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Suggested Solution to Assignment 7

Exercise 7.1

1. Suppose there exists one non-constant harmonic function « in D, which attains its maximum M at xy € D.
Then by the mean value property, we have

(719,¢
( 0 X07 | //B(xo,r)

for all B(xg,r) C D. Thus u(x) = M for all x € B(xg,r) C D since u is continuous and M is its
maximum.

Now since u is not a constant, there exists x; € D such that u(x;) # u(xg). Since D is a region,
we can find a continuous a curve y(t) C D (0 < ¢ < 1) such that v(0) = x¢ and (1) = x;. Set
E :={0 <t <1u(y(t)) = M}, then E is closed since u and 7 are both continuous. Let ¢y € E, then by
the above result, u(x) = M for all x € B(vy(ty),r) C D. So E is open. Hence, E = [0, 1] since E # () and
[0, 1] is connected. But this contradicts to u(x1) # u(xg) and then we complete the proof. O

2. Suppose u; and ug are solutions of the problem. Then u = u; — uo satisfies

Au=0in D, @:OonaD.
on

Thus, by the Green’s first identity for v = u, we have

([ w2 as= [[] i [f] usuas
/// ufix 0.

Therefore, Vu = 0 and then u(x) is a constant.

Hence,

3. Suppose uq and us are solutions of the problem. Then u = u; — uo satisfies
. ou
Au=0in D, — 4+ au=0o0n dD.
on

Thus, by the Green’s first identity for v = u, we have

//aD o 95 = /// [Vul dX+///uAudx
JJ[ ivapix =[] was

Since a(x) > 0, Vu = 0 and then u(z) is a constant C. So by the Robin boundary conditions, we have
Ca(x) = 0. This shows that C =0 and u = 0. O.

Hence,

4. Suppose u; and ug are solutions of the problem. Then u = u; — ug satisfies
—kAu=0in D x (0,00), u =0 on 9D x (0,00), u(z,0) =0in D.

Thus, by the Green’s first identity for v = u, we have

//aD ands ///!Vu\der///uAudx

1
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6.

Therefore, by the diffusion equation

0:// \vu|2dx+1/// uuydx
= [[[ 1vukax+ 5 5 [ ax

Define E(t) := [[[,, u%dx, then the above equality implies 4 E(t) < 0. Note that £(0) = 0 and E(t) > 0,
we have E( ) = 0. So we obtain v = 0 and the uniqueness for the diffusion equation with Dirichlet
boundary conditions is proved. L.

. Suppose u(x) minimizes the energy. Let v(x) be any function and € be any constant, then

Elu] < Elu+ ev] = // Vu - Vvdx—e// hvdS + € // |Vo|?dx.
oD
Hence, by calculus
/// Vu-Vvdx—// hvdS =0
D oD

for any function v. By Green’s first identity,

// Vu - vdx—i—// dS // hvdS = 0.
oD 3” oD

Noting v is an arbitrary function, let v vanish on 9D firstly and then the above equality implies —Au = 0
in D. So the above equality changes to

// %u s - // hdS = 0.
oD 3“ oD

% _ b on OD and then u(x) is a solution of the following Neumann problem

on

Since v is arbitrary,

—Au=0in D, @:honbdyD
on

Note that the Neumann problem has a unique solution up to constant and the functional F[w] does not
change if a constatn is added to w, thus it is the only funtion that can minimize the energy up to a
constant.

Note that here we assume functions u, v and the domain D are smooth enough, at least under which the
Green’s first identity can be hold. O

(a) Suppose u; and ug are solutions of the problem. Then u = u; — uy tends to zero at infinity, and is
constant on JA and constant on 0B, and satisfies

ou ou
—dS=0= / —dS.
/8A on ap On

Suppose that u # 0, then without loss of generality, we assume that there exists xo € D such that
u(x0) > 0. Since u tends to zero at infinity, so there exists R > 1 such that u(x) < M if |x| > R.

Then w is a harmonic function in DN B(0, R) and max u < @ <wu(xp) < max wu. Thus, the
dB(0,R) DNB(0,R)

maximum is attained on dA or B by the Maximum Principle. WOLG, we assume that v attain
its maximum on JA and then by any point of JA is a maximum point since u is constant on JA.
Hence, by the Hopf maximum principle, du/dn > 0 on A, but this contradicts to the condition

ou
—dS = 0.
/8A on

Therefore, u = 0 and then the solution is unique.
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(b) If not, then u(x) have a negative minimum. As above, by the Minimum Principle, we get that u
attains its minimum on 0A or dB. WOLG, we assume that v attains its minimum on 9A, then
% < 0 by the Hopf principle since u is not a constant. But this contradicts to [/ 94 %dS =Q > 0.
Sou>0in D,

(c) Suppose that there exists xo € D such that u(xg) = 0. Then by (b) and the Strong Minimum
Principle, u is a constant in D. But this contradicts to [[; , g—gdS =Q >0. Sou > 0in D.
(Actually , we can prove that u > 0 on A and 0B by the Hopf principle again as in (b)). O

7. (Extra Problem 1) Suppose u; and ug are solutions of the problem. Then
A(uy —ug) = ud —uy = (uy — up)(u? + ugug +u3) in D

8(U1 — ’LLQ)

o +a(x)(u1 —u2) =0 on 0D

Thus,

0 S / (u1 — UQ)Q(U% + uqug + u%) = / (u1 — uQ)A(ul — UQ)
D D

_ _ 0(“1—“2)/ _ Duy?
_/aD(ul u2) an D‘Dul DU2|

= —/ a(x)(ul — U2)2 —/ |DU1 — D'LLQ‘2 < 0
oD D

since a(z) > 0. = fD(ul — u2)?(u? + ugug +ud) =0 = u; = ug in D
8. (Extra Problem 2) (a)
1
Elu] := / §(|Du|2 + b(x)u2) + f(x)u
D

(b)If w is a solution, then Vv € CZ(D), 0= [, —vAu+ b(z)uv + f(z)v = [, Du- Dv + b(z)uv + f(z)v
= VYw € C*(D), w = h on 8D, take v = w — u,

Blu] = [ 5IDv? + 5|Dul? + Do+ Dut 3b(w)e? + Jbla)ud + bauv + fla)o + f(a)u
D
_ /D;Dv|2+ %b(x)vQ + Elu)
> Eful

since b(x) > 0.
Conversely,Vv € C3(D),Vt e R, w:=u+tv € C?, w=wu=h on dD

d
=0= aEu%—tv}tO /Du Dv + b(x)uv + f(x)v

:>/ —Au+b(z)u+ f(x)) =0, Yo € C3(D)

= —Au+b(z)u+ f(x) =01in D
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Exercise 7.2

2. Let r = |x| and D, := {z|e < r < R}, where R is large enough such that ¢ = 0 outside r < R/2. Using
the Green’s second identity,

[, moomen=[f |55 (fiﬂds
Mol e o S e i)
_//X|e[ aﬁﬂb ]dS——47r</) 47rear

where ¢ denotes the average value of ¢ on the sphere {r = ¢}, and ‘% denotes the average value of on
this sphere. Since ¢ is continuous and ‘f is bounded,

—4m — 47regf — —47¢(0) ase— 0.

__///yiyA‘b(X)Z: 0

|x|<R

Hence,

3. Choosing D = B(xg, R) in the representation formula (1) and using the divergence theorem,

= ] [0 Lty Lo
On ' |x — xo |x —xo| On| 4w

OB(x0,R)

// [éau<x>+;§§i] "

|x—x0|=R

|x—x0|=R |x—x0|<R

1
:4R2 // udS. O
T

|x—x0|=R

4. (Extra Problem) V¢(z) € C%(R?), we need to show that

= [ ] oglalso) 5

proof: Let r = |z| and D, := z: e < r < R, where R is large enough such that ¢ = 0 if » > R/2. Using

the Green’s identity,
[ [ oelslaswids = [ pogla|3E - o5 tog]ellds
D, 8D, 811 8

o6 0
/|x6[ og !wlan ¢35 og|z[]dS

B ¢ 1
= /|x [logaar g]dS

= 271¢ — 2me log 5@
or
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where qb, denote the average value of ¢, 7 on the sphere |z| = . Since ¢ is continuous and % is
bounded, -
_ O
2m¢ — 2melog €5, 27 p(0), ase —0
r

Exercise 7.3

1. Suppose G1 and G2 both are the Green’s functions for the operator —A and the domain D at the point

1
xo € d. By (i) and (iii), we obtain that G1(x) + and G3(x) + ————— both are harmonic

1
4m|x — x|

47t|x — X
functions in D. Thus, by (ii) and the uniqueness theorem of harmonic function, we have
G1(x) + —— G () + ——
X)+——— = X))+ -—
! 4m|x — xg| 2 4r|x — x|
that is, the Green’s function is unique. O

3. In the textbook,

|x—al=e
where u(x) = G(x,a) and v(x) = G(x,b). Note that
1

4r|x — a|

u(x) = G(x,a) = — + H(x,a)

, where H(x,a) is a harmonic function throughout the domain D. What’s more, v(x) = G(x,b) is a
harmonic function in {|x — a| < €}, then we have

A —//X e { ! —i—H(x,a))gv—va(—l%-H(x,a)) as

4r|x — al n on" A4rn|x — a

//x al= [ 47r|x—algz +088n(4ﬂ|x1_a|)] ds
//|x e [H( )g:b - UaanH(x,a)} ds
I e ma - vanG ) ax = via)

Here we use the representation formula (7.2.1) and % = —%. So lin% A =v(a) = G(a,b). O
e—

Exercise 7.4

1. By (i), we know that G(z) is a linear function in [0, zo] and [z,!]. Since (ii) and G(x) is continuous at

g, we have
G(2) kx, 0 <z < xp;
xr) =
ko (p—1), xg<z <l

zo—1

Hence, G(z) + 3|z — o] is harmonic at zq if and only if

= (Ga) + gl — ol

Zo g

(C(x) + gl — zol)

if and only if
[ — i)

k=
l
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So the one-dimensional Green’s function for the interval (0,7) at the point xo € (0,1) is

l—x .
G(x)—{ e, 0<x<xg;

—(x—=1), zo<z<lL

2. Assume that h(z, ) is a continuous function that vanished outside {(z,y)|z%+%? < R?} and |h(z,y)| < M.
Then by the formula (3), we have

[u(xo, Yo, 20)| <

Y=

/ / (& — 20) + (y — 0)? + 2] 2 dudy

{(zy)|z2+y2<R?}
MR?
., when /23 + y3 —i—zg > R.
2z +ys + 25 — R)®

Therefore, u satisfies the condition at infinity:

u(x) — 0, as |x| — oo. O
3. From (3), we have
20 _3
u(z0, Yo, 20) = o //[(az —20)2 4 (y — y0)? + 28] "2 h(z,y)dzdy

<0 2 2 212

= o [ "+ + 2] h( + w0,y + yo)dudy.

Now we change variables such that © = zpscosf, y = zgssinf. Then
2m
u(xo, Yo, 20) z s2 4+ 22 h zps cos 0 + xg, zpssin 6 + yg 22s dsdf
2 0 0) 0
0
27r

/ s +1)” 2h(zos cos 0 + xg, zossin 0 + yo) dsdf.

T or
Since -
o0
/ s(s? + 1)_%(15 = (s + 1)_% .= 1,
0

lim u(x()v Yo, ZO) = h('CUOv ?JO)7

ZU—)U
if the limit can be taken in the integration, for example, when h(z,y) is bounded. O

5. Here is one of suggested explains.
Since the half-plane {y > 0} is not bounded, this only means that the solution is not unique under the
(uncompleted) boundary condition or it is not a well-posed problem. But generally it will be a well-posed
problem if we add another boundary condition, such as

u(x) — 0, as |x| — oo. O
6. (a) Using the method of reflection, as in the dimension three, we have
G(x, %0) = o= log x — xo| — = log |x — X}
X, %) = 5 log |x — xo| — o log|x —xg|,

where x = (a:,y), X0 = (l’o,yo), XS = (xo, —yo)-
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(b) Since

oG Y+ Yo B Y — Yo

Oy 2 —w0)2+ (y+w0)?]  27(z —20)2 + (¥ — y0)?]
Yo
m[(z — 20)? + v

on y = 0, the solution is given by

u(zo, yo) = 3?/( hz) dzx.

xr — xo)Q +y§

(c) By (b), we have

s

h 1 1
u(wo,yo) = % / @—20)? + 12 () sdx = / dr = 1. 0
0

1,z r LT
wp =~ (), uy = == f'(5).
Sy (y) VA (y)
1 T T T 2r ., x
U +u :7(}('//7 7f”* _’_7 /7‘
T vy y2 (y) y4 (y) yg (y)

So f has to satisfy the following ODE

(L+ 2 f"(t) + 2t f'(t) = 0.

t
f(t) :/0 . f82d3+b = aarctant + b,

where a, b are contants.

(b)
ou _Oudzx Oudy 1,z x z .,y
81"_8J:3T+8y37‘_yf(y)7“ y? (y) =0

(c¢) Using the polar coordinate,
v(r,0) = cf + d,

where ¢, d are constants. So in the (x,y)-coordinate, we have

v(z,y) = carctan Yia
x

(@ By (a), ) )
u(z,y) = f(—) = aarctan — + b.
(z,y) (y) ;
a+b, x> 0;
h(z) = lim u(z,y) = < b, x =0;
y—0
—5a+b, =<0.

(e) By (d), we see that h(z) is not continuous unless u is a constant. This agrees with the condition

that h(z) is continuous in Exercise 6. O
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9. Here the methof of reflection is used. Let xg = (¢, 30, 20) such that axo+ by + czp > 0, then its reflection
point x(, = (x(, ¥, 2(,) about the hyperplane {ax + by + cz = 0} satisfies

xy = T0 — 227a(a330 + byo + c20),
a? 4+ b% + 2

Yo = Yo — 2276(ax0 + byo + c20),
a? 4 b2 4 2

20 =20 — #(axo + byo + cz0).
a2+ b% + c2

So the Green’s function for the tilted half-space {(z,y,2) : azx + by 4+ cz > 0} is given by
1 1

a __ . O
(%0 =~ o] T Ik =)
10. In case xg, the formula for the Green’s function is
1 1
G(x,0) = — —
(x,0) 47 x| + 4dma
since _ﬁ + ﬁ € C? and is harmonic in B,(0), except at the point x = 0; [—ﬁ + ﬁ] Xl = 0;
and [—ﬁlx‘ + ]+ ﬁ is harmonic at 0. O
13. Let xg € D, then we have
1 1

G(x,x0) =

- +
drlx — x| = 47|rox/a — axg/To|

is the Green’s function at x¢ for the whole ball, where a is the radius and 9 = |xg|.

Let x{, = (0, Y0, —20), then

1 1
- +
dr|x —xp| - Arm|rox/a — ax(/ro|

G(x,x() =

is the Green’s function at x;, for the whole ball. Note that G(x,x¢) = G(x,x) on 9D and G(x,xj) is a
harmonic function on D. Hence, G(x,x¢) — G(x,x() is the Green’s function for D by the uniqueness of
the Green’s function. O

15. (a) If v(z,y) is harmonic and u(x,y) = v(2? — y2, 22y), then
Uy = 200z + 2Yvy, Uy = —2Yvy + 220y,
Thus

Uggy + Uyy = 2u; + 4$2U:m: + 41’yvmy + 4a7yvyx + 4y2vyy
— 2u; + 43/21)m — 4ArYvyy — 4TYVy, + 4x2vyy
= 4(2® + y?) (Ve + Vyy) = 0.

(b) Using the polar coordinates, the transformation si
(rcos B, rsinb) — (r? cos 26,72 sin 26).

Therefore, it maps the first quadrant onto the half-plane {y > 0}. Note that the transformation is
one-one which also maps the xz-positive-axis to x-positive-axis and y-positive-axis to z-negative-axis.

O
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17.

(a) Here the method of reflection is used and you can also use the result of Exercise 155 to find the

Green’s function for the quadrant Q. Let xg = (20,y0) € @, x§ = (—z0,y0), X = (0, —yo) and

x) = (—z0, —yo). Then it is easy to verify that

1 1
G(x,%0) = %logb{ — x| — %log\x - x}

is the Green’s function at xg for the quadrant Q.
(b) (Extra Problem 3)

oG oG

6777/ z=0,y>0 N _8? N ?
oG oG yo
877’1 z>0,y:0 8y ™

By formula (1) in Section 7.3 in the textbook,

w0 = [ u

bdy D

) & 1
_ W/O Ol —

3GXX0)dS

[x = xg/?

1 1
0\—%10g]x—xg|+%log\x—x8\

1 1

)

- o2  Jx—
1 1

x|

>d+y°/0 0| —

K w0l = x

)dx O

|x — x]|? |x—x8|2

19. Consider the four-dimensional laplacian Au = uzy + Uyy + Uz + Uyew. Show that its fundamental solution

is 772, where 72

20.

=22+ y? + 22 + w?. proof: Direct computation according to its definition. O

Using the conclusion in 17 and 20, we have the singular part of the Green function is —<—|x — xo| 72,

8wy

where wy is the volume of S3, x = (x,%, z,w) and X¢ = (0, Yo, 20, wo). So the Green function is

1

1
= x| x — x| 2

8wy 8wy

where x; = (20, Yo, 20, —Wo). O

21. By the formula (2)(3) in Section7.3, we get

ON
since on

/ /bdyD 8“

= 0 on the boundary. Thus we proved the following theorem:

If N(x,x¢) is the Neumann function, then the solution of the Neumann problem is given by the formula

/ AdyD on

22. (Extra Problem 4)By the formula (4) in Section?7.4,

=/ L

Ve,

0 |x—x0o®

If the bounded condition is dropped, then we have v = u + az where @ is arbitrary real number is also a

solution.



