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MATH 4050 Real Analysis
Suggested Solution of Homework 2

In this assignment, {x,} and {y,} are sequences of real numbers. F is a subset of R.

Recall that the limit superior of {z,} is defined by

lim sup z,, := inf sup x;.
n k>n

Clearly z, := supy,, 7} is monotone decreasing, and hence

lim z,, = inf 2z, = lim sup z,,, (1)

where the limit is taken in the extended real number. Similarly the limit inferior of {x,,}
is given by
lim inf z,, := sup inf x;, = lim inf z;. (2)

n k>n n k>n
1% (3rd: P.39, Q12)

Show that x = lim x,, if and only if every subsequence of {x,} has in turn a subse-
quence that converges to . How about z € {—o0, 00}?

Solution. ( = ) Suppose limz, = z. Then every subsequence {z,, } of {z,}
converges to x. Therefore {z,, } has itself as a further subsequence that converges
to x.

( <= ) Suppose on the contrary that {z,} does not converge to x. Then there exists
go > 0 such that for all N € N, there is n > N such that

|z, — x| > €.

Take N = 1, then we can find ny > 1 such that |z, — 2| > ¢9. Take N = ny, we
can find ny > ny such that |z,, — x| > €9. Continue in this way, we can find a
subsequence {xz,, } of {z,} such that

|y, — x| > €9 forall ke N

Now {z,, } has no further subsequence that converges to x.

Similar results hold if £ = —o0 or co. |

2. (3rd: P.39, Q13)

Show that the real number [ is the limit superior of the sequence {z,} if and only
if (i) given € > 0, 3n such that zx <[+ ¢ for all £ > n, and (ii) given € > 0 and n,
dk > n such that x, > 1 —¢.

Solution. We show that

(a) limsupx, <! if and only if (i) holds ; and
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3.%

(b) limsupx, > [ if and only if (ii) holds.
(a): By the definition of supremum and infinmum,

limsupz, <! = (Ve > 0)(limsupz, <l+¢e) = (Ve > 0)(infsupzy <l+¢)
n k>n

= (Ve>0)3n)(supzr <l+e) = (Ve>0)3n)(VEk>n)(zr <l+e);

while on the other hand,

Ve>0)3n)Vk>n)(z, <l+e) = (Ve> O)(Eln)(ilip:ck <l+e¢)

— (Ve >0)(infsupay < l+¢e) = (Ve > 0)(limsupzy < l+¢) = limsupz, <.
n k>n

(b): Similarly,

limsupz, > 1 = (Ve > 0)(limsupz,, >1—¢) = (Ve > 0)(infsupzy >1—¢)
n k>n

= (Ve >0)(Vn)(supzy >1—¢) = (Ve >0)(Vn) 3k >n)(zp >1—e¢);
k>n

while on the other hand,
Ve>0)(Vn)(Fk>n)(zr >1—¢c) = (Ve >0)(Vn)(supzg > 1 —¢)

k>n

= (Ve >0)(infsupay > [ —¢) = (Ve > 0)(limsupz,, > —¢) = limsupz, > [.
n k>n

Now the desired statement follows from (a) and (b) immediately.

Similarly, one can show that

(¢) liminfx, >l if and only if Ve > 0, 3n such that x; > — ¢ for all k > n ; and
(¢) liminfx, <[ if and only if Ve > 0, Vn, 3k > n such that z; <[+ ¢.

(3rd: P.39, Q14)
Show that lim sup x,, = oo if and only if given A and n, 3k > n such that x; > A.

Solution. The statement follows immediately from (b) in question 2 and the fact
that x = oo if and only if z > A for any A € R. Indeed,

limsupz, =00 = (VA € R)(limsupz, > A) = (VA € R)(Vn € N)(supzy > A)
k>n

= (VA eR)(VneN)3k>n)(z; > A).
while on the other hand,
VA eR)VneN)(Tk>n)(zpy>A) = (VA eR)(Vn eN)(supzy > A)

k>n

= (VA € R)(limsupz,, > A) = limsupz, = co.
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(3rd: P.39, Q15)

Show that liminfx, < limsupx, and liminfx, = limsupx, = [ if and only if
[ =limuz,.

Solution. Clearly

inf z;, < x, <sup for all n > 1. (3)
k>n k>n

Hence, by (1) and (2), and letting n — oo, we have

liminf z,, = lim inf z; < limsup z;, = limsup x,,.
n kzn n k>n

Suppose liminfx, = limsupz, = [. Then it follows from (3) and the Squeeze
Theorem that lim x,, = [.

Conversely, if [ = lim z,,, then for any € > 0, there exists n € N such that [ — e <
xr < 1+ ¢ for all £ > n, so that

l—e<infaxp <xp <supzxp <Il+e forall k>n.
k>n k>n

Letting n — oo, we have [ — ¢ < liminfx, < limsupx, <[+ ¢e. As ¢ is arbitrary,
we have liminf x,, = limsupz,, = [.

<

(3rd: P.39, Q16)
Prove that

lim sup z,, + liminf y,, < limsup(z, + y,) < limsup x,, + lim sup y,,,
provided the right and left sides are not of the form oo — oo.
Solution. For alln > 1,

T + ir>1f yj <z + Yy, whenever k > n,
Jj=zn

so that

sup xy + inf y; < sup(xy + y).
k>n jzn k>n

By (1) and (2), we can let n — oo on both sides and obtain

lim sup x,, + liminf y,, < limsup(x,, + yn),

provided the left side is not of the form oo — oco.

