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MATH 4050 Real Analysis

Suggested Solution of Homework 2

In this assignment, {xn} and {yn} are sequences of real numbers. E is a subset of R.

Recall that the limit superior of {xn} is defined by

lim supxn := inf
n

sup
k≥n

xk.

Clearly zn := supk≥n xk is monotone decreasing, and hence

lim
n
zn = inf

n
zn = lim sup xn, (1)

where the limit is taken in the extended real number. Similarly the limit inferior of {xn}
is given by

lim inf xn := sup
n

inf
k≥n

xk = lim
n

inf
k≥n

xk. (2)

1.* (3rd: P.39, Q12)

Show that x = lim xn if and only if every subsequence of {xn} has in turn a subse-
quence that converges to x. How about x ∈ {−∞,∞}?

Solution. ( =⇒ ) Suppose limxn = x. Then every subsequence {xnk
} of {xn}

converges to x. Therefore {xnk
} has itself as a further subsequence that converges

to x.

(⇐= ) Suppose on the contrary that {xn} does not converge to x. Then there exists
ε0 > 0 such that for all N ∈ N, there is n > N such that

|xn − x| ≥ ε0.

Take N = 1, then we can find n1 > 1 such that |xn1 − x| ≥ ε0. Take N = n1, we
can find n2 > n1 such that |xn2 − x| ≥ ε0. Continue in this way, we can find a
subsequence {xnk

} of {xn} such that

|xnk
− x| ≥ ε0 for all k ∈ N.

Now {xnk
} has no further subsequence that converges to x.

Similar results hold if x = −∞ or ∞. J

2. (3rd: P.39, Q13)

Show that the real number l is the limit superior of the sequence {xn} if and only
if (i) given ε > 0, ∃n such that xk < l + ε for all k ≥ n, and (ii) given ε > 0 and n,
∃ k ≥ n such that xk > l − ε.

Solution. We show that

(a) lim supxn ≤ l if and only if (i) holds ; and
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(b) lim supxn ≥ l if and only if (ii) holds.

(a): By the definition of supremum and infinmum,

lim supxn ≤ l =⇒ (∀ ε > 0)(lim supxn < l + ε) =⇒ (∀ ε > 0)(inf
n

sup
k≥n

xk < l + ε)

=⇒ (∀ ε > 0)(∃n)(sup
k≥n

xk < l + ε) =⇒ (∀ ε > 0)(∃n)(∀ k ≥ n)(xk < l + ε);

while on the other hand,

(∀ ε > 0)(∃n)(∀ k ≥ n)(xk < l + ε) =⇒ (∀ ε > 0)(∃n)(sup
k≥n

xk ≤ l + ε)

=⇒ (∀ ε > 0)(inf
n

sup
k≥n

xk ≤ l + ε) =⇒ (∀ ε > 0)(lim supxk ≤ l + ε) =⇒ lim supxn ≤ l.

(b): Similarly,

lim supxn ≥ l =⇒ (∀ ε > 0)(lim supxn > l − ε) =⇒ (∀ ε > 0)(inf
n

sup
k≥n

xk > l − ε)

=⇒ (∀ ε > 0)(∀n)(sup
k≥n

xk > l − ε) =⇒ (∀ ε > 0)(∀n)(∃ k ≥ n)(xk > l − ε);

while on the other hand,

(∀ ε > 0)(∀n)(∃ k ≥ n)(xk > l − ε) =⇒ (∀ ε > 0)(∀n)(sup
k≥n

xk > l − ε)

=⇒ (∀ ε > 0)(inf
n

sup
k≥n

xk ≥ l − ε) =⇒ (∀ ε > 0)(lim supxn ≥ l − ε) =⇒ lim supxn ≥ l.

Now the desired statement follows from (a) and (b) immediately.

Similarly, one can show that

(c) lim inf xn ≥ l if and only if ∀ ε > 0, ∃n such that xk > l − ε for all k ≥ n ; and

(c) lim inf xn ≤ l if and only if ∀ε > 0, ∀n, ∃ k ≥ n such that xk < l + ε.

J

3.* (3rd: P.39, Q14)

Show that lim supxn =∞ if and only if given ∆ and n, ∃ k ≥ n such that xk > ∆.

Solution. The statement follows immediately from (b) in question 2 and the fact
that x =∞ if and only if x > ∆ for any ∆ ∈ R. Indeed,

lim supxn =∞ =⇒ (∀∆ ∈ R)(lim supxn > ∆) =⇒ (∀∆ ∈ R)(∀n ∈ N)(sup
k≥n

xk > ∆)

=⇒ (∀∆ ∈ R)(∀n ∈ N)(∃ k ≥ n)(xk > ∆).

while on the other hand,

(∀∆ ∈ R)(∀n ∈ N)(∃ k ≥ n)(xk > ∆) =⇒ (∀∆ ∈ R)(∀n ∈ N)(sup
k≥n

xk > ∆)

=⇒ (∀∆ ∈ R)(lim supxn ≥ ∆) =⇒ lim supxn =∞.

J
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4. (3rd: P.39, Q15)

Show that lim inf xn ≤ lim supxn and lim inf xn = lim supxn = l if and only if
l = limxn.

Solution. Clearly

inf
k≥n

xk ≤ xn ≤ sup
k≥n

xk for all n ≥ 1. (3)

Hence, by (1) and (2), and letting n→∞, we have

lim inf xn = lim
n

inf
k≥n

xk ≤ lim
n

sup
k≥n

xk = lim sup xn.

Suppose lim inf xn = lim supxn = l. Then it follows from (3) and the Squeeze
Theorem that lim xn = l.

Conversely, if l = limxn, then for any ε > 0, there exists n ∈ N such that l − ε <
xk < l + ε for all k ≥ n, so that

l − ε ≤ inf
k≥n

xk ≤ xk ≤ sup
k≥n

xk ≤ l + ε for all k ≥ n.

Letting n → ∞, we have l − ε ≤ lim inf xn ≤ lim supxn ≤ l + ε. As ε is arbitrary,
we have lim inf xn = lim supxn = l.

J

5.* (3rd: P.39, Q16)

Prove that

lim supxn + lim inf yn ≤ lim sup(xn + yn) ≤ lim supxn + lim sup yn,

provided the right and left sides are not of the form ∞−∞.

Solution. For all n ≥ 1,

xk + inf
j≥n

yj ≤ xk + yk whenever k ≥ n,

so that
sup
k≥n

xk + inf
j≥n

yj ≤ sup
k≥n

(xk + yk).

By (1) and (2), we can let n→∞ on both sides and obtain

lim supxn + lim inf yn ≤ lim sup(xn + yn),

provided the left side is not of the form ∞−∞.

On the other hand, for all n ≥ 1,

xj + yj ≤ sup
k≥n

xk + sup
k≥n

yk whenever j ≥ n,
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so that
sup
k≥n

(xk + yk) ≤ sup
k≥n

xk + sup
k≥n

yk.

Again letting n→∞, we obtain

lim sup(xn + yn) ≤ lim supxn + lim sup yn,

provided the right side is not of the form ∞−∞.

J

6. (3rd: P.39, Q17)

Prove that if xn > 0 and yn ≥ 0, then

lim sup(xnyn) ≤ (lim supxn)(lim sup yn),

provided the product on the right is not of the form 0 · ∞.

Solution. For all n ≥ 1,

0 ≤ xk ≤ sup
j≥n

xj and 0 ≤ yk ≤ sup
j≥n

yj whenever k ≥ n,

so that
0 ≤ xkyk ≤ (sup

j≥n
xj)(sup

j≥n
yj) whenever k ≥ n.

Thus, for all n ≥ 1,
sup
k≥n

(xkyk) ≤ (sup
k≥n

xk)(sup
k≥n

yk).

Using (1) and (2), and letting n→∞, we have

lim sup(xnyn) ≤ (lim supxn)(lim sup yn),

provided the right side is not of the form 0 · ∞. J

7. (3rd: P.46, Q27)

Recall that x ∈ R is called a point of closure of E if each neighbourhood of x
intersects E. Show that x is a point of closure of E if and only if there is a sequence
{yn} with yn ∈ E and x = lim yn.

Solution. Suppose x is a point of closure of E. Then the open ball B(x, 1/n), which
is centred at x and of radius 1/n, intersects E for all n ≥ 1. Pick yn ∈ E∩B(x, 1/n)
for each n. Then {yn} is a sequence in E such that lim yn = x, since |yn− x| < 1/n
for all n.

On the other hand, suppose {yn} is a sequence in E such that x = lim yn. Let U be
a neighbourhood of x. Then yn → x implies that yn ∈ U for all sufficiently large n.
In particular, U ∩ E 6= ∅. J
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8. (3rd: P.46, Q28; 4th: P.20, Q30(i))

A number x is called an accumulation point of a set E if it is a point of closure of
E \ {x}. Show that the set E ′ of accumulation points of E is a closed set.

Solution. We would like to show that the complement of E ′ is open. Let x ∈ (E ′)c.
Then x is not a point of closure of E \ {x}. Hence, by definition, there is an open
neighbourhood U of x such that U ∩ (E \ {x}) = ∅. We claim that every y ∈ U is
not an accumulation point of E, so that x ∈ U ⊆ (E ′)c, and hence (E ′)c is open.

Let y ∈ U \ {x}. Since U \ {x} is open, there is a neighbourhood V of y such that
V ⊆ U \ {x}. Hence

V ∩ (E \ {y}) ⊆ (U \ {x}) ∩ E = ∅.

Thus y is not a point of closure of E \ {y}, that is, y is not an accumulation point
of E.

J

9. (3rd: P.46, Q29; 4th: P.20, Q30(ii))

Show that E = E ∪ E ′.

Solution. Recall that E is the set of all point of closure of E. From the definitions,
it is clear that E ∪ E ′ ⊆ E. On the other hand, if x ∈ E \ E, then for every
neighbourhood U of x,

U ∩ (E \ {x}) = U ∩ E 6= ∅.

Hence x ∈ E ′. Therefore E ⊆ E ∪ E ′. J

10. (3rd: P.46, Q30; 4th: P.20, Q31)

A set E is called isolated if E∩E ′ = ∅. Show that every isolated set of real numbers
is countable.

Solution. Suppose E is isolated. Then no point in E is an accumulation point of
E, whence, for all x ∈ E, there is rx > 0 such that (x− rx, x+ rx) ∩ (E \ {x}) = ∅.
Let Ix = (x − rx/2, x + rx/2). Then {Ix : x ∈ E} is a collection of open intervals
such that

Ix ∩ Iy = ∅ if x, y ∈ E, x 6= y.

For otherwise, u ∈ Ix∩Iy =⇒ |x−y| ≤ |x−u|+|u−y| < rx/2+ry/2 ≤ max{rx, ry},
contradicting x 6∈ Iy and y 6∈ Ix.
By the density of Q, for every x ∈ E, we can find ϕ(x) ∈ Q such that ϕ(x) ∈ Ix.
Now ϕ : E → Q is an injection since {Ix : x ∈ E} are pairwise disjoint. Therefore
E is countable.

J
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11.* Let f : [0, 1] → [m,M ] with Riemann upper integral α = (R)

∫ 1

0

f(x) dx. Show

there is a sequence (ψn) of step-functions such that

∫ 1

0

ψn(x) dx→ α and

ψn(x) ↓ f̄(x) ∀x ∈ X := [0, 1] \ {k/2n : n ∈ N, k = 0, 1, . . . , 2n},

where
f̄(x) := inf{f δ(x) : δ > 0}, ∀x ∈ [0, 1]

with each
f δ(x) := sup{f(u) : u ∈ Vδ(x) ∩ [0, 1]}, ∀x ∈ [0, 1].

Solution. Let Pn be the partition that divides [0, 1] into 2n-many subintervals of
equal length 1/2n. Define a step-function ψn by

ψn(x) :=
2n∑
k=1

sup{f(x) :
k − 1

2n
< x ≤ k

2n
}χ( k−1

2n
, k
2n

].

Then clearly ψn+1(x) ≤ ψn(x) for all x ∈ X.

Since ‖Pn‖ → 0 as n→∞, we have∫ 1

0

ψn(x) dx = U(f, Pn)→ (R)

∫ 1

0

f(x) dx = α,

where U(f, Pn) is the upper sum of f with respect to the partition Pn.

Let x0 ∈ X and suppose x0 lies in I, one of the above subintervals. Then x0 must
be in the interior of I, so there exists δ > 0 such that (x0 − δ, x0 + δ) ⊆ I. Then
f δ(x0) ≤ ψn(x0), and hence f̄(x0) ≤ ψn(x0) for each n.

Conversely, let x0 ∈ X and δ > 0. Take n ∈ N such that 1/2n < δ. Now if I is
one of the above subintervals that contain x0, then x0 ∈ I ⊆ (x0 − δ, x0 + δ) as the
length of I is smaller than δ. Thus ψn(x0) ≤ f δ(x0), so that

inf{ψn(x0) : n ∈ N} ≤ ψn(x0) ≤ f δ(x0).

As δ > 0 is arbitrary, we have inf{ψn(x0) : n ∈ N} ≤ f̄(x0). Hence

limψn(x0) = inf{ψn(x0) : n ∈ N} = f̄(x0).

J


