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1. Show that, V() # A C B C R*,

(a

) sup A < sup B

(b) inf A > inf B

(c) sup(A+ B) <supA+supB

(d) inf(A+ B) > inf A+ inf B
)

(e) sup(—A) = —inf A.

Solution. (a) For any a € A, we have a € B, and hence a < supB. Thus
sup A < sup B.

(b) Similar to (a).
(¢) Fora € A, b€ B, wehave a < sup A, b < sup B, so that a+b < sup A+sup B.
Thus sup A + sup B is an upper bound of A 4+ B, and hence
sup(A + B) < sup A + sup B.

(d) Similar to (c).

(e) For any a € A, we have a > inf A, which implies that —a < —inf A. Therefore
sup(—A) < —inf A.
Similarly, for any a € A, we have —a < sup(—A), which implies that a >
—sup(—A). Thus inf A > —sup(—A), that is, sup(—A) > —inf A.

<

2. Let {A,, : n € N} be a sequence of sets and B, == A, \ (U AZ-) VYn > 1. Show (by
<n
the well-order principle) that U A, = U B,,.

neN neN
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Solution. Let B; = A;. Suppose U B, = U A,, for some k > 1. Then

n=1 n=1
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k k
By induction, U B, = U A, for all £ € N. Hence U A, = U B,. |

n=1 n=1 neN neN

3. Let f: A — R (A, for simplicity an interval) and zo € A. We say that f is lower
semicontinuous (Isc) at zg if Ve > 0, 3§ > 0 s.t.

f(xg) —e < f(x) Ve € AN Vs(xg).
Show that (i) <= (ii) <= (iii), where

(i) fislsc at zq

3 - »
(ii) f(zo) < sup _nf f(u)

iii) f(xg) <su inf u)-
( ) f( 0) = 5>Ig ue(A\{xo})ﬂVa(ro)f( )

Solution. (i) = (ii). Suppose f is lsc at xy. Then it follows immediately from

the definition that Ve > 0, 39 > 0 such that f(xo) —e < inf  f(u). Hence
u€ANVs(zo)

Tg) — e < su inf u).
o) —e <ol I

As e > 0 is arbitrary, (ii) follows.

(ii)) = (iii). It is clear since  inf  f(u) <

inf u) for any 6 > 0.
u€ANV;(z0) B uE(A\{on})ﬂVs(l‘o)f( ) Y

(ili) = (i). Assume (iii) holds and let ¢ > 0. By the definition of supremum,
36 > 0 such that

To) —e < inf u).
J(o) ue(A\{xo}>mv5<xo>f (v)

Clearly, f(z9) —e < f(xo). We have
flzo) —e < f(u) Vu € AN Vs(xg).
Thus f is Isc at z.

<

4. Let (X, A, p) be a “measure space”: X is a set, A a o-algebra of subsets of X, and
pu: A — [0,400] a measure. Show that

(a) If AC B and p(A) < +oo, then pu(B\ A) = u(B) — p(A).
(b) Let {A, : n € N} C A with A, C A,11 Vn. Show that pu(A4,) < u(A,11) ¥n

and p(| J An) = lim pu(A,).

n=1
(c¢) Let {A, :n e N} C Awith A4, DO A, 11 Vn. Show that lim u(A4,) = ,u(ﬂ A,),
n=1

provided that u(Ay) < 400 for some N € N.
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Solution. (a) Write B =AU (B \ A). Since A and B \ A are disjoint sets in A,
it follows from the additivity of measure that
p(B) = p(A) + (B \ A).
As p(A) < +oo, we have u(B\ A) = u(B) — u(A).

(b) By the same argument in (a), we have

((Ant1) = p(An) + p(Apia \ An) 2 p(An) for all n € N.

Let B, = A, \ (U AZ-) Vn > 1. Then {B,}>2, is a sequence of pairwise
<n

disjoint sets in A4 such that

N [e') [e%¢]
AN:UBn VN >1 and L_JlAn:L_Jan.

n=1

Hence, by the countable additivity of u, we have
p(\J A = (| Bn) = n(B)
n=1 n=1 n=1

N
= Nlig;OZIM(Bn) = Nlig;ou(L_Jan)

= i A

(¢) For n > N, define C,, = Ay \ A,,. Then C,, C C,, for n > N and

U Cn=An\ (ﬂ An>
n=N n=N
Note that ()2 y An) < u(An) < 400. By (a) and (b), we have

uAN) = () An) = (| Cn) = lim 4(C) = p(An) = lim pu(Ay).

n=N

As {A,,}22, is decreasing, we obtain
i p(4,) = () A) = () 4.
n=N n=1

<

5. In R* = RU {—o00, +0o0}, show the “Generalized” Monotone Convergence Theorem
for sequences of extended-real numbers: If (a,,) is a monotone sequence of extended-
real numbers, then it converges to a limit in R*. Show further that

li = inf
imsup z, ’irelN(igIJ: Tp)

liminf z,, := sup(inf z,)
keN n=k
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exist in R*, and that

liminfz, = limsupz, iff limzx, exists
(and all three are the same then).

Solution. To prove the “Generalized” Monotone Convergence Theorem, it suffices
to show that an unbounded increasing sequence (a,) converges to +oo. Let a > 0.
Clearly a; is a lower bound of (a,). As (a,) is unbounded, « is not an upper bound.
So there is N € N such that ay > «a. Since (a,,) is increasing, we have a,, > ay > «
for all n > N. Hence lim(a,,) = +00 = sup a,,.

n

By our extended definitions of supremum and infimum for subsets of R*, lim sup x,,
and liminf z,, clearly exist in R*. Furthermore, it follows from the “Generalized”

Monotone Convergence Theorem that the decreasing sequence (sup z,)52, and the
n>k

increasing sequence (H>l£ Tp)52, both converge (in R*) with limits, respectively,
nz

li ,) = inf n d  lim(inf z,) = sup(inf z,,). x
lm(igrzw ) éEN(igEx ) and  lim(inf 2,,) iﬁg(,ﬁ%ﬁ ) (%)

(=>). Suppose liminf z,, = limsupz, = ¢. If £ € R, then for any € > 0, we have
limsupz, < ¢+ ¢ and liminf x,, > ¢ — . Hence there exits k € N such that

Tp <supz, < l+¢ for all n > k,
n>k
and
xnziggm’n>€—€ for all n > k.

Combining two inequalities above, we have lim z,, = /.
n

If ¢/ = 400, then for any « > 0, there exits k£ € N such that x,, > H>1£ x, > « for all

n > k. Thus lim z,, = +00. The proof is similar for ¢{ = —ooc.

(<=). Suppose limz, = £. If £ € R, then for any € > 0, there exits N € N such
that / —e < x, < {4+ ¢ for n > N. Thus

(—e<infzx, <supzx,<l+e for all £ > N.

Letting k& — oo, it follows from (x) that
{—¢e <liminfz, <limsupz, </{-+e¢.

Since ¢ is arbitrary, we have lim inf x,, = lim sup x,, = /.

The cases £ = 00 can be proved in similar fashions. <



