Suggested Solution to Homework 5

Yu Mei[†]

P140, 7. Show that in an inner product space, $x \perp y$ if and only if we have $||x + \alpha y|| = ||x - \alpha y||$ for all scalars α .

Proof. It follows from the definition of inner product that

 $\|x + \alpha y\|^2 = \langle x + \alpha y, x + \alpha y \rangle = \langle x, x \rangle + \bar{\alpha} \langle x, y \rangle + \alpha \langle y, x \rangle + \alpha \bar{\alpha} \langle y, y \rangle = \|x\|^2 + 2Re(\bar{\alpha} \langle x, y \rangle) + |\alpha|^2 \|y\|^2$

Similarly, replacing α by $-\alpha$ above, one has

$$||x - \alpha y||^{2} = ||x||^{2} - 2Re(\bar{\alpha}\langle x, y \rangle) + |\alpha|^{2}||y||^{2}$$

Then, $||x + \alpha y|| = ||x - \alpha y||$ for all scalars α if and only if $Re(\bar{\alpha}\langle x, y\rangle) = 0$ for all α . Taking $\alpha = 1$ and $\alpha = i$ respectively, we conclude that $\langle x, y \rangle = 0$, i.e. $x \perp y$.

P167, 7. Let (e_k) be an orthonormal sequence in a Hilbert space H. Show that for every $x \in H$, the vector

$$y = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$$

exists in H and x - y is orthogonal to every e_k .

Proof. From the Bessel inequality in Theorem 3.4-6, we see that, for every $x \in H$, the series

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2$$

converges. So, $y = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$ exists in *H*. Furthermore,

$$\langle x - y, e_j \rangle = \langle x, e_j \rangle - \langle \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k, e_j \rangle = 0$$

Hence, x - y is orthogonal to e_k .

P167, 8. Let (e_k) be an orthonormal sequence in a Hilbert space H, and let $M = \text{span}(e_k)$. Show that for any $x \in H$ we have $x \in \overline{M}$ if and only if x can be represented by $x = \sum_{k=1}^{\infty} \alpha_k e_k$ with coefficients $\alpha_k = \langle x, e_k \rangle$.

Proof. Assume that x can be represented by $x = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$. Since $x_n = \sum_{k=1}^n \langle x, e_k \rangle e_k \in M$ and $x_n \to x$ as $n \to +\infty$, we have $x \in \overline{M}$. On the other hand, assume $x \in \overline{M}$. Set $y = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$. It follows from Q7 above that $x - y \perp e_k$. By the continuity of inner product, we have $x - y \perp \overline{M}$. It is clear that $x - y \in \overline{M}$. So, $x - y \in \overline{M} \cap \overline{M^{\perp}} = \{0\}$. That is, $x = y = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$.

P175, **4**. Derive from (3) the following formula (which is often called the Parseval relation)

$$\langle x, y \rangle = \sum_{k} \langle x, e_k \rangle \overline{\langle y, e_k \rangle}$$

[†] Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

Proof. If the Parseval relation (3) shown as

$$\sum_k |\langle x, e_k \rangle|^2 = ||x||^2$$

holds for any x in Hilbert space H, then for any x, y, we have $||x + y||^2 = \sum_k |\langle x + y, e_k \rangle|^2$. Note that

$$||x + y||^{2} = ||x||^{2} + \langle x, y \rangle + \langle y, x \rangle + ||y||^{2} = ||x||^{2} + 2Re\langle x, y \rangle + ||y||^{2},$$

and

$$\sum_{k} |\langle x + y, e_k \rangle|^2 = \sum_{k} (\langle x, e_k \rangle + \langle y, e_k \rangle) \overline{(\langle x, e_k \rangle + \langle y, e_k \rangle)}$$
$$= \sum_{k} |\langle x, e_k \rangle|^2 + \langle x, e_k \rangle \overline{\langle y, e_k \rangle} + \langle y, e_k \rangle \overline{\langle x, e_k \rangle} + |\langle x, e_k \rangle|^2$$
$$= ||x||^2 + 2Re\langle x, e_k \rangle \overline{\langle y, e_k \rangle} + ||y||^2.$$

Then, $Re\langle x, y \rangle = Re\langle x, e_k \rangle \overline{\langle y, e_k \rangle}$. Replacing y by iy, we have

$$-Im\langle x, y \rangle = Re\langle x, iy \rangle = Re\langle x, e_k \rangle \overline{\langle iy, e_k \rangle} = -Im\langle x, e_k \rangle \overline{\langle y, e_k \rangle}$$

Therefore, $\langle x, y \rangle = \sum_k \langle x, e_k \rangle \overline{\langle y, e_k \rangle}.$

P175, 5 Show that an orthonormal family (e_{κ}) , $\kappa \in I$, in a Hilbert space H is total if and only if the relation in Prob. 4 holds for every x and y in H.

Proof. As shown in Prob. 4,

$$\langle x,y\rangle = \sum_{\kappa} \langle x,e_{\kappa}\rangle \overline{\langle y,e_{\kappa}\rangle} \quad \text{if and only if} \quad \|x\|^2 = \sum_{\kappa \in I} |\langle x,e_{\kappa}\rangle|^2$$

By Theorem 3.6-3, Hilbert space H is total if and only if the relation $||x||^2 = \sum_{\kappa \in I} |\langle x, e_{\kappa} \rangle|^2$ holds for every x so that the relation in Prob. 4 holds for every x and y in H.