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1. Show that, ∀ ∅ 6= A ⊆ B ⊆ R∗,

(a) supA ≤ supB

(b) inf A ≥ inf B

(c) sup(A+B) ≤ supA+ supB

(d) inf(A+B) ≥ inf A+ inf B

(e) sup(−A) = − inf A.

Solution. (a) For any a ∈ A, we have a ∈ B, and hence a ≤ supB. Thus
supA ≤ supB.

(b) Similar to (a).

(c) For a ∈ A, b ∈ B, we have a ≤ supA, b ≤ supB, so that a+b ≤ supA+supB.
Thus supA+ supB is an upper bound of A+B, and hence

sup(A+B) ≤ supA+ supB.

(d) Similar to (c).

(e) For any a ∈ A, we have a ≥ inf A, which implies that −a ≤ − inf A. Therefore
sup(−A) ≤ − inf A.

Similarly, for any a ∈ A, we have −a ≤ sup(−A), which implies that a ≥
− sup(−A). Thus inf A ≥ − sup(−A), that is, sup(−A) ≥ − inf A.

J

2. Let {An : n ∈ N} be a sequence of sets and Bn := An \

(⋃
i<n

Ai

)
∀n > 1. Show (by

the well-order principle) that
⋃
n∈N

An =
⋃
n∈N

Bn.

Solution. Let B1 = A1. Suppose
k⋃

n=1

Bn =
k⋃

n=1

An for some k ≥ 1. Then

k+1⋃
n=1

Bn =
k⋃

n=1

Bn ∪Bk+1

=
k⋃

n=1

An ∪

(
Ak+1 \ (

⋃
i<k+1

Ai)

)

=
k+1⋃
n=1

An.
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By induction,
k⋃

n=1

Bn =
k⋃

n=1

An for all k ∈ N. Hence
⋃
n∈N

An =
⋃
n∈N

Bn. J

3. Let f : A → R (A, for simplicity an interval) and x0 ∈ A. We say that f is lower
semicontinuous (lsc) at x0 if ∀ε > 0, ∃δ > 0 s.t.

f(x0)− ε < f(x) ∀x ∈ A ∩ Vδ(x0).

Show that (i)⇐⇒ (ii)⇐⇒ (iii), where

(i) f is lsc at x0

(ii) f(x0) ≤ sup
δ>0

inf
u∈A∩Vδ(x0)

f(u)

(iii) f(x0) ≤ sup
δ>0

inf
u∈(A\{x0})∩Vδ(x0)

f(u).

Solution. (i) =⇒ (ii). Suppose f is lsc at x0. Then it follows immediately from
the definition that ∀ε > 0, ∃δ > 0 such that f(x0)− ε ≤ inf

u∈A∩Vδ(x0)
f(u). Hence

f(x0)− ε ≤ sup
δ>0

inf
u∈A∩Vδ(x0)

f(u).

As ε > 0 is arbitrary, (ii) follows.

(ii) =⇒ (iii). It is clear since inf
u∈A∩Vδ(x0)

f(u) ≤ inf
u∈(A\{x0})∩Vδ(x0)

f(u) for any δ > 0.

(iii) =⇒ (i). Assume (iii) holds and let ε > 0. By the definition of supremum,
∃δ > 0 such that

f(x0)− ε < inf
u∈(A\{x0})∩Vδ(x0)

f(u).

Clearly, f(x0)− ε < f(x0). We have

f(x0)− ε < f(u) ∀u ∈ A ∩ Vδ(x0).

Thus f is lsc at x0.

J

4. Let (X,A, µ) be a “measure space”: X is a set, A a σ-algebra of subsets of X, and
µ : A → [0,+∞] a measure. Show that

(a) If A ⊆ B and µ(A) < +∞, then µ(B \ A) = µ(B)− µ(A).

(b) Let {An : n ∈ N} ⊆ A with An ⊆ An+1 ∀n. Show that µ(An) ≤ µ(An+1) ∀n

and µ(
∞⋃
n=1

An) = lim
n
µ(An).

(c) Let {An : n ∈ N} ⊆ A with An ⊇ An+1 ∀n. Show that lim
n
µ(An) = µ(

∞⋂
n=1

An),

provided that µ(AN) < +∞ for some N ∈ N.
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Solution. (a) Write B = A ∪ (B \ A). Since A and B \ A are disjoint sets in A,
it follows from the additivity of measure that

µ(B) = µ(A) + µ(B \ A).

