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Suggested Solution to Assignment 7

Exercise 7.1

1. Suppose there exists one non-constant harmonic function u in D, which attains its maximum M at x0 ∈ D.
Then by the mean value property, we have

u(x0) =
1

|B(x0, r)|

∫∫
B(x0,r)

udS,

for all B(x0, r) ⊂ D. Thus u(x) = M for all x ∈ B(x0, r) ⊂ D since u is continuous and M is its
maximum.

Now since u is not a constant, there exists x1 ∈ D such that u(x1) 6= u(x0). Since D is a region,
we can find a continuous a curve γ(t) ⊂ D (0 ≤ t ≤ 1) such that γ(0) = x0 and γ(1) = x1. Set
E := {0 ≤ t ≤ 1|u(γ(t)) = M}, then E is closed since u and γ are both continuous. Let t0 ∈ E, then by
the above result, u(x) = M for all x ∈ B(γ(t0), r) ⊂ D. So E is open. Hence, E = [0, 1] since E 6= ∅ and
[0, 1] is connected. But this contradicts to u(x1) 6= u(x0) and then we complete the proof. �

2. Suppose u1 and u2 are solutions of the problem. Then u = u1 − u2 satisfies

∆u = 0 in D,
∂u

∂n
= 0 on ∂D.

Thus, by the Green’s first identity for v = u, we have∫∫
∂D

u · ∂u
∂n

dS =

∫∫∫
D
|∇u|2dx +

∫∫∫
D
u∆udx.

Hence, ∫∫∫
D
|∇u|2dx = 0.

Therefore, ∇u ≡ 0 and then u(x) is a constant. �.

3. Suppose u1 and u2 are solutions of the problem. Then u = u1 − u2 satisfies

∆u = 0 in D,
∂u

∂n
+ au = 0 on ∂D.

Thus, by the Green’s first identity for v = u, we have∫∫
∂D

u · ∂u
∂n

dS =

∫∫∫
D
|∇u|2dx +

∫∫∫
D
u∆udx.

Hence, ∫∫∫
D
|∇u|2dx = −

∫∫
∂D

au2dS.

Since a(x) > 0, ∇u ≡ 0 and then u(x) is a constant C. So by the Robin boundary conditions, we have
Ca(x) = 0. This shows that C = 0 and u ≡ 0. �.

4. Suppose u1 and u2 are solutions of the problem. Then u = u1 − u2 satisfies

ut − k∆u = 0 in D × (0,∞), u = 0 on ∂D × (0,∞), u(x, 0) = 0 in D.

Thus, by the Green’s first identity for v = u, we have∫∫
∂D

u · ∂u
∂n

dS =

∫∫∫
D
|∇u|2dx +

∫∫∫
D
u∆udx.
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Therefore, by the diffusion equation

0 =

∫∫∫
D
|∇u|2dx +

1

k

∫∫∫
D
uutdx

=

∫∫∫
D
|∇u|2dx +

1

2k

d

dt

∫∫∫
D
u2dx.

Define E(t) :=
∫∫∫

D u
2dx, then the above equality implies d

dtE(t) ≤ 0. Note that E(0) = 0 and E(t) ≥ 0,
we have E(t) ≡ 0. So we obtain u ≡ 0 and the uniqueness for the diffusion equation with Dirichlet
boundary conditions is proved. �.

5. Suppose u(x) minimizes the energy. Let v(x) be any function and ε be any constant, then

E[u] ≤ E[u+ εv] = E[u] + ε

∫∫∫
D
∇u · ∇vdx− ε

∫∫
∂D

hvdS + ε2
∫∫∫

D
|∇v|2dx.

Hence, by calculus ∫∫∫
D
∇u · ∇vdx−

∫∫
∂D

hvdS = 0

for any function v. By Green’s first identity,

−
∫∫∫

D
∇u · vdx +

∫∫
∂D

v · ∂u
∂n
dS −

∫∫
∂D

hvdS = 0.

