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MATH 4050 Real Analysis

Suggested Solution of Homework 6

1.* Show that the uniform limit of a sequence of continuous functions is continuous,
and hence that if m(E) < +∞ and f : E → R is measurable the, ∀η > 0, ∃ closed
set F ⊆ E with m(E \ F ) < η such that f

∣∣
F

: F → R is continuous.

Solution. Let (fn) be a sequence of continuous functions onX (⊆ R) that converges
to f uniformly. Let ε > 0 be given. Choose N ∈ N such that

|fN(x)− f(x)| < ε/3 ∀x ∈ X.

Since fN is continuous at x0, there exists δ > 0 such that

|fN(x)− fN(x0)| < ε/3, whenever x ∈ X and |x− x0| < δ.

Now, if x ∈ X and |x− x0| < δ, we have

|f(x)− f(x0)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(x0)|+ |fN(x0)− f(x0)|
< ε/3 + ε/3 + ε/3 = ε.

Hence f is continuous at x0.

By a Corollary of Littlewood’s 2nd principle, there is a sequence {gn} of continuous
functions on E that converges to f almost everywhere. By Egoroff’s Theorem, there
is A ⊆ E such that m(E \ A) < η/2 and gn converges to f uniformly on A. Hence
f
∣∣
A

: A → R is continuous. By inner regularity, there is a closed set F ⊆ A such

that m(A \F ) < η/2. Now m(E \F ) ≤ m(E \A) +m(A \F ) < η and f
∣∣
F

: F → R
is continuous. J

2. Let F =
⋃̊N

n=1Fn, a disjoint union of closed sets F1, . . . , FN . Let f : F → R be such
that f

∣∣
Fn

is continuous, ∀n. Show that f is continuous.

Solution. Let c ∈ F . Without loss of generality, we assume that c ∈ F1. We shall
show that f is continuous at c using sequential criterion. Let (xn) be a sequence in
F that converges to c. Then xn ∈ F1 for all but finitely many n ∈ N. For otherwise,
(xn) has a subsequence (xnk

) that is contained in Fj, j 6= 1. Now, since Fj is closed,
we have c ∈ Fj, contradicting the fact that F1, . . . , FN are disjoint. Therefore, by

the continuity of f
∣∣
F1

, lim (f(xn)) = lim
(
f
∣∣
F1

(xn)
)

= f
∣∣
F1

(c) = f(c). J

3.* Let Fn ⊆ (n, n + 1] be closed (R \ Fn open) ∀n ∈ N, and let F =
⋃̊
n∈NFn. Show

that f : F → R is continuous if each f
∣∣
Fn

is continuous. (Can the condition

Fn ⊆ (n, n+ 1] be weakened to Fn ⊆ R?)

Solution. Suppose c ∈ Fn−1 ⊆ (n − 1, n] for some n ≥ 2. Since each Fn is closed
and bounded, hence compact, there exists δn ∈ (0, 1) such that

x− n ≥ δn for all x ∈ Fn.
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Hence,
|x− c| ≥ min{δn, δn−1} > 0 for all x ∈ F \ Fn−1.

Now any sequence (xk) in F that converges to cmust be contained in Fn−1 eventually.
It then follows from the continuity of f

∣∣
Fn−1

that

lim (f(xk)) = lim
(
f
∣∣
Fn−1

(xk)
)

= f
∣∣
Fn−1

(c) = f(c).

Therefore, f is continuous at c.

The result above is not true if the condition is weakened. For example, let {pn/qn :
n ∈ N} be an enumeration of Q+, where pn, qn ∈ N are relatively prime and define
Fn = {pn/qn}, f

∣∣
Fn

(x) = (−1)qn . Then clearly F =
⋃
n∈N Fn is a disjoint union of

closed sets and each f
∣∣
Fn

is continuous. However, f is discontinuous everywhere on
F . J

4. Let G =
⋃̊∞
n=1In, countable disjoint open intervals In, and let F := R \ G. Let

x < y < z with x, z ∈ F and y ∈ In := (an, bn). Show that an ∈ F, bn ∈ F, x ≤ an
and bn ≤ z.

Solution. Since Im’s are disjoint open intervals and an, bn 6∈ In, we have an, bn 6∈
G =

⋃∞
m=1 Im. Hence an, bn ∈ R \G = F .

