MATH 2050B 2017-18 Mathematical Analysis I Test Solution

(Q1) Using MI (mathematical induction) show the Bernoulli Inequality:

If x > -1, then $(1 + x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.

(A1) Use Induction on *n*, it is obvious when n = 1. $((1 + x)^1 = 1 + (1)x)$

Suppose the inequality holds for some $n = k \in \mathbb{N}$, i.e. $(1 + x)^k \ge 1 + kx$. Then

 $(1+x)^{k+1} = (1+x)(1+x)^k$ $\geq (1+x)(1+kx)$ By Induction Hypothesis $= 1+kx+x+kx^2$ $\geq 1+(k+1)x$ since $x^2 \ge 0$,

the statement is true when n = k + 1,

by principal of M.I., $(1 + x)^n \ge 1 + nx \forall n \in \mathbb{N}$.

(Q2) Let $\alpha, \beta \in \mathbb{R}$ and $A \subset \mathbb{R}$ be such that

 $\alpha < \text{Sup}A < \beta$

Prove/Disprove for each of the following assertions:

- (i) $\alpha \leq a$ for all $a \in A$.
- (ii) $\alpha \leq a$ for some $a \in A$.
- (iii) $\alpha < a$ for some $a \in A$.
- (iv) $a \leq \beta$ for some $a \in A$.
- (v) $a < \beta$ for all $a \in A$.

(A2) Note $\alpha < \operatorname{Sup} A < \beta$,

- (i) False. Think about the counter example $A = \{0, 1\}$, $\alpha = 0.5$. Note Sup $A = 1 > \alpha$ and $0 \in A$, but $0 < \alpha$.
- (ii) True follow by (iii).
- (iii) True.

If α were an upper bound of A, it will contradict the definition of Sup A (least upper bound). Hence, α is NOT an upper bound of A, that is, $\exists a \in A$, s.t. $a > \alpha$.

- (iv) True follow by (v).
- (v) True.

Note Sup *A* is an upper bound of *A*, so $a \leq \text{Sup } A < \beta \ \forall a \in A$.

(Q3) Let $A \in \mathbb{R}$ be bounded below but not bounded above with convex ordering:

If $x, y \in A$ with x < z < y, then $z \in A$.

Show that *A* is an interval.

(A3) Since A bounded below, by Completeness Axiom of \mathbb{R} , $\alpha := \inf A$ exists in \mathbb{R} .

That is, $\alpha \leq a \ \forall a \in A$. Hence, $A \subset [\alpha, +\infty)$.

Pick any $z \in (\alpha, +\infty)$, by definition of Inf, z is NOT a lower bound of A, that is, $\exists x \in A$, s.t. x < z.

Since A is NOT bounded above, $\exists y \in A$, s.t. y > z.

By convex ordering of *A*, we have $z \in A$. Hence, $(\alpha, +\infty) \subset A$.

Note we have proved $(\alpha, +\infty) \subset A \subset [\alpha, +\infty)$.

There are only two possible cases: $A = (\alpha, +\infty)$ or $A = [\alpha, +\infty)$, both are interval.

(Q4) Give the definition for $\lim_{n \to \infty} x_n = x$ (sequence (x_n) converges to $x \in \mathbb{R}$).

Show, by definition, that

If
$$\alpha < \lim x_n < \beta$$
, then $\exists N \in \mathbb{N}$, s.t. $\alpha < x_n < \beta \forall n \ge N$.

[Hint: Can you find $\varepsilon > 0$ s.t. $V_{\varepsilon}(x) \subset (\alpha, \beta)$, where $V_{\varepsilon}(x) := \{z \in \mathbb{R} : |z - x| < \varepsilon\}$]

(A4) A sequence (x_n) converges to $x \in \mathbb{R}$, denoted by $\lim_{n \to \infty} x_n = x$, if

 $\forall \, \varepsilon > 0, \; \exists \; N \in \mathbb{N}, \, \text{s.t.} \; \forall n \ge N, \, \text{we have} \left| x_n - x \right| < \varepsilon \; \left(\text{Or}, x_n \in V_{\varepsilon}(x) \right).$

Suppose $x = \lim_{n \to \infty} x_n$ and $\alpha < x < \beta$.

Take $\varepsilon' = Min \{\beta - x, x - \alpha\} > 0$, in particular, $\varepsilon' < \beta - x$ and $\varepsilon' < x - \alpha$.

By convergence of (x_n) , $\exists N \in \mathbb{N}$, s.t. $\forall n \ge N$, we have $|x_n - x| < \varepsilon'$.

Note that $\forall n \ge N$, we have

$$\alpha = x - (x - \alpha) < x - \varepsilon' < x_n < x + \varepsilon' < x + (\beta - x) = \beta$$

- (Q5) Show by εN terminology that if $(x_n), (y_n)$ converge to real x and y respectively, then $\lim_{n} (x_n + y_n) = x + y$.
- (A5) Fixed any $\varepsilon > 0$, note $\frac{\varepsilon}{2} > 0$,

By (x_n) converge to x, $\exists N_1 \in \mathbb{N}$, s.t. $|x_n - x| < \frac{\varepsilon}{2} \forall n \ge N_1$. By (y_n) converge to y, $\exists N_2 \in \mathbb{N}$, s.t. $|y_n - y| < \frac{\varepsilon}{2} \forall n \ge N_2$.

Note $\forall n \ge N := \text{Max} \{N_1, N_2\}$, we have

$$\left|(x_n+y_n)-(x+y)\right| \le \left|x_n-x\right|+\left|y_n-y\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Hence, $\lim_{n} (x_n + y_n) = x + y$.

- (Q5*) Show by εN terminology that if $(x_n), (y_n)$ converge to real x and y respectively, then $\lim_{n} (x_n y_n) = xy$.
- (A5*) We first show that (x_n) is a bounded sequence.

Take $\varepsilon_0 = 1$, by (x_n) converge to $x, \exists N' \in \mathbb{N}$, s.t. $|x_n - x| < \varepsilon_0 = 1 \forall n \ge N'$. That is,

$$\begin{aligned} x - 1 < x_n < x + 1 & \forall n \ge N' \\ |x_n| < \text{Max } \{ |x + 1|, |x - 1| \} & \forall n \ge N' \\ |x_n| < \text{Max } \{ |x_1|, |x_2|, ..., |x_{N'-1}|, |x + 1|, |x - 1| \} =: M & \forall n \in \mathbb{N} \end{aligned}$$

Note $M \in \mathbb{R}$ since the set inside the Max is a finite set. Hence (x_n) is bounded by M (assume M > 0 WLOG).

Now, Fixed any $\varepsilon > 0$, note $\frac{\varepsilon}{2M} > 0$ and $\frac{\varepsilon}{2(|y|+1)} > 0$. By (x_n) converge to $x, \exists N_1 \in \mathbb{N}$, s.t. $|x_n - x| < \frac{\varepsilon}{2(|y|+1)} \forall n \ge N_1$. By (y_n) converge to $y, \exists N_2 \in \mathbb{N}$, s.t. $|y_n - y| < \frac{\varepsilon}{2M} \forall n \ge N_2$.

Note $\forall n \geq N := Max \{N_1, N_2\}$, we have

$$\begin{aligned} |x_n y_n - xy| &= \left| (x_n y_n - x_n y) + (x_n y - xy) \right| \le |x_n| |y_n - y| + |y| |x_n - x| \\ &< M \frac{\varepsilon}{2M} + |y| \frac{\varepsilon}{2 \left(|y| + 1 \right)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Hence, $\lim_{n} (x_n y_n) = xy$.