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Suggested Solution to Assignment 5

Exercise 5.1

2. (a)
1 .%'2 1 1 T
A, = 2/ 22 sinmrz do = —2--— COSTTLﬂ'CE‘ + — cosmrmx dx
0 mm o mm
2(—1)m+t N 4(—1)" — 4
- omm m3ms
(b) 1 2 1
1 4 4
Ay = 2/ 2% cosmmadr = 2 sinmwx‘ — | L sinmrads = ()" —5—- O
0 mm 0 o mm mem

4. To find the Fourier series of the function f(x) = |sinz|, we first note that this is an even function so that
it has a cos-series. If we integrate from 0 to m and multiply the result by 2, we can take the function sinx

instead of |sin x| so that
2 /7r . 4

ag = — sinzxdr = —.
0 ™

- =

2 [T —4 _ neven
an = / sinz cosnadr = { =797 .

™ Jo 0 nodd

Hence, we have

(@) 2 4(cos2x+cos4x+cos6x )

) =2_=

T wm22—-1 42-1 62-1

Substituting z = 0 and x = 7, we have

n=1
5. (a) From Page.109, we have
o0

21 MmrT

—_ -1 m+1 <" e
o mzl( ) mm l
Integration of both sides gives
212 MmnT

2 o
T
—=c+ -nm cos ——
2 Z( ) m2n2 l
m=1
The constant of the integration is the missing coefficient

2 1)y 27 6

(b) By setting x = 0 gives

R — 212

J— m

0= 6 + Z(_l) m2n2’
m=1
or .

2 _1ym+1
oy D™
12 m?2

m=1
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8. The key point in the problem above is to solve the following PDE problem.
Ut — Ugy =0,  u(z,0) =¢(x), u(0,t) =u(l,t)=0,
3 2
5 O<zr< 3
xr)=¢2% 3
¢() {3—336, %<$<1

Through a standard procedure of separation variable method, we obtain

2.2
_ —n Tt ;
t) = g ane sinnmz,

—y sin 22 so the solution T' = u(x,t) + . O

where a, = 2 fo ) sinnraxdr =
9. From Section 4.2.7, we see that the general formula to wave equation with Neu- mann boundary condition
is
o
1 .
u(z,t) = i(AO + Bot) + Z(A” cosnct + By, sinnct) cos nx,
n=1

where

1 .- 1 .
o(x) = §A0 + ; Apcosnx, P(zr) = §B0 + nzl neB,, cosna.

By further calculation, we have By = 1, By = i and the other coefficients are all zero. Hence, the solution
is
1 sin 2¢t cos 2z
t)==t+ —7——. O
u(@,t) = gt + 1

Exercise 5.2
1. (a)Odd, period= 27/aq;

(b)neither even nor odd nor periodic;

(c)even if m is even, odd if m is odd, and not periodic;
(d)even, not periodic;
(e)even, period= br;
(f)odd, not periodic.

2. Suppose a = p/q, where p, q are co-prime to each other. Then is is not difficult to see that S = 2¢r is a
period of the function. Suppose 2gm = mT', where T is the minimal period. Then

cosx + cos ax = cos(z + T') + cos(ax + aT).

Let z = 0, we have the above equality holds iff ¢/m, p/m are both integers. Therefore, m = 1. Hence, we
finish the problem. O

4. ¢p(x) = LA0 + 30° | (Ancos™™ + B,sin™F%) where A, = %fil ¢(x)cos™Fdr(n = 0,1,2,...) and B, =
%fll¢( )sin™Edx(n = 1,2,...).
(a)¢(z) is an odd function and cos™7* is an even function, thus, by (5), 4, = 0.
(b)é(x) is an even function and sin™* is an odd function, thus, by (5), B, =0

5. Let ay, = %fé ¢(z) sin ™. Then we have

> mmnx
= E QA sin T . ]
m=1
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7. The full series on (—7, ) is ¢(z') = L Ag+ 3.2 | (Apcosna’+ By sinnz’ where A, = L o(x)cosnzdr(n =
0,1,2,..) and B, = % [T p(x)sinnzdr(n =1,2,...). Set ' = (r/l)z we obtain ¢(z) = ¢((r/)x) = T Ao+
> ((Apcos™E + B, sin™) where A, = L [T o(x)cosnzdr = %fil o((m/1)x)cos(n(m /D) z)d((7/D)a) =
%fil ¢(z)cos™dz(n =0,1,2,..)and B, = 2 [ o(z)sinnadr = %fiz o((n/)z)sin(n(r/Dz)d((x/l)z) =
%fil P(x)sin™Edx(n = 1,2, ...).