On the other hand, for all n > 1,

T +y; <supxy +supy, whenever j > n,
>n k>n
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so that
sup(zx + yx) < sup o + sup yi.

k>n k>n k>n
Again letting n — oo, we obtain

lim sup(z, + y,) < limsup z, + lim sup y,,

provided the right side is not of the form oo — co.

<
6. (3rd: P.39, Q17)
Prove that if z,, > 0 and y, > 0, then
lim sup(z,y,) < (limsup z,)(limsup y,),
provided the product on the right is not of the form 0 - oco.
Solution. For all n > 1,
0<a,<supz; and O0<y,<supy; whenever k> n,
Jjzn jzn
so that
0 <2y, < (supzj)(supy;) whenever k > n.
jzn jzn
Thus, for all n > 1,
sup(zxyr) < (sup k) (sup y).
k>n k>n k>n
Using (1) and (2), and letting n — oo, we have
lim sup(z,y,) < (limsup z;,)(lim sup y, ),
provided the right side is not of the form 0 - co. <

7. (3rd: P46, Q27)

Recall that x € R is called a point of closure of E if each neighbourhood of x
intersects E. Show that x is a point of closure of E if and only if there is a sequence
{yn} with y, € E and = = lim y,,.

Solution. Suppose x is a point of closure of E. Then the open ball B(z,1/n), which
is centred at x and of radius 1/n, intersects E for all n > 1. Pick y,, € ENB(x,1/n)
for each n. Then {y,} is a sequence in E such that limy, = z, since |y, — x| < 1/n
for all n.

On the other hand, suppose {y,} is a sequence in E such that x = limy,. Let U be
a neighbourhood of x. Then y,, — x implies that y, € U for all sufficiently large n.
In particular, U N E # (). <
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10.

(3rd: P.46, Q28; 4th: P.20, Q30(i))

A number z is called an accumulation point of a set E if it is a point of closure of
E\ {z}. Show that the set E’ of accumulation points of F is a closed set.

Solution. We would like to show that the complement of E’ is open. Let z € (E')°.
Then z is not a point of closure of '\ {x}. Hence, by definition, there is an open
neighbourhood U of x such that U N (E\ {z}) = 0. We claim that every y € U is
not an accumulation point of F, so that x € U C (E')¢, and hence (E’)¢ is open.

Let y € U\ {x}. Since U \ {z} is open, there is a neighbourhood V" of y such that
V C U\ {z}. Hence

VN(EN{y}) S U\{zhnE=0.
Thus y is not a point of closure of E'\ {y}, that is, y is not an accumulation point

of F.
L |

(3rd: P.46, Q29; 4th: P.20, Q30(ii))
Show that £ = EU F/.

Solution. Recall that E is the set of all point of closure of E. From the definitions,
it is clear that £ U E’ C E. On the other hand, if € E \ E, then for every
neighbourhood U of z,

UN(E\{z})=UNE#.

Hence = € E'. Therefore E C EU FE/. <

(3rd: P.46, Q30; 4th: P.20, Q31)

A set F is called isolated if ENE’ = (). Show that every isolated set of real numbers
is countable.

Solution. Suppose F is isolated. Then no point in E is an accumulation point of
E. whence, for all z € E, there is 7, > 0 such that (x —r,,z +r,) N (E\ {z}) = 0.
Let I, = (x —7./2,x +1,/2). Then {I, : x € E} is a collection of open intervals
such that

IL.NnlL,=0 ifzyeckE, v#uy.
For otherwise, v € I,NI, = |z—y| < |[v—u|+|u—y| < ry/2+7,/2 < max{r,,r,},
contradicting x ¢ I,, and y & 1.

By the density of Q, for every z € E, we can find p(z) € Q such that ¢(x) € I,.
Now ¢ : E — Q is an injection since {I, : x € E} are pairwise disjoint. Therefore
E is countable.

<
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11.*% Let f :[0,1] — [m, M| with Riemann upper integral o = (R)/ f(z)dz. Show
0

1
there is a sequence (1,,) of step-functions such that / Yn(x) de — o and
0

Uo(x) | flx)  Voe X =1[0,1\{k/2":neEN, k=0,1,...,2"},

where

f(x) =inf{f°(x): 6§ >0}, Vzel0,1]

with each

fo(x) = sup{f(u) : u € Vs(z)N[0,1]}, Vz€l0,1].

Solution. Let P, be the partition that divides [0, 1] into 2"-many subintervals of
equal length 1/2". Define a step-function ,, by

k—1 k

Un() =) sup{f(e):
k=1

Then clearly ¢,,1(x) < ¢, (z) for all x € X.

Since || P,|| — 0 as n — oo, we have

[ on@ir=vigR) > ® [ @i =a,

where U(f, P,) is the upper sum of f with respect to the partition P,.

Let zp € X and suppose x( lies in I, one of the above subintervals. Then xy must
be in the interior of I, so there exists 0 > 0 such that (vo — J,29 + ) € I. Then
f2(20) < (@), and hence f(x) < ¥y (o) for each n.

Conversely, let zp € X and § > 0. Take n € N such that 1/2" < §. Now if [ is
one of the above subintervals that contain zg, then xq € I C (29 — §,z9 + 0) as the
length of I is smaller than §. Thus 1, (z¢) < f°(z0), so that

inf{t,(20) : n € N} < b (w0) < £2(20).
As § > 0 is arbitrary, we have inf{t,(7¢) : n € N} < f(x¢). Hence

lim 1, (20) = inf{w,(z0) : n € N} = f(z0).