Suppose x > an. Then an < x < y < bn, so that x ∈ In ⊆ G, contradicting
x ∈ F = R \G. Therefore x ≤ an. Similarly, one can show bn ≤ z. J

5. Let G, In, F be as in Q4, and let f : R→ R be such that f
∣∣
F

and f
∣∣
In

are continuous,

∀n (In denotes the closure of In). Suppose further that the graph of f
∣∣
In

is a line-

segment. Show that f is continuous. (By symmetry, need only show that f is
right-continuous at each x0 ∈ R : lim

x→x0+
f(x) = f(x0), i.e. ∀ ε > 0 ∃ δ > 0 such that

|f(x)− f(x0)| < ε ∀x ∈ (x0, x0 + δ). This is evident if x0 ∈ G (so ∃n ∈ N such that
x0 ∈ In). We may hence assume that x0 ∈ F , and there are three cases to consider:

(a) ∃ δ > 0 such that (x0, x0 + δ) ⊆ F (so [x0, x0 + δ] ⊆ F )

(b) ∃ δ > 0 such that (x0, x0 + δ) ⊆ G (so (x0, x0 + δ) ⊆ In for some n)

(c) (x0, x0 + δ) intersects F and G, ∀ δ > 0.)

Hint: For case (a), you use the continuity of f
∣∣
F

.

For case (b), you use the continuity of f
∣∣
[x0,x0+δ]

.

For case (c), let ε > 0, ∃ δ0 > 0 such that |f(x)−f(x0)| < ε ∀x ∈ F∩[x0, x0+δ0]
as f

∣∣
F

is continuous at x0. By the assumption in case (c) and consider smaller
δ0 > 0 if necessary, we may assume that x0 + δ0 ∈ F . Show that if x ∈
G ∩ (x0, x0 + δ0), then ∃!n ∈ N with x ∈ (an, bn). Since x0, x0 + δ0 ∈ F , one
has (?) x0 ≤ an < x < bn ≤ x0 + δ0 and an, bn ∈ F , |f(·)− f(x0)| < ε at an, bn
and so at x.

6.* Do the same as Q5 but check “the left-continuity” in place of “the right-continuity”.
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Solution. Check that f is left-continuous at each x0 ∈ R : lim
x→x0−

f(x) = f(x0), i.e.

∀ ε > 0, ∃ δ > 0 such that |f(x)− f(x0)| < ε whenever x ∈ (x0 − δ, x0).

This is evident if x0 ∈ G (so ∃n ∈ N such that x0 ∈ In). We may hence assume that
x0 ∈ F , and there are three cases to consider:

(a) Case 1: ∃ δ > 0 such that (x0 − δ, x0) ⊆ F (so [x0 − δ, x0] ⊆ F )

Since [x0 − δ, x0] ⊆ F , it follows from the continuity of f
∣∣
F

that

lim
x→x0−

f(x) = lim
x→x0−

f
∣∣
F

(x) = f
∣∣
F

(x0) = f(x0).

(b) Case 2: ∃ δ > 0 such that (x0 − δ, x0) ⊆ G (so (x0 − δ, x0) ⊆ In for some n)

(x0 − δ, x0) ⊆ In implies that [x0 − δ, x0] ⊆ In. It follows from the continuity
of f

∣∣
In

that

lim
x→x0−

f(x) = lim
x→x0−

f
∣∣
In

(x) = f
∣∣
In

(x0) = f(x0).

(c) Case 3: (x0 − δ, x0) intersects F and G, ∀ δ > 0

Let ε > 0 and choose δ0 > 0 such that x0 − δ0 ∈ F , and |f(x) − f(x0)| < ε
∀x ∈ F ∩ [x0 − δ0, x0] as f

∣∣
F

is continuous at x0.

Suppose x ∈ G ∩ (x0 − δ0, x0). Since G =
⋃∞
n=1 In is a disjoint union, there

exists a unique n ∈ N such that x ∈ In := (an, bn). As x0, x0 − δ0 ∈ F , Q4
implies that

x0 − δ0 ≤ an < x < bn ≤ x0 and an, bn ∈ F.

Since the graph of f
∣∣
[an,bn]

is a line segment, it follows that

|f(x)− f(x0)| ≤ max{|f(an)− f(x0)|, |f(bn)− f(x0)|} < ε.

Combining the estimates, we have

|f(x)− f(x0)| < ε whenever x ∈ (x0 − δ0, x0).

J