9. ap = L([T p(a)sinnzdz + fO z)sinnzdz)= ([ ¢(z)sinnadr + [ ¢p(z — m)sin(n(z — 7))d(z — 7))=
%(foﬂ ¢(z)sinnxdx + fO ”gb( )sznrmdx) 0 1f n is odd.

10. (a) If ¢ is continuos on (0,1), ¢odq is continuous on (—I, 1) if and only if lim+ o(x) =
z—0

(b) If ¢(z) is differentiable on (0,1), ¢oaq is differentiable on (—[,1) if and only if zlg& ¢ (x) exists, since
@ 4q 1s an even function, so the only thing to avoid is an infinite discontinuity at « = 0.

(c) If ¢ is continuos on (0,1), even is continuous on (—I,1) if and only if xl_i)%l+ ¢(x) exists, since the only
thing to avoid is an infinite discontinuity at = 0.

(d) If ¢(x) is differentiable on (0,1), deven is differentiable on (—I,1) if and only if lim ¢'(z) =0, since

z—0+
/ . .
Doven 18 an odd function. O

Extra. w(0,t) = u(1,t) = 0 tells us we can do odd extension and periodic extension with period 2. Thus
define

B sin?(rz), € [2n,2n + 1]
Pe) = —sin’(rz), x€[2n—1,2n]

¢($):{$(1—x), x € [2n,2n + 1]

z(1+2x), =z€[2n—1,2n]

n=0,+1,+2,.... By d’Alembert’s formula,u(z,t) = %[¢(a: +2t) + Pp(x — 2t)] + fx“t s)ds solves
the problem.

Exercise 5.3

3. Since X (0) =0, the odd extension x(—z) = —X (z) for =] < x < 0, then X satisfies X" + A X =0,
X'(-)=X' ) Hence,

A= [(n+ %)ﬂ?/z?, X () = sin[(n + %)m/z], n=012 ..

Thus we botain the general formula to this equation

+ g)mct + 5)mct 41
u(m, t) = Z[An cos m + Bn sin (TL 2)7TC ]Sin (n 2)7r:c
n=0
1
By the boundry condition, we obtained that B, are all zero, while 4, = %fé sin (n+l2)7rm Cr de —
(_1)71 (n+§l)2ﬂ.2 .

5(a). Let u(x,t) = X (x)T'(t), then
~X"(z) = AX (1),

X(0) =0, X'(I) = 0.
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By Theorem 3, there is no negative eigenvalue. It is easy to check that 0 is not an eigenvalue. Hence,
there are only positive eigenvalues.
Let A = 82, B > 0, then we have

X(z) = Acos Bz + Bsin fz.

Hence the bounndary condtions imply

A =0, BBcospl=0.

8= W—Z%)W, n=20,1,2,...
So the eigenfunctions are
Xn(x):sinwl%)mv,nzo,l,l... O
6. Let X'(z) = AX(z), X € C, then
X(z) = e,
By the boundary condition X (0) = X (1), we have
e =1.

Hence,
An = 2nmi, X, (z) = e*™ n e 7.

/ X

Since, if m # n,

1
x)dx = / e2(n—m)mrig, ),
0

Therefore, the eigenfunctions are orthogonal on the interval (0, 1). O
8. If
Xi(a) — agX1(a) = Xj(a) — agXa(a) = 0,
and
X{(b) + apX7(b) = Xé(b) + apXa(b) =0,
then
(—X1X2 + X1.X3)[q = —X1(0)X2(b) + X1 (b) X3(b) + X1 (a)X2(a) — X1(a) X5(a)

= apX1(b) X2(b) — X1(b)apXa(b) + a, X1(a)Xa(a) — Xi(a)agXa(a) = 0. O

9. For j = 1,2, suppose that

X;(b) = aXj(a) + BXj(a)
X1(b) = vX;(a) + 6X(a).

