THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2060B Mathematical Analysis II 2017-2018 HW4 Solution

1. (P.215 Q8)

Suppose $f(x) \neq 0$, then there exists $c \in [a, b]$ such that $f(c) \neq 0$. By continuity of f there exists $\delta > 0$ such that $f(x) > \frac{1}{2}f(c)$ for all $x \in I$, where $I = (c - \delta, c + \delta)$ $\delta \cap [a, b]$ Since $f(x) \ge 0$ for all $x \in [a, b]$, $\int_a^b f(x) \ge \int_I f(x) > |I| \cdot \frac{1}{2} f(c) > 0$, contradiction arises.

Remark Some students argue that if U(f, P) > 0 for any partition P of [a, b], then $\overline{\int} f > 0$. This argument is false since $\overline{\int} f$ is not U(f, P) for some particular P, but the limit of U(f, P)(as ||P|| tends to 0). The limit of a sequence of positive number may not necessarily be zero. (Any indicator function at one point defined on an interval can serve as a counter example to this argument)

2. (P.215 Q10)

Let h = f - g. Since f, g are continuous, h is also continuous. Suppose $f(x) \neq g(x)$ for all $x \in [a, b]$, then $h(x) \neq 0$ for all $x \in [a, b]$. By continuity of h, either h(x) > 0 or h(x) < 0 for all $x \in [a, b]$. WLOG, assume h(x) > 0 for all $x \in [a, b]$. Then by Q8, $\int_a^b h > 0$, so $\int_a^b f > \int_a^b g$, contradiction.

- 3. (P.215 Q12)

Fix $\epsilon > 0$. Note that g(x) is continuous on $\left[\frac{\epsilon}{4}, 1\right]$, so g(x) is integrable on $\left[\frac{\epsilon}{4}, 1\right]$. Hence, there exists a partition $P := (x_1 = \frac{\epsilon}{4}, x_2, x_3, ..., x_n = 1)$ on $[\frac{\epsilon}{4}, 1]$ such that $U(g|_{[\frac{\epsilon}{4}, 1]}, P) - U(g|_{[\frac{\epsilon}{4}, 1]}, P)$ $L(g|_{\left[\frac{\epsilon}{4},1\right]},P) < \frac{\epsilon}{2}.$ Consider the partition $P' := (x_0 = 0, x_1 = \frac{\epsilon}{4}, x_2, x_3, ..., x_n = 1)$ on [0, 1]. Since $-1 \leq g(x) \leq 1$ on $[x_0, x_1]$, we have $U(g,P') - L(g,P') \le (x_1 - x_0) \cdot [1 - (-1)] + [U(g|_{[\frac{\epsilon}{4},1]},P) - L(g|_{[\frac{\epsilon}{4},1]},P)] \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ Since ϵ can be chosen arbitrarily small, we conclude that g is integrable on [0, 1]

Remark Some students argue that for any partition P of $[0, \frac{\epsilon}{4}], U(g|_{[0, \frac{\epsilon}{4}]}, P) - L(g|_{[0, \frac{\epsilon}{4}]}, P) \leq C_{1}$ $[1-(-1)] \cdot \frac{\epsilon}{4} < \epsilon$, so g is integrable on $[0, \frac{\epsilon}{4}]$. This is a bogue argument. To show g is integrable on $[0, \frac{\epsilon}{4}]$, one needs to show for any ϵ_2 independent of ϵ , that there exists a partition P of $[0, \frac{\epsilon}{4}]$ such that $U(g|_{[0,\frac{\epsilon}{4}]}, P) - L(g|_{[0,\frac{\epsilon}{4}]}, P) < \epsilon_2$