As µ(A) < +∞, we have µ(B \ A) = µ(B)− µ(A).

(b) By the same argument in (a), we have

µ(An+1) = µ(An) + µ(An+1 \ An) ≥ µ(An) for all n ∈ N.

Let Bn := An \

(⋃
i<n

Ai

)
∀n ≥ 1. Then {Bn}∞n=1 is a sequence of pairwise

disjoint sets in A such that

AN =
N⋃
n=1

Bn ∀N ≥ 1 and
∞⋃
n=1

An =
∞⋃
n=1

Bn.

Hence, by the countable additivity of µ, we have

µ(
∞⋃
n=1

An) = µ(
∞⋃
n=1

Bn) =
∞∑
n=1

µ(Bn)

= lim
N→∞

N∑
n=1

µ(Bn) = lim
N→∞

µ(
N⋃
n=1

Bn)

= lim
N→∞

µ(AN).

(c) For n ≥ N , define Cn = AN \ An. Then Cn ⊆ Cn+1 for n ≥ N and

∞⋃
n=N

Cn = AN \

(
∞⋂
n=N

An

)
Note that µ(

⋂∞
n=N An) ≤ µ(AN) < +∞. By (a) and (b), we have

µ(AN)− µ(
∞⋂
n=N

An) = µ(
∞⋃
n=N

Cn) = lim
n
µ(Cn) = µ(AN)− lim

n
µ(An).

As {An}∞n=1 is decreasing, we obtain

lim
n
µ(An) = µ(

∞⋂
n=N

An) = µ(
∞⋂
n=1

An).

J

5. In R∗ = R ∪ {−∞,+∞}, show the “Generalized” Monotone Convergence Theorem
for sequences of extended-real numbers: If (an) is a monotone sequence of extended-
real numbers, then it converges to a limit in R∗. Show further that

lim supxn := inf
k∈N

(sup
n≥k

xn)

lim inf xn := sup
k∈N

(inf
n≥k

xn)
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exist in R∗, and that

lim inf xn = lim sup xn iff lim
n
xn exists

(and all three are the same then).

Solution. To prove the “Generalized” Monotone Convergence Theorem, it suffices
to show that an unbounded increasing sequence (an) converges to +∞. Let α > 0.
Clearly a1 is a lower bound of (an). As (an) is unbounded, α is not an upper bound.
So there is N ∈ N such that aN > α. Since (an) is increasing, we have an ≥ aN > α
for all n ≥ N . Hence lim(an) = +∞ = sup

n
an.

By our extended definitions of supremum and infimum for subsets of R∗, lim supxn
and lim inf xn clearly exist in R∗. Furthermore, it follows from the “Generalized”
Monotone Convergence Theorem that the decreasing sequence (sup

n≥k
xn)∞k=1 and the

increasing sequence (inf
n≥k

xn)∞k=1 both converge (in R∗) with limits, respectively,

lim
k

(sup
n≥k

xn) = inf
k∈N

(sup
n≥k

xn) and lim
k

(inf
n≥k

xn) = sup
k∈N

(inf
n≥k

xn). (∗)

(=⇒). Suppose lim inf xn = lim supxn = `. If ` ∈ R, then for any ε > 0, we have
lim supxn < `+ ε and lim inf xn > `− ε. Hence there exits k ∈ N such that

xn ≤ sup
n≥k

xn < `+ ε for all n ≥ k,

and
xn ≥ inf

n≥k
xn > `− ε for all n ≥ k.

Combining two inequalities above, we have lim
n
xn = `.

If ` = +∞, then for any α > 0, there exits k ∈ N such that xn ≥ inf
n≥k

xn > α for all

n ≥ k. Thus lim
n
xn = +∞. The proof is similar for ` = −∞.

(⇐=). Suppose lim
n
xn = `. If ` ∈ R, then for any ε > 0, there exits N ∈ N such

that `− ε < xn < `+ ε for n ≥ N . Thus

`− ε ≤ inf
n≥k

xn ≤ sup
n≥k

xn ≤ `+ ε for all k ≥ N.

Letting k →∞, it follows from (∗) that

`− ε ≤ lim inf xn ≤ lim supxn ≤ `+ ε.

Since ε is arbitrary, we have lim inf xn = lim sup xn = `.

The cases ` = ±∞ can be proved in similar fashions. J