Then,
(X1X2 — X1X3)[; = X1(b)Xa(b) — X1(b) X5(b) — X1(a) X2(a) + X1(a) X3(a)
= [vX1(a) + 6X](a)][aX2(a) + BX5(a)]
— [aX1(a) + BX](a)][vX2(a) + 0X5(a)] — X1 (a)X2(a) + X1(a)X5(a)
= (ad — By — 1)Xi(a)X2(a) + (1 + By — ad) X1(a) X3(a)
= (ad = By = 1)(X1X2)'|z=a-
Therefore, the boundary conditions are symetric if and only if ad — By = 1. ([l
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10. (a)(By induction)First, it is easy to check that Z, is orthogonal to Z;. Assume that Zi, Zs, ..., Z,, are
orthogonal to each other, and, by definition, Y41 = Xp11 — Y 51 (Xnt1, Zk) Zg. Thus, by assumption,
forl=1,2,...,n,

n

(Z1, Zn+1) = (Z1y Xn1) = Y (X Zk)(Z1, Z0) /| Yosr || = (Z1, Xnr) = (Z1y X))/ [ Yo || = 0,
k=1

(Zp+1, Zn+1) = 1. That is Z1, Zs, ..., Z, 41 are orthogonal to each other.

(b)
2
7 = COST + COS2T = (cosx + cos2x) /\/T,

\/foﬂ(cosx + cos2x)?dx

s
Yo = 3cosx — 4cos2x — 73 / (3cosx — 4cos2x) Zydx = T(cosx — cos2x) /2,
0

Zy = _r (cosz — cos2z)/\/T.
\/ Jo Yida
12. By the divergence theorem,
Flglt = /(’ d:v—/f" + (@) (@),
b
| @) / f(@)g (@)de+ gt O

13. Substitute f(z) = X(z) = g(z) in the Green’s first identity, we have

b b
/ X" (2)X (2)dz = — / X2 (2)dz + (X' X)) <0,

Since — X" = \X, so
b
—)\/ X2(z)dz < 0.

Therefore, we get A > 0 since X # 0. O

Exercise 5.4

1. The partial sum is given by
1— (_1)nx2n

S —
" 1422

a) Obviously for an ZTo ﬁxed S —> . Thus it converges to T3 p01ntw1se
Y Y 1+
0

(b) Let z, =1 — 1, then 2?" — 72 Thus it does not converge uniformly.

(c) It will converge to S(x) = ﬁ in the L? sence since

1 ) 1 m4n
n — dr = ——d
/1 150 = S"dw /1 (1+22)? !

1
< / " dx
1

—0 asn — oo. O

<
T 4dn+1
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2. This is an easy consequence combined Theorem 2 and Theorem 3 on Page 124 and Theorem 4 on Page
125. O

3. (a) For any fixed point xg, WLOG, we assume xy < % Then there is Ny such that for n > Ny,

<1 1
T —Z _ Z
0 2 n’

which implies that fn(zo) = 0. Thus f,(z) — 0 pointwisely.

(b) Let x, = 2 — 1 then f,(2,,) = —y» — —00, which implies that the convergence is not uniform.

(c) By direct computatlon, we have
1 1 1
2 PR 2~2
/fn )dx —/ 72d$+/ V2dxr = I
1.1 1 n
2
For ~, = n%,

/fz(a;)dx =273 >0 asn— oo.

(d) By the computation in (c), for 7, = n,

n

/fz(x)dx:Qn%oo as n — 0o. O

4. For odd n,

1%2dr = = — 0.

,M,_.\
| »Jz\r»—‘
Sw‘ - :m‘ —
3M '

For even n,

1%2dr = = — 0.

Mw\
| N

3 +
m‘ =

3[\3 ')

Thus, for any n,
2

gn (@) |72 = ol 0 as n— oo. O
2 3 .
5. (a) We see that Ay = %fl dr = é and A,, = %fg cos gt dr = —% sin 7%, So, the first four nonzero
4 VB g _@ 2z \f dnx
terms are 3, —Y2 cos B, —¥= cos =3* and fZ cos =F*.

(b) We can express ¢(z) = AO + > 0”1 (Ay cos 22 + By, sin 2Z%). by Theorem 4 of Sectiion 4, since ¢(z)
and its derivative is p1ecew1se continuous, so we get the fourier series will converge to f(x) except at
x = 1, while the value of this series at z =1 is %

(c) By corollary 7, we see that it converge to ¢(z) in L? sense.

_n3l
(d) Put x = 0, we see that the sine series Vanish it turns out to be that ¢(0) = %—? 2 1<m<oom£3n (177? cos
thus we obtain the sