⊗OS

f∗Ω
1
X/k is trivial. Because

E/f∗F ⊗OS
Ω1

S/k ↪→ E/f∗F ⊗OS
f∗Ω

1
X/k is injective, f∗F → E ⊗OS

Ω1
S/k factors through

f∗F ⊗OS
Ω1

S/k. This proves that f∗F ⊆ E is equipped with a flat connection f∗∇F which

makes (f∗F, f∗∇F ) a subobject of (E,∇E). Clearly f ∗(f∗F, f∗∇F ) ∼= (F,∇F ) as subobjects
of f ∗(E,∇E). This finishes the proof. �

Corollary 2.1.2. Notations and assumptions being as in §1.2, then for any object
(E,∇E) ∈ Modc(DX/k), the natural map

φ : f ∗H0
DM(X/S, (E,∇E)) = f ∗f∗E

∇X/S → E

is a horizontal with respect to the Gauss-Manin connection on the left (i.e. a morphism in
Modc(DS/k)). Furthermore this map is injective and imbeds f ∗H0

DM(X/S, (E,∇E)) as the
maximal subobject of (E,∇E) coming from S/k in the following sense:

If (M,∇M) ⊆ (E,∇E) ∈ Modc(DX/k) such that (M,∇M) = f ∗(N,∇N) for some
(N,∇N) ∈ Modc(DS/k), then the imbedding (M,∇M) ⊆ (E,∇E) factors through φ.

Proof. The fact that φ is horizontal is from the definition of the Gauss-Manin con-
nection. To show that it is injective one considers the kernel (K,∇K) of the map. One
has:

0→ (K,∇K)→ f ∗H0
DM(X/S, (E,∇E))

φ−→ (E,∇E)

is exact. Since the functor H0
DM(X/S,−) is left exact and H0

DM(X/S, φ) is an isomor-
phism, we have H0

DM(X/S, (K,∇K)) = 0. But by the theorem above, one has (K ′,∇K′) ∈
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Modc(DS/k) such that f ∗(K ′,∇K′) = (K,∇K). Thus as sheaves on S, one has

0 = H0
DM(X/S, (K,∇K)) = H0

DM(X/S, f ∗(K ′,∇K′)) ∼= K ′.

This shows that K = 0. Thus φ is injective.
Suppose (M,∇M) ⊆ (E,∇E) ∈ Modc(DX/k) such that (M,∇M) = f ∗(N,∇N) for some

(N,∇N) ∈ Modc(DS/k), then

N ∼= f∗M
∇X/S ↪→ f∗E

∇X/S = H0
DM(X/S, (E,∇E)),

this shows M ↪→ E factors through φ. �

Theorem 2.1.3. Notations and assumptions being as in §1.2, then for any (E,∇E) ∈
Modc(DX/k) the subobject

(F,∇F ) := f ∗H0
DM(X/S, (E,∇E)) ↪→ (E,∇E)

has the restriction (F,∇F )|Xs/k ↪→ (E,∇E)|Xs/k which gives the maximal trivial subobject
of (E,∇E)|Xs/k. So in particular, our condition (a) and (b) are satisfied.

Proof. Since the maximal trivial subobject of (E,∇E)|Xs/k is precisely

f ∗H0
DM(Xs/k, (E,∇E)|Xs/k) ↪→ (E,∇E)|Xs/k,

so the above theorem is just the base theorem for the Gauss-Manin Connection which was
proved in [Katz][Section 8]. �

2.2. The condition (c) for a generic geometric point. Now we come to check
the condition (c) in our general criterion. Since we are not going to show the injectivity of
the very left arrow, the condition (c) in our situation reads:

For ∀(E,∇E) ∈ Modc(DX/k) and any quotient (E,∇E)|Xs/k � (F ′,∇F ′) ∈ Modc(DXs/k),
∃(F,∇F ) ∈ Modc(DX/k) and an imbedding (F ′,∇F ′) ↪→ (F,∇F )|Xs/k ∈ Modc(DXs/k). Or
equivalently, one can say (by taking dual) for ∀(E,∇E) ∈ Modc(DX/k) and any subob-
ject (E,∇E)|Xs/k ↪→ (F ′,∇F ′) ∈ Modc(DXs/k), ∃(F,∇F ) ∈ Modc(DX/k) and a surjection
(F ′,∇F ′) � (F,∇F )|Xs/k ∈ Modc(DXs/k).

This condition here is quite difficult to check, but since (a) and (b) are satisfied now it
is equivalent to the exactness of the homotopy sequence. We will first prove this condition
in a special case (for a generic geometric point) then we will show that if in this special
case our condition is OK then the homotopy sequence is exact in general. Next we will
place the settings for the generic geometric point.

The Setup of §3.2: Let f0 : X0 → S0 be a smooth morphism between smooth geo-
metrically connected schemes of finite type over a field k0 of characteristic 0. Let k be an
algebraic extension of κ(S0), S := S0 ×k0 k, X := X0 ×k0 k, f := f0 ×k0 k. Now we get a
k-rational point s ∈ S which corresponds to the generic point of S0. Let Xs be the fibre of
s ∈ S(k), x ∈ X(k) such that f(x) = s.

Proposition 2.2.1. If (E,∇E) ∈ Modc(DX/k), (F ′,∇F ′) ⊆ (E,∇E)|Xs/k ∈ Modc(DXs/k),
then ∃ a non-trivial Zariski open U0 ⊆ S0 and an object (F0,∇F0) ∈ Modc(Df−1

0 (U0)/k0
) with

a surjection (F0,∇F0)|Xs/k � (F ′,∇F ′).
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Proof. According to Lemma 2.2.2 below, we have a non-trivial Zariski open U0 ⊆ S0

and a finite étale covering T0 → U0 with κ(T0) ⊆ k such that (E,∇E) ∈ Modc(DX/k) is de-
fined over Modc(DX0×k0

T0/T0). We may assume U0 = S0 and let (E0,∇E0) ∈ Modc(DX0×k0
T0/T0)

be the object such that ρ∗(E0,∇E0)
∼= (E,∇E) where ρ : X = X0 ×k0 k → X0 ×k0 T0. Let

α : T0 ↪→ S0 ×k0 T0 be the graph of T0 → S0 and β : X0T0
↪→ X0 ×k0 T0 be the pull back of

the graph:

X0T0

β //

��

X0 ×k0 T0

��
T0

α // S0 ×k0 T0

.

Then the pull back β∗(E0,∇E0) ∈ Modc(DX0T0
/T0) is actually defined over Modc(DX0T0

/k0).
In fact, we have the following commutative diagram:

X0T0

β //

��

X0 ×k0 T0
p //

��

X0

��
T0 T0

// k0

.

Thus we have maps
β∗Ω1

X0×k0
T0/T0

∼= β∗p∗Ω1
X0/k0

→ Ω1
X0T0

/k0
.

Note that the last arrow in the above sequence is actually coming from the following
commutative diagramme:

X0,T0

p◦β //

��

X0

��
Spec (k0) Spec (k0)

.

This indeed extends our connection

∇E0 : E0 → E0 ⊗OX0×S0
T0

Ω1
X0×k0

T0/T0
∼= E0 ⊗OX0×S0

T0
p∗Ω1

X0/k0

to the connection
β∗∇E0 : β∗E0 → β∗E0 ⊗OX0T0

Ω1
X0T0

/k0
.

Let λ : X0T0
→ X0S0

∼= X0. Since T0 → S0 is finite étale, we have λ∗β
∗(E0,∇E0) ∈

Modc(DX0/k0) and a surjection

λ∗λ∗β
∗(E0,∇E0) � β∗(E0,∇E0).

From the Cartesian diagrams

Xs
ι //

��

X0T0

β //

��

X0 ×k0 T0
//

��

X0

��
k // T0

// S0 ×k0 T0
// S0
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we know that if we pull back β∗(E0,∇E0) along ι then we get (E,∇E)|Xs/k. Now let
(F ′′,∇F ′′) be the inverse image of (F ′,∇F ′) under the map

λ∗λ∗β
∗(E0,∇E0)|Xs/k � β∗(E0,∇E0)|Xs/k = (E,∇E)|Xs/k.

According to our lemma 2.2.3 below, there exists non-trivial Zariski open U0 ⊆ S0 and
(F0,∇F0) ∈ Modc(Df−1

0 (U0)/k0
) with a surjection (F0,∇F0)|Xs/k � (F ′′,∇F ′′) � (F ′,∇F ′) ∈

Modc(DXs/k). This completes the proof. �

Lemma 2.2.2. (The notations and conventions in this lemma are independent) Let
f : X → S be a smooth morphism between two integral noetherian schemes. Let s ∈ S be
the generic point, κ(s) ⊆ k be a separable algebraic extension of fields, Xk be the generic
fibre (corresponding to Spec (k) ↪→ S). Then for any object (F,∇F ) ∈ Modc(DXk/k) with
F a vector bundle, there exists a non-empty open subset U ⊆ S, an integral finite étale
covering T → U and an object (E,∇E) ∈ Modc(DX×ST/T ) which satisfy (1) the function
field of T is contained in k; (2) (F,∇F ) ∼= (E,∇E)Xk/k.

Proof. Let φ : Xk → X be the canonical imbedding of the generic fibre and assume
S = Spec (R). Then we get a surjection φ∗φ∗F � F . Since φ∗F is the union of its
coherent subsheaves, we find a coherent subsheaf M of φ∗F with a surjection φ∗M � F .
Suppose N ⊆ φ∗M is the kernel of φ∗M � F . It is coherent since X is noetherian. Then
we can collect finitely many elements {x0, · · · , xn} in k which are integral over R and a
non-zero element f ∈ R such that N is defined over R1 := Rf [x0, · · · , xn]. Thus F is
defined over R1. Let’s say E1 is a coherent sheaf on X ×R R1 such that ρ∗1E1

∼= F , where
ρ1 : Xk = X ×R k → X ×R R1. Since the problem is local for S, and F is locally free, we
may assume E1 is locally free. Then the map

E1 ⊗OX×RR1
Ω1

X×RR1/R1
→ ρ1∗ρ

∗
1(E1 ⊗OX×RR1

Ω1
X×RR1/R1

)

is injective. Since the k−linear map

∇F : F → F ⊗OXk
Ω1

Xk/k

can be seen as a map
ρ∗1E1 → ρ∗1(E1 ⊗OX×RR1

Ω1
X×RR1/R1

),

we can collect finite many elements {y0, · · · , yn} in k which are integral over R and a non-
zero element g ∈ R such that ∇F is defined over R2 = (R1)g[y0, · · · , yn] and is still a flat
connection. Thus we have found T2 := SpecR2 and (E2,∇E2) ∈ FConn(X×S T2/T2) such
that ρ∗2(E2,∇E2)

∼= (F,∇F ) (where ρ2 : X ×S k → X ×S T2) and the generic point of T2 is
a finite field extension of κ(s). Now the map T2 → S which is finite onto its image is étale
at the generic point of T2, thus we get a non-empty open sub T of T2 such that T is finite
étale over some non-empty open U of S. This is precisely what we want. �

Lemma 2.2.3. For any object (E,∇E) ∈ Modc(DX0/k0) and any imbedding (F ′,∇F ′) ↪→
(E,∇E)|Xs/k ∈ Modc(DXs/k) there is a non-empty open U0 ⊆ S0 and an object (F,∇F ) ∈
Modc(Df−1(U0)/k0

) which admits a surjection

(F,∇F )|Xs/k � (F ′,∇F ′) ↪→ (E,∇E)|Xs/k ∈ Modc(DXs/k).
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Proof. First suppose κ(S0) ⊆ k is a trivial extension. Let r := dimOXs
(F ′). According

to [EP][Theorem 5.10] we have a subobject (M,∇M) ⊆ (E,∇E)|Xs/k0 ∈ Modc(DXs/k0)
with a surjection (M,∇M)|Xs/k � det(F ′,∇F ′). If we set (F1,∇F1) := (M,∇M) ⊗OXs

(∧r−1(E,∇E)|Xs/k0)
∨, then it is a subobject

(F1,∇F1) ⊆ (E,∇E)|Xs/k0 ⊗OXs
(∧r−1(E,∇E)|Xs/k0)

∨ ∈ Modc(DXs/k0)

with a surjection

(F1,∇F1)|Xs/k � (F ′,∇F ′) ∼= det(F ′,∇F ′)⊗OXs
(∧r−1(F ′,∇F ′))

∨.

Let u : Xs → X0 be the canonical imbedding, then we take the inverse image of u∗F1 under
the canonical map

E ⊗OX
(∧r−1E)∨ → u∗u

∗(E ⊗OX
(∧r−1E)∨)

and denote it by F2. One can check there is a non-empty open subscheme U0 ⊆ S0 so that
F2 is equipped with a flat connection on f−1(U0)/k0 and becomes a subobject

(F2,∇F2) ⊆ ((E,∇E)⊗OX0
(∧r−1(E,∇E))∨)|f−1(U0)/k0

∈ Modc(Df−1(U0)/k0
)

which satisfies (F2,∇F2)|Xs/k0
∼= (F1,∇F1). This finishes the special case.

Now suppose κ(S0) ⊆ k is a non-trivial extension. It is clear that the map (F ′,∇F ′) ↪→
(E,∇E)|Xs/k is defined over Modc(DXk′/k′) where k′ is a finite extension of κ(S0) and Xk′ :=
X0 ×S0 k

′. Thus we may assume k/κ(S0) is finite. Then the map α : Xs → X0 ×S0 κ(S0)
is finite étale. So we get a surjection

α∗α∗(F
′,∇F ′) � (F ′,∇F ′) ∈ Modc(DXs/k)

and an imbedding

α∗(F
′,∇F ′) ↪→ α∗((E,∇E)|Xs/k) ∈ Modc(DX0×S0

κ(S0)/κ(S0)).

Thus it is enough to show that α∗((E,∇E)|Xs/k) is defined in Modc(Df−1(U0)/k0
) with U0 ⊆

S0 non-trivial Zariski open, since then we can apply the special case we discussed above to
get a surjection on α∗(F

′,∇F ′) from some object in Modc(Df−1(U0)/k0
). Since the problem

is local on S0 we may assume S0 = Spec (R). Then one can find a finite ring extension
R ⊆ R′ ⊆ k such that R′ has quotient field k (ex. the integral closure of R in k).
Again because our problem is local on S0, one may assume R′/R is finite étale. Let
β : X ′

0 := X0 ×Spec (R) Spec (R′) → X0, u : X0 ×S0 κ(S0) → X0. Then u∗β∗β
∗(E,∇E) ∼=

α∗((E,∇E)|Xs/k), but β∗β
∗(E,∇E) ∈ Modc(DX0/k0). This completes the proof. �

Definition 2.2.4. Let Modc(DS/k, s) be the category whose objects are of the form
(U,M), where U is an open subset of S containing s and M is a coherent sheaf on U with
a flat connection ∇M on U/k, whose morphisms between two objects (U,M) and (U ′,M ′)
are defined by

Mor((U,M), (U ′,M ′)) := HomU∩U ′((U,M)|U∩U ′ , (U ′,M ′)|U∩U ′).

Let Modc(DX/S/k, f, s) be the category whose objects are of the form (U,M), where U is an
open subset of S containing s and M is a coherent sheaf on f−1(U) with a flat connection
∇M on f−1(U)/k, whose morphisms between two objects (U,M) and (U ′,M ′) are defined
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by
Mor((U,M), (U ′,M ′)) := Homf−1(U∩U ′)((U,M)|f−1(U∩U ′), (U

′,M ′)|f−1(U∩U ′)).

Proposition 2.2.5. Let X be a smooth geometrically connected scheme of finite type
over a field k of characteristic 0, U ⊆ X be a dense open subscheme, then for any two ob-
jects (E,∇E), (F,∇F ) ∈ Modc(DX/k) and any morphism fU : (E,∇E)|U/S → (F,∇F )|U/k ∈
Modc(DU/k), we can uniquely extend fU to a morphism

f : (E,∇E)→ (F,∇F ) ∈ Modc(DX/k).

Proof. The uniqueness is clear since if we have two extensions f and f ′ then the set
of points of X on which f = f ′ is closed. By the lemma below we may assume fU is an
isomorphism.

Now suppose for any point x ∈ X \ U we can extend fU to a neighborhood of x, then
using Zorn’s lemma we can extend fU to a map on X. Hence the problem is local. We may
assume X = Spec (A) is a smooth integral k-algebra with an étale coordinate X → Ar

k

(r = dimX), and
E = F = An := A⊕ · · · ⊕ A︸ ︷︷ ︸

n

,

and U = Spec (Af ) with f non-zero in A. Let d : An → An ⊗A Ω1
A/k be the canonical

connection (the n-th product of the trivial connections). Adding the A-linear map d−∇E

on both of the left and the right sides of the following commutative diagram :

An
f

∇E

��

fU // An
f

∇F

��
An

f ⊗Af
Ω1

Af /k

fU⊗id// An
f ⊗Af

Ω1
Af /k

we get a commutative diagram:

An
f

d
��

fU // An
f

d+(∇F−∇E)
��

An
f ⊗Af

Ω1
Af /k

fU⊗id// An
f ⊗Af

Ω1
Af /k

.

We note that d+(∇F −∇E) is still a flat connection on An. Let {ei}1≤i≤n be the canonical
basis of An as a free A-module. From the commutative diagram one sees that the image of
ei under fU : An

f → An
f is a horization section of d+ (∇F −∇E) on U for each i. It suffices

to prove the fact that the restriction

H0
DM(X, (E, d+ (∇F −∇E))) ⊆ H0

DM(U, (EU , d+ (∇F −∇E)))

is an isomorphism, since then the image fU(ei) is in An for each i.
Suppose I = (i1, i2, · · · , in) be a vector with entries in Ω1

A/k such that for any vector

v = (v1, v2, · · · , vn) in An we have

(∇F −∇E)(v) = (v1i1, v2i2, · · · , vnin).
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Let w = (w1, w2, · · · , wn) be a vector in H0
DM(U, (EU , d+ (∇F −∇E))). Then we have

(d(w1), d(w2), · · · , d(wn)) = −(w1i1, w2i2, · · · , wnin).

Now if w1 /∈ A, then there is a codimension 1 prime ideal p ∈ X such that w1 = aπ−k with
π the uniformizer, a ∈ Ap invertible, and k > 0. Then we have

d(w1) = π−kd(a) + kaπ−k−1d(π).

But we from the second fundamental exact sequence

0→ p/p2 → Ω1
Ap/k ⊗k A/p→ Ω1

(A/p)/k → 0

(this sequence is split exact because there is neighborhood of p in which A/p is smooth
over k) we know that d(π) could be extended to a basis of the free Ap-module Ω1

Ap/k. This

tells us that πkd(w1) is not a regular differential 1-form in Ω1
Ap/k. This contradicts to the

formulae d(w1) = −w1i1 because i1 is a regular 1-form. Thus w ∈ An this is just what we
want to show. �

Lemma 2.2.6. Let X be a smooth k-scheme, U ⊆ X be an open subset, (E,∇E) ∈
Modc(DX/k) and suppose there is an injection

(F ′,∇′F ) ↪→ (E,∇E)|U/k ∈ Modc(DU/k).

Then there exists a subobject (F,∇F ) ⊆ (E,∇E) ∈ Modc(DX/k) such that (F,∇F )|U/k =
(F ′,∇′F ) as subojects of (E,∇E)|U/k

Proof. Let j : U ⊆ X be the inclusion. We take F to be the inverse image of j∗F
′

under the adjunction map E → j∗j
∗E. Then F is a coherent sheaf, and one checks easily

that F → E
∇E−−→ E ×OX

Ω1
X/k factors through F ×OX

Ω1
X/k → E ×OX

Ω1
X/k. Hence F is

equipped with a connection ∇F and becomes a subobject of (E,∇E). Clearly (F,∇F )|U/k

is equal to (F ′,∇F ′) as subojects (since F |U is equal to F ′). �

The above Proposition and the above Lemma implies immediately the following:

Lemma 2.2.7. The category Modc(DS/k, S) (resp. Modc(DX/S/k, f, s)) is an abelian
k-linear rigid tensor tensor category equipped with an exact faithful k-linear tensor func-
tor (M,U) 7→ M |s (resp. (M,U) 7→ M |x). Thus it is a neutral Tannakian category, so
we have a Tannakian group π̂alg(S, s) (resp.π̂alg(X, x)) associated to Modc(DS/k, s) (resp.
Modc(DX/S/k, f, s)). Furthermore, the canonical functor Modc(DS/k) → Modc(DS/k, s)
(resp. Modc(DX/k) → Modc(DX/S/k, f, s)) is fully faithful and stable under taking sub
quotients. Thus we get a canonical surjection π̂alg(S, s) � πalg(S, s) (resp. π̂alg(X, x) �
πalg(X, x)).

Using the results in the previous sections and apply our above lemma to Modc(DX/S/k, f, s)
and Modc(DS/k, s) we get:

Theorem 2.2.8. The homotopy sequence

πalg(Xs, x)→ π̂alg(X, x)→ π̂alg(S, s)→ 1
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is exact. And one has a commutative diagram:

πalg(Xs, x) // π̂alg(X, x) //

����

π̂alg(S, s) //

����

1

πalg(Xs, x) // πalg(X, x) // πalg(S, s) // 1

.

Theorem 2.2.9. Under the hypothesis in the beginning of this subsection, the homotopy
sequence

πalg(Xs, x)→ πalg(X, x)→ πalg(S, s)→ 1

is exact.

Proof. From the surjectivity of π̂alg(X, x) � πalg(X, x) we know that the image of
πalg(Xs, x) is a normal subgroup of πalg(X, x). Then we take G := Coker(πalg(Xs, x) →
πalg(X, x)), and we get a surjective map of group schemes G � πalg(S, s). From condition
(a) we know the functor

Repk(π
alg(S, s))→ Repk(G)

is essentially surjective, while the surjectivity of G � πalg(S, s) tells us that

Repk(π
alg(S, s))→ Repk(G)

is an equivalence of categories. This finishes the proof. �

2.3. The general case. In this subsection we come to the general case: f : X → S
be a proper smooth morphism between two smooth connected schemes of finite type over
a field k of characteristic 0 with geometrically connected fibres, x ∈ X(k), s ∈ S(k) and
f(x) = s.

Proposition 2.3.1. If k ⊆ k′ is a field extension, f ′, X ′, S ′, x′, s′ are the corresponding
morphism, schemes, points obtained by base change, and if the sequence

πalg(X ′
s′ , x

′)→ πalg(X ′, x′)→ πalg(S ′, s′)→ 1

is exact as k′-group schemes, then the sequence of k-group schemes

πalg(Xs, x)→ πalg(X, x)→ πalg(S, s)→ 1

is also exact.

Proof. Let C(X ′) be the full subcategory of Modc(DX′/k′) whose objects, after being
pushed forward along the projection X ′ → X, are the inductive limits of their coherent
subojects (i.e. subojects belong to Modc(DX/k)). This C(X ′) is a Tannakian subcategory
and its Tannakian group is precisely πalg(X, x) ×k k

′ [De1][10.38, 10.41]. But it is clear
that this full subcategory is also stable under taking subquotients. Thus the canonical
map πalg(X ′, x′)→ πalg(X, x)×k k

′ is surjective. The same argument applies to Xs and S.
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Hence we get a commutative diagram with the first row being exact

πalg(X ′
s′ , x

′)
a′ //

����

πalg(X ′, x′) //

����

πalg(S ′, s′)

����

// 1

πalg(Xs, x)×k k
′ a // πalg(X, x)×k k

′ // πalg(S, s)×k k
′ // 1

.

Since the image of a′ is normal, so the image of a is also normal. Hence the image of
πalg(Xs, x) → πalg(X, x) is normal. Using the same argument employed in Theorem 2.2.9
we conclude the proof of this proposition. �

Theorem 2.3.2. Let f : X → S be a proper smooth morphism between two smooth con-
nected schemes of finite type over a field k of characteristic 0 with geometrically connected
fibres, x ∈ X(k), s ∈ S(k) and f(x) = s. Then the homotopy sequence

πalg(Xs, x)→ πalg(X, x)→ πalg(S, s)→ 1

is exact.

Proof. Since condition (a) (b) and surjectivity have been proved in §2.1, so we only
need to check condition (c). But for any object (E,∇E) ∈ Modc(DX/k) and any morphism

δ : (F ′,∇F ′) ⊆ (E,∇E)|Xs/k ∈ Modc(DXs/k),

there is a finitely generated field over Q on which all these objects (X, S, (E,∇E), · · · )
and morphisms (f , x, s, δ, · · · ) are defined. So we can reduce our problem to the case
when k is a finitely generated field over Q. But in light of the previous proposition we can
assume our field k is actually C.

Let K be the algebraic closure of the function field of S. Since K and C have the same
transcendental degree over Q, they are isomorphic as fields. Now η : Spec (K) ↪→ S is a
geometric generic point, so by the discussion in §2.2 the sequence

πalg(Xη, η
′)→ πalg(XK , η

′)→ πalg(SK , η)→ 1

is exact (where XK (resp. SK) is the base change of X (resp. S) from k to K, and η′ is any
chosen K-rational point of XK above η). From the lemma below we get a commutative
diagram of K-group schemes

πalg(Xη, η
′) //

∼=
��

πalg(XK , η
′) //

∼=
��

πalg(SK , η)

∼=
��

// 1

πalg(XsK
, xK) // πalg(XK , xK) // πalg(SK , sK) // 1

.

Thus the last row is exact. Then we can conclude our theorem by our previous proposition.
�

Lemma 2.3.3. If f : X → S is a smooth proper morphism between two smooth quasi-
compact geometrically connected C-schemes with geometrically connected fibres, x, x′ and
s, s′ are C-rational points of X and S respectively with f(x) = s and f(x′) = s′, then there
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exists a commutative diagramme of C-group schemes

πalg(Xs′ , x
′) //

∼=
��

πalg(X, x′) //

∼=
��

πalg(S, s′)

∼=
��

πalg(Xs, x) // πalg(X, x) // πalg(S, s)

.

Proof. From the sequences of C-schemes:

Xs → X
f−→ S and Xs′ → X

f−→ S

one gets sequences of analytic spaces:

Xan
s → Xan fan

−−→ San and Xan
s′ → Xan fan

−−→ San,

where Xan
s (resp. Xan

s′ ) is still the fibre of s ∈ San (resp. s′ ∈ San) under fan, since
the functor −an commutates with fibre product [SGA1][Exposé XII, 1.2]. Now applying
the first homotopy functor (in topology) to these analytic spaces one gets a commutative
diagram:

πtop
1 (Xan

s′ , x
′) // πtop

1 (Xan, x′) //

∼=
��

πtop
1 (San, s′)

∼=
��

πtop
1 (Xan

s , x) // πtop
1 (Xan, x) // πtop

1 (San, s)

.

In fact by carefully choosing a path between x and x′, there exists a group isomorphism

πtop
1 (Xan

s , x)
∼=−→ πtop

1 (Xan
s′ , x

′)

making the above diagramme commutative.
To show this one first defines a subset Z ⊆ San consists of points t ∈ San which admits

a point y ∈ Xan, a path α between x and y, and an isomorphism

πtop
1 (Xan

s , x)
∼=−→ πtop

1 (Xan
t , y)

making the diagram

πtop
1 (Xan

s , x) //

∼=
��

πtop
1 (Xan, x)

α

��

πtop
1 (Xan

t , y) // πtop
1 (Xan, y)

commutative. Z is both open and closed, since for any t ∈ San by Ehresmann’s theorem
(fan is proper smooth by [SGA1][Exposé XII, proposition 3.1 et proposition 3.2]) one
knows that in a neighborhood U of t ∈ San fan−1(U) is isomorphic to Xan

t × San as a
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topological space. Thus for any t′ ∈ U one gets a commutative diagram

πtop
1 (Xan

t , y) //

∼=
��

πtop
1 (Xan, y)

∼=
��

πtop
1 (Xan

t′ , y
′) // πtop

1 (Xan, y′)

by choosing any points y, y′ ∈ fan−1(U) and any path between them (inside fan−1(U)).
Hence t ∈ Z if and only if t′ ⊆ Z. This shows that Z is both open and closed. On the
other hand, we know that San is connected ([SGA1][Exposé XII, proposition 2.4]). Thus
Z = San and hence s′ ∈ Z.

Now let us denote the category of integrable analytic connections on Xan and Xan
s , Xan

s′

by Conn(Xan) and Conn(Xan
s ), Conn(Xan

s′ ) respectively. By Riemann-Hilbert correspon-
dence one has a 2-commutative diagram of neutral Tannakian categories (i.e. the k-linear
tensor functors in the diagram also respect the fibres functors):

Conn(Xan
s )

∼=

��

∼= // RepC(πtop
1 (Xan

s , x))

∼=

��

Conn(Xan)

λ
55kkkkkkkkk

λ′ ))SSSSSSSSS

Conn(Xan
s′ )

∼= // RepC(πtop
1 (Xan

s′ , x
′))

.

Let us set ι to be the canonical functor Modc(DX/C) → Conn(Xan) sending an integrable
algebraic connection on X to an integrable analytic connection on Xan. This functor gives
a 2-commutative diagram of neutral Tannakian categories:

Modc(DXs/C)
∼= // Conn(Xan

s )

∼=

��

Modc(DS/C) // Modc(DX/C)
ι //

λ̃
66mmmmmmmmmmmm

λ̃′ ((QQQQQQQQQQQQ
Conn(Xan)

λ
66nnnnnnnnnnnn

λ′ ((PPPPPPPPPPPP

Modc(DXs′/C)
∼= // Conn(Xan

s′ )

.

Now applying Tannakian duality we conclude the proof of our lemma. �

3. The Künneth formula in characteristic p > 0

There are good reasons to expect the homotopy sequence to be exact for algebraic
fundamental groups in characteristic p. For one thing the homotopy sequence is exact
in characteristic 0, for another the étale fundamental group which can be considered as
the profinite completion of the algebraic fundamental group has exact homotopy sequence.
But the proof of the exactness is already very complicated in characteristic 0, and even
worse we used some transcendental methods in the end of that proof. So up to now
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we still can not prove that. However we can prove that in a special case–the Künneth
formula. This provides some further evidence that the homotopy sequence should be exact
in characteristic p.

We have showed in Chapter 1, §3, that Strat(X/k) is an abelian k-linear rigid tensor
category and we have a k-linear tensor equivalence between Strat(X/k) and Modc(DX/k).
If x ∈ X(k) is a rational point then we get two natural fibre functors for Strat(X/k) and
Modc(DX/k) which are compatible with the above equivalence. Thus πalg(X, x) can be
equally defined via Strat(X/k). So we will only work with Strat(X/k) in the rest of this
section.

3.1. Notations and Conventions. Now we fix a smooth map f : X → S between
two smooth geometrically connected schemes over a field k of characteristic p > 0. Let

(E(i), σ(i)) be a stratified bundle over X/k. We denote by (E
(i)
S , σ

(i)
S ) the pull-back of

(E(i), σ(i)) along the canonical map λi : X
(i)
S → X(i).

We first observe that all the relative Frobenius and absolute Frobenius are homoemor-
phismes on the ambient spaces. Thus if we have sheaves of abelian groups on X(i) and

X
(i)
S , then we can actually regard them as sheaves of abelian groups on X(0) = X. We

have a canonical imbedding of sheave of abelian groups E(i) ↪→ E(i) ⊗O
X(i)

OX
∼= E(0)

for each i. Thus each E(i) can be seen as a subsheaf of abelian groups of E(0). Similarly

each E
(i)
S is also a sub sheaf of abelian groups of E

(0)
S = E(0). Let us write E

(∞)
S for the

intersection of all E
(i)
S as sub sheaves of abelian groups of E(0). Then for each i ∈ N

the sheaf F (i) := f
(i)
∗ E

(∞)

S(i) of abelian groups is naturally equipped with a structure of an

OS(i)-module, where f (i) : X(i) → S(i) is the canonical structure map.
For each i ∈ N, we write φi : S → S(i) for the i-th relative Frobenius of S and

ϕi : X → X(i) for the i-th relative Frobenius of X. The notations are indicated in the
following diagram:

X

f

��

ϕi

%%  

X
(i)
S

f
(i)
S

��

λi // X(i)

f (i)

��
S

φi // S(i)

.

3.2. Some Preparations. The following discussion is contained in [Hai]. We will
restate the results and give some variant of his proof for the convenience of the reader.

Theorem 3.2.1. (Phùng Hô Hai) Notations being as in §3.1, we have a canonical
OS(i)-module isomorphism τ (i) : φ∗iF

(i+1) ∼= F (i) for all i ∈ N.

Proof. One can easily set up an induction argument to reduce our proof to the case
when i = 0. Now for each i ∈ N, the above diagram gives us a canonical isomorphism

ξi : φ∗i f
(i)
∗ E(i) ∼=−→ (f

(i)
S )∗E

(i)
S .
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One also has canonical imbeddings (as sheaves of OS-modules)

φ∗i+1f
(i+1)
∗ E(i+1) ⊆ φ∗i f

(i)
∗ E(i) and (f

(i+1)
S )∗E

(i+1)
S ⊆ (f

(i)
S )∗E

(i)
S .

And these imbeddings are compatible with these ξi in the obvious way. So we get a filtration

of φ∗1f
(1)
∗ E(1) and a filtration of (f

(1)
S )∗E

(1)
S such that ξ1 preserves the filtration. But the

intersection of the filtration of the left side
∞⋂
i=1

φ∗i f
(i)
∗ E(i)

is precisely φ∗1f
(1)
∗ E

(∞)

S(1) , while the intersection on the other side gives us f∗E
(∞)
S . Thus ξ1

induces the isomorphism τ (0). �

Remark. If f : X → S is in addition proper, we can define a functor H0
str(X/S,−)

from the category of stratified bundles over X/k to the category of stratified bundles over
S/k.

Theorem 3.2.2. (Phùng Hô Hai) Notations being as above. If f : X → S is in addition
proper, then for any point i : s ↪→ S, H0

str(X/S,−) satisfies base change for the following
diagram:

Xs
i′ //

f ′

��

X

f

��
s

i // S

,

i.e. for any stratified bundle (E(i), σi) on X/k the canonical map

i∗H0
str(X/S, (E

(i), σi))→ H0
str(Xs/s, i

′∗(E(i), σi))

is an isomorphism.

Proof. For a proof see [Hai][Corollary 2.9]. There the field is assumed to be al-
gebraically closed and the points are rational points, but the same proof holds for not
necessarily algebraically closed field and non-rational points. �

Now we assume f : X → S is also (in addition to the assumptions in §3.1) proper
surjective and has geometrically connected fibres. Then we have the following:

Proposition 3.2.3. (Phùng Hô Hai) The adjunction map

f ∗H0
str(X/S, (E

(i), σ(i)))→ (E(i), σ(i))

is injective in Strat(X/k). If S = Spec (k), then the adjunction map gives the maximal
trivial subobject of (E(i), σ(i)) in Strat(X/k).

Proof. Let K be the kernel of the adjunction map. So we get an exact sequence

0→ K → f ∗H0
str(X/S, (E

(i), σ(i)))→ (E(i), σ(i)).

But since K is a suboject of f ∗H0
str(X/S, (E

(i), σ(i))), so for any s ∈ S, K after restricting
to Xs/κ(s) is a suboject of a trivial suboject, so the restriction of K is trivial. Because f is
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proper separable and OS
∼= f∗OX , there is an object K ′ ∈ Strat(S/k) such that f ∗K ′ = K.

Now we apply the left exact functor H0
str(X/S,−) to the sequence

0→ f ∗K ′ → f ∗H0
str(X/S, (E

(i), σ(i)))→ (E(i), σ(i)).

Thus we get an exact sequence in Strat(S/k):

0→ K ′ → H0
str(X/S, (E

(i), σ(i)))
=−→ H0

str(X/S, (E
(i), σ(i))).

This tells us that K ′ = 0, so the adjunction map is injective.
If S = Spec (k) then f ∗H0

str(X/k, (E
(i), σ(i))) ⊆ (E(i), σ(i)) is a trivial subobject. If there

is another trivial suboject (F (i), τ (i)) ⊆ (E(i), σ(i)) then we apply the functor f ∗H0
str(X/k,−)

to the imbedding. So we get

f ∗H0
str(X/k, (F

(i), τ (i))) //

∼=
��

f ∗H0
str(X/k, (E

(i), σ(i)))

��

(F (i), τ (i)) // (E(i), σ(i))

.

The left vertical arrow is an isomorphism because (F (i), τ (i)) is trivial. This diagram
concludes our proof of the second statement. �

3.3. The Künneth formula.

Theorem 3.3.1. If X and Y are smooth geometrically connected schemes over a field k
of characteristic p > 0, and if Y is proper over k, x ∈ X(k), y ∈ Y (k). Then the canonical
map

πalg(X ×k Y, (x, y))→ πalg(X, x)×k π
alg(Y, y)

is an isomorphism.

Proof. One has the following commutative diagram induced where all the maps are
canonical:

1 // πalg
1 (Y, y) // πalg

1 (X ×k Y, (x, y)) //

��

πalg
1 (X, x) // 1

1 // πalg
1 (Y, y) // πalg

1 (X, x)×k π
alg
1 (Y, y) // πalg

1 (X, x) // 1

.

So to show that the middle map is an isomorphism it is enough to show that the first row
is exact. Thus we only need to show the homotopy sequence is exact for the projection
X ×k Y → X.

By Theorem 4.12 and Proposition 4.13 we have condition (a) and (b). Now we check
the condition (c). Let us write out the maps as follows

X
id×y−−→ X ×k Y

pr1−−→ X.

Condition (c) says that for any (E(i), σ(i))) ∈ Strat(X ×k Y ) and any imbedding

(F
(i)
1 , τ

(i)
1 ) ⊆ (id× y)∗(E(i), σ(i))) ∈ Strat(X/k)
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there is an object (F (i), τ (i)) ∈ Strat(X ×k Y/k) and a surjection

(id× y)∗(F (i), τ (i)) � (F
(i)
1 , τ

(i)
1 ).

In our case we can take (F (i), τ (i)) to be pr∗1(F
(i)
1 , τ

(i)
1 ) then we have (id× y)∗(F (i), τ (i)) ∼=

(F
(i)
1 , τ

(i)
1 ). This proves (c). �
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