Noting v is an arbitrary function, let v vanish on ∂D firstly and then the above equality implies −∆u = 0
in D. So the above equality changes to∫∫

∂D
v · ∂u

∂n
dS −

∫∫
∂D

hvdS = 0.

Since v is arbitrary,
∂u

∂n
= h on ∂D and then u(x) is a solution of the following Neumann problem

−∆u = 0 in D,
∂u

∂n
= h on bdy D.

Note that the Neumann problem has a unique solution up to constant and the functional E[w] does not
change if a constatn is added to w, thus it is the only funtion that can minimize the energy up to a
constant.

Note that here we assume functions u, v and the domain D are smooth enough, at least under which the
Green’s first identity can be hold. �

6. (a) Suppose u1 and u2 are solutions of the problem. Then u = u1 − u2 tends to zero at infinity, and is
constant on ∂A and constant on ∂B, and satisfies∫∫

∂A

∂u

∂n
dS = 0 =

∫∫
∂B

∂u

∂n
dS.

Suppose that u 6= 0, then without loss of generality, we assume that there exists x0 ∈ D̄ such that
u(x0) > 0. Since u tends to zero at infinity, so there exists R� 1 such that u(x) ≤ u(x0)

2 if |x| ≥ R.

Then u is a harmonic function in D ∩B(0, R) and max
∂B(0,R)

u ≤ u(x0)
2 ≤ u(x0) ≤ max

D∩B(0,R)
u. Thus, the

maximum is attained on ∂A or ∂B by the Maximum Principle. WOLG, we assume that u attain
its maximum on ∂A and then by any point of ∂A is a maximum point since u is constant on ∂A.
Hence, by the Hopf maximum principle, ∂u/∂n > 0 on ∂A, but this contradicts to the condition∫∫

∂A

∂u

∂n
dS = 0.

Therefore, u ≡ 0 and then the solution is unique.
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(b) If not, then u(x) have a negative minimum. As above, by the Minimum Principle, we get that u
attains its minimum on ∂A or ∂B. WOLG, we assume that u attains its minimum on ∂A, then
∂u
∂n < 0 by the Hopf principle since u is not a constant. But this contradicts to

∫∫
∂A

∂u
∂ndS = Q > 0.

So u ≥ 0 in D,

(c) Suppose that there exists x0 ∈ D such that u(x0) = 0. Then by (b) and the Strong Minimum
Principle, u is a constant in D. But this contradicts to

∫∫
∂A

∂u
∂ndS = Q > 0. So u > 0 in D.

(Actually , we can prove that u > 0 on ∂A and ∂B by the Hopf principle again as in (b)). �

7. (Extra Problem 1) Suppose u1 and u2 are solutions of the problem. Then

4(u1 − u2) = u3
1 − u3

2 = (u1 − u2)(u2
1 + u1u2 + u2

2) in D

∂(u1 − u2)

∂n
+ a(x)(u1 − u2) = 0 on ∂D

Thus,

0 ≤
∫
D

(u1 − u2)2(u2
1 + u1u2 + u2

2) =

∫
D

(u1 − u2)4(u1 − u2)

=

∫
∂D

(u1 − u2)
∂(u1 − u2)

∂n
−
∫
D
|Du1 −Du2|2

= −
∫
∂D

a(x)(u1 − u2)2 −
∫
D
|Du1 −Du2|2 ≤ 0

since a(x) ≥ 0. ⇒
∫
D(u1 − u2)2(u2

1 + u1u2 + u2
2) = 0⇒ u1 = u2 in D

8. (Extra Problem 2) (a)

E[u] :=

∫
D

1

2
(|Du|2 + b(x)u2) + f(x)u

(b)If u is a solution, then ∀v ∈ C2
0 (D), 0 =

∫
D −v4u + b(x)uv + f(x)v =

∫
DDu ·Dv + b(x)uv + f(x)v

⇒ ∀w ∈ C2(D), w = h on ∂D, take v = w − u,

E[w] =

∫
D

1

2
|Dv|2 +

1

2
|Du|2 +Dv ·Du+

1

2
b(x)v2 +

1

2
b(x)u2 + b(x)uv + f(x)v + f(x)u

=

∫
D

1

2
|Dv|2 +

1

2
b(x)v2 + E[u]

≥ E[u]

since b(x) ≥ 0.

Conversely,∀v ∈ C2
0 (D), ∀t ∈ R, w := u+ tv ∈ C2, w = u = h on ∂D

⇒ 0 =
d

dt
E[u+ tv]

∣∣
t=0

=

∫
D
Du ·Dv + b(x)uv + f(x)v

⇒
∫
D
v(−4u+ b(x)u+ f(x)) = 0, ∀v ∈ C2

0 (D)

⇒ −4u+ b(x)u+ f(x) = 0 in D

3



MATH 4220 (2016-17) partial diferential equations CUHK

Exercise 7.2

2. Let r = |x| and Dε := {x|ε < r < R}, where R is large enough such that φ = 0 outside r < R/2. Using
the Green’s second identity,∫∫∫

Dε

1

|x|
∆φ(x)dx =

∫∫
∂Dε

[
1

|x|
· ∂φ
∂n
− φ · ∂

∂n

1

x

]
dS

=

∫∫
|x|=R

[
1

|x|
· ∂φ
∂n
− φ · ∂

∂n

1

x

]
dS +

∫∫
|x|=ε

[
1

|x|
· ∂φ
∂n
− φ · ∂

∂n

1

x

]
dS

=−
∫∫
|x|=ε

[
1

ε
· ∂φ
∂r

+ φ · 1

c2

]
dS = −4πφ− 4πε

∂φ

∂r
,

where φ denotes the average value of φ on the sphere {r = ε}, and ∂φ
∂r denotes the average value of ∂φ

∂r on

this sphere. Since φ is continuous and ∂φ
∂r is bounded,

−4πφ− 4πε
∂φ

∂r
→ −4πφ(0) as ε→ 0.

Hence,

φ(0) = −
∫∫∫
|x|<R

1

|x|
∆φ(x)

dx

4π
. �

3. Choosing D = B(x0, R) in the representation formula (1) and using the divergence theorem,

u(x0) =

∫∫
∂B(x0,R)

[
−u(x) · ∂

∂n
(

1

|x− x0|
) +

1

|x− x0|
· ∂u
∂n

]
dS

4π

=

∫∫
|x−x0|=R

[
1

R2
u(x) +

1

R

∂u

∂n

]
dS

4π

=
1

4πR2

∫∫
|x−x0|=R

udS +
1

4πR

∫∫∫
|x−x0|<R

∆udx

=
1

4πR2

∫∫
|x−x0|=R

udS. �

4. (Extra Problem) ∀φ(x) ∈ C2
c (R2), we need to show that

φ(0) =

∫ ∫
R2

log |x|4φ(x)
dx

2π

proof: Let r = |x| and Dε := x : ε < r < R, where R is large enough such that φ = 0 if r ≥ R/2. Using
the Green’s identity, ∫ ∫

Dε

log |x|∆φ(x)dx =

∫
∂Dε

[log |x|∂φ
∂n
− φ∂

∂
log |x|]dS

=

∫
|x|=ε

[log |x|∂φ
∂n
− φ∂

∂
log |x|]dS

= −
∫
|x|=ε

[log ε
∂φ

∂r
− φ1

ε
]dS

= 2πφ̄− 2πε log ε
∂̄φ

∂r
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where φ̄, ∂̄φ
∂r denote the average value of φ, ∂φ

∂r on the sphere |x| = ε. Since φ is continuous and ∂φ
∂r is

bounded,

2πφ̄− 2πε log ε
∂̄φ

∂r
→ 2πφ(0), as ε→ 0

Exercise 7.3

1. Suppose G1 and G2 both are the Green’s functions for the operator −∆ and the domain D at the point

x0 ∈ d. By (i) and (iii), we obtain that G1(x) +
1

4π|x− x0|
and G2(x) +

1

4π|x− x0|
both are harmonic

functions in D. Thus, by (ii) and the uniqueness theorem of harmonic function, we have

G1(x) +
1

4π|x− x0|
= G2(x) +

1

4π|x− x0|
,

that is, the Green’s function is unique. �

3. In the textbook,

Aε =

∫∫
|x−a|=ε

(u
∂v

∂n
− v ∂u

∂n
)dS,

where u(x) = G(x,a) and v(x) = G(x,b). Note that

u(x) = G(x,a) = − 1

4π|x− a|
+H(x,a)

, where H(x,a) is a harmonic function throughout the domain D. What’s more, v(x) = G(x,b) is a
harmonic function in {|x− a| < ε}, then we have

Aε =

∫∫
|x−a|=ε

[
(− 1

4π|x− a|
+H(x,a))

∂v

∂n
− v ∂

∂n
(− 1

4π|x− a|
+H(x,a))

]
dS

=

∫∫
|x−a|=ε

[
− 1

4π|x− a|
∂v

∂n
+ v

∂

∂n
(

1

4π|x− a|
)

]
dS

+

∫∫
|x−a|=ε

[
H(x,a)

∂v

∂n
− v ∂

∂n
H(x,a)

]
dS

= v(a)−
∫∫∫

|x−a|<ε
[H(x,a)∆v − v∆H(x,a)] dx = v(a).

Here we use the representation formula (7.2.1) and ∂
∂n = − ∂

∂r . So lim
ε→0

Aε = v(a) = G(a,b). �

Exercise 7.4

1. By (i), we know that G(x) is a linear function in [0, x0] and [x0, l]. Since (ii) and G(x) is continuous at
x0, we have

G(x) =

{
kx, 0 < x ≤ x0;
kx0
x0−l (x− l), x0 < x < l.

Hence, G(x) + 1
2 |x− x0| is harmonic at x0 if and only if

(G(x) +
1

2
|x− x0|)′

∣∣∣
x−0

= (G(x) +
1

2
|x− x0|)′

∣∣∣
x+0

,

if and only if

k =
l − x0

l
.
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So the one-dimensional Green’s function for the interval (0, l) at the point x0 ∈ (0, l) is

G(x) =

{
l−x0
l x, 0 < x ≤ x0;

−x0
l (x− l), x0 < x < l.

�

2. Assume that h(x, y) is a continuous function that vanished outside {(x, y)|x2+y2 ≤ R2} and |h(x, y)| ≤M .
Then by the formula (3), we have

|u(x0, y0, z0)| ≤ M

2π

∫∫
{(x,y)|x2+y2≤R2}

[(x− x0)2 + (y − y0)2 + z2
0 ]−

3
2dxdy

≤ MR2

2(
√
x2

0 + y2
0 + z2

0 −R)3
, when

√
x2

0 + y2
0 + z2

0 > R.

Therefore, u satisfies the condition at infinity:

u(x)→ 0, as |x| → ∞. �

3. From (3), we have

u(x0, y0, z0) =
z0

2π

∫∫
[(x− x0)2 + (y − y0)2 + z2

0 ]−
3
2h(x, y)dxdy

=
z0

2π

∫∫
[x2 + y2 + z2

0 ]−
3
2h(x+ x0, y + y0)dxdy.

Now we change variables such that x = z0s cos θ, y = z0s sin θ. Then

u(x0, y0, z0) =
z0

2π

∫ 2π

0

∫ ∞
0

(z2
0s

2 + z2
0)−

3
2h(z0s cos θ + x0, z0s sin θ + y0)z2

0s dsdθ

=
1

2π

∫ 2π

0

∫ ∞
0

s(s2 + 1)−
3
2h(z0s cos θ + x0, z0s sin θ + y0) dsdθ.

Since ∫ ∞
0

s(s2 + 1)−
3
2ds = −(s2 + 1)−

3
2

∣∣∣∞
0

= 1,

lim
z0→0

u(x0, y0, z0) = h(x0, y0),

if the limit can be taken in the integration, for example, when h(x, y) is bounded. �

5. Here is one of suggested explains.
Since the half-plane {y > 0} is not bounded, this only means that the solution is not unique under the
(uncompleted) boundary condition or it is not a well-posed problem. But generally it will be a well-posed
problem if we add another boundary condition, such as

u(x)→ 0, as |x| → ∞. �

6. (a) Using the method of reflection, as in the dimension three, we have

G(x,x0) =
1

2π
log |x− x0| −

1

2π
log |x− x∗0|,

where x = (x, y), x0 = (x0, y0), x∗0 = (x0,−y0).

6
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(b) Since

−∂G
∂y

=
y + y0

2π[(x− x0)2 + (y + y0)2]
− y − y0

2π[(x− x0)2 + (y − y0)2]

=
y0

π[(x− x0)2 + y2
0]

on y = 0, the solution is given by

u(x0, y0) =
y0

π

∫
h(x)

(x− x0)2 + y2
0

dx.

(c) By (b), we have

u(x0, y0) =
y0

π

∫
h(x)

(x− x0)2 + y2
0

dx =
1

π

∫
1

x2 + 1
dx = 1. �

7. (a) If u(x, y) = f(
x

y
), then

ux =
1

y
f ′(

x

y
), uy = − x

y2
f ′(

x

y
).

uxx + uyy =
1

y2
f ′′(

x

y
) +

x2

y4
f ′′(

x

y
) +

2x

y3
f ′(

x

y
).

So f has to satisfy the following ODE

(1 + t2)f ′′(t) + 2tf ′(t) = 0.

f(t) =

∫ t

0

a

1 + s2
ds+ b = a arctan t+ b,

where a, b are contants.

(b)
∂u

∂r
=
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r
=

1

y
f ′(

x

y
)
x

r
− x

y2
f ′(

x

y
)
y

r
= 0.

(c) Using the polar coordinate,
v(r, θ) = cθ + d,

where c, d are constants. So in the (x, y)-coordinate, we have

v(x, y) = c arctan
y

x
+ d.

(d) By (a),

u(x, y) = f(
x

y
) = a arctan

x

y
+ b.

So

h(x) = lim
y→0

u(x, y) =


π
2a+ b, x > 0;

b, x = 0;

−π
2a+ b, x < 0.

(e) By (d), we see that h(x) is not continuous unless u is a constant. This agrees with the condition
that h(x) is continuous in Exercise 6. �
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9. Here the methof of reflection is used. Let x0 = (x0, y0, z0) such that ax0 +by0 +cz0 > 0, then its reflection
point x′0 = (x′0, y

′
0, z
′
0) about the hyperplane {ax+ by + cz = 0} satisfies

x′0 = x0 −
2a

a2 + b2 + c2
(ax0 + by0 + cz0),

y′0 = y0 −
2b

a2 + b2 + c2
(ax0 + by0 + cz0),

z′0 = z0 −
2c

a2 + b2 + c2
(ax0 + by0 + cz0).

So the Green’s function for the tilted half-space {(x, y, z) : ax+ by + cz > 0} is given by

G(x,x0) = − 1

4π|x− x0|
+

1

4π|x− x′0|
. �

10. In case x0, the formula for the Green’s function is

G(x,0) = − 1

4π|x|
+

1

4πa
,

since − 1
4π|x| + 1

4πa ∈ C
2 and is harmonic in Ba(0), except at the point x = 0; [− 1

4π|x| + 1
4πa ]

∣∣∣
|x|=a

= 0;

and [− 1
4π|x| + 1

4πa ] + 1
4π|x| is harmonic at 0. �

13. Let x0 ∈ D, then we have

G(x,x0) = − 1

4π|x− x0|
+

1

4π|r0x/a− ax0/r0|

is the Green’s function at x0 for the whole ball, where a is the radius and r0 = |x0|.
Let x′0 = (x0, y0,−z0), then

G(x,x′0) = − 1

4π|x− x′0|
+

1

4π|r0x/a− ax′0/r0|

is the Green’s function at x′0 for the whole ball. Note that G(x,x0) = G(x,x′0) on ∂D and G(x,x′0) is a
harmonic function on D. Hence, G(x,x0) − G(x,x′0) is the Green’s function for D by the uniqueness of
the Green’s function. �

15. (a) If v(x, y) is harmonic and u(x, y) = v(x2 − y2, 2xy), then

ux = 2xvx + 2yvy, uy = −2yvx + 2xvy.

Thus

uxx + uyy = 2vx + 4x2vxx + 4xyvxy + 4xyvyx + 4y2vyy

− 2vx + 4y2vxx − 4xyvxy − 4xyvyx + 4x2vyy

= 4(x2 + y2)(vxx + vyy) = 0.

(b) Using the polar coordinates, the transformation si

(r cos θ, r sin θ) 7→ (r2 cos 2θ, r2 sin 2θ).

Therefore, it maps the first quadrant onto the half-plane {y > 0}. Note that the transformation is
one-one which also maps the x-positive-axis to x-positive-axis and y-positive-axis to x-negative-axis.
�
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17. (a) Here the method of reflection is used and you can also use the result of Exercise 155 to find the
Green’s function for the quadrant Q. Let x0 = (x0, y0) ∈ Q, xy0 = (−x0, y0), xx0 = (x0,−y0) and
x0

0 = (−x0,−y0). Then it is easy to verify that

G(x,x0) =
1

2π
log |x− x0| −

1

2π
log |x− xy0| −

1

2π
log |x− xx0 |+

1

2π
log |x− x0

0|

is the Green’s function at x0 for the quadrant Q.

(b) (Extra Problem 3)

∂G

∂n

∣∣∣
x=0,y>0

= −∂G
∂x

=
x0

π
(

1

|x− x0|2
− 1

|x− x0
0|2

)

∂G

∂n

∣∣∣
x>0,y=0

= −∂G
∂y

=
y0

π
(

1

|x− x0|2
− 1

|x− x0
0|2

)

By formula (1) in Section 7.3 in the textbook,

u(x0) =

∫∫
bdy D

u(x)
∂G(x,x0)

∂n
dS

=
x0

π

∫ ∞
0

g(y)(
1

|x− x0|2
− 1

|x− x0
0|2

)dy +
y0

π

∫ ∞
0

h(x)(
1

|x− x0|2
− 1

|x− x0
0|2

)dx �

19. Consider the four-dimensional laplacian ∆u = uxx + uyy + uzz + uww. Show that its fundamental solution
is r−2, where r2 = x2 + y2 + z2 + w2. proof: Direct computation according to its definition. �

20. Using the conclusion in 17 and 20, we have the singular part of the Green function is − 1
8ω4
|x − x0|−2,

where ω4 is the volume of S3, x = (x, y, z, w) and x0 = (x0, y0, z0, w0). So the Green function is

− 1

8ω4
|x− x0|−2 +

1

8ω4
|x− x−0 |

−2,

where x−0 = (x0, y0, z0,−w0). �

21. By the formula (2)(3) in Section7.3, we get

u(x0) =

∫ ∫
bdyD

(u
∂N

∂n
− ∂u

∂n
N) =

∫ ∫
bdyD

−∂u
∂n
N

since ∂N
∂n = 0 on the boundary. Thus we proved the following theorem:

If N(x,x0) is the Neumann function, then the solution of the Neumann problem is given by the formula

u(x0) = −
∫ ∫

bdyD

∂u

∂n
N

22. (Extra Problem 4)By the formula (4) in Section7.4,

u(x0) =
z0

2π

∫ ∫
z=0

1√
x2+y2+1

|x− x0|3
dS.

If the bounded condition is dropped, then we have v = u+ az where a is arbitrary real number is also a
solution.
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