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1. (P.179 Q5)
Following the hint, we consider f(z) = xw — (z — 1)% where 2 > 1. f is clearly continuous on [1,400)

and differentiable on (1,400). Therefore, Mean Value Theorem (Theorem 6.2.4) is applicable on every finite
subinterval [1,d] for any d > 1.
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For any > 1, f/(z) = —(z» ' — (# —1)»!). Since s >z —1>0and — —1 <0, zv 1 < (. —1)w 1
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Therefore, f/(x) < 0 for any x > 1.

Now given a > b > 0, consider d = > 1. Applying Mean Value Theorem to f on [1,d], there exists

¢ € (1,d) such that
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fld) = f(1) = f(e)(d - 1)

Since ¢ > 1, the above implies f/(c) < 0, and hence f(d) — f(1) < 0. Writing out the definitions explicitly, we
have
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Therefore, an — br < (a — b)%,

Remark: Many students tried to argue that f'(x) < 0 for > 1, which is not true since f is actually not
differentiable at = 1. Even if f’(z) < 0 for all z > 1, one cannot immediately deduce that f is strictly
decreasing on (1,+00) without proving it (which is actually section 6.2 Q13). Finally, even if f is strictly
decreasing on (1, 4+00), it does not imply immediately that f(1) > f(z) for all z > 1, since 1 ¢ (1, +00). One
has to use Mean Value Theorem to prove the final claim.

2. (P.179 Q7)
For x > 1, letf(z) =lnz —x — 1, f(1) = 0. For > 1, by MVT, there exists ¢, € (1,z) such that
fla)—fQ@) _
r—1 = f'(cx)-

Check that for all z > 1, f'(z) = % — 1 < 0. Hence, we have proved the right one. Similarly, for the left one,
For x > 1, let g(z) = L —Inx, g(1) = 0. For 2 > 1, by MVT, there exists ¢, € (1,2) such that

g(x) —g(1)
z—1

= 9'(4a)-

Check that for all z > 1,¢/(z) = 2 — 1 =< 0. Hence, we have also proved the left one.



3. (P.179 Q14)

The proof is just a direct contradiction of Thm 6.2.12 Darboux’s Theorem. (Intermediate value property
of derivative well-defined on an interval.) If there exists distinct z1 < x2 € I, and w.l.o.g., f(x1) < 0 and
f(z2) > 0. by Thm 6.2.12, there exists ¢ € (x1,22) C I such that f'(c) = 0. Contradiction occurs.

4. (P.179 Q15)

Since f’ is bounded on I, there exists M € R such that for all w € I, |f'(w)| < M.

To show f satisfies a Lipschitz condition on I, it suffices to show that there exists L € R such that for
all w,y € I, |f(z) — f(y)| < L|z — y|

We choose L = M and claim that the above statement holds true: Given any z,y € I,
Case 1: x =y: then |f(z) — f(y)|=0< 0= L|z — y

Case 2: x < y: Since I is an interval, [z,y] € I. Since f is differentiable on I, f is differentiable on
[,y], and by Theorem 6.1.2 f is continuous on [z, y]; also f is differentiable on (z,y). Therefore, by Mean
Value Theorem (Theorem 6.2.4), there exists ¢ € (z,y) such that

Hence, |f(y) — f(z)] = [f"(c)|ly — =] < My — =].

Case 3: & > y: interchanging the roles of z and y and adopt similar argument as in case 2 (i.e. replac-
ing [z,y] by [y, ], etc.) , we have
|f(2) = f(y)l < M|z —y]

Therefore, for all z,y € I, |f(z) — f(y)| < L|z — y|, and hence f satisfies a Lipschitz condition on I.

Remark: Most students overlooked the case x = y. Although the argument is trivial, it is still essential
as this is the only case where Mean Value Theorem is not applicable; also, some students combined case 2
and 3 together by saying “...there exists ¢ between x and y...”. This is ambiguous as it is not clear whether ¢
could possibly be z or y by saying so (in other words, whether the “between” is inclusive and exclusive). It is
better to split into cases for the sake of clarity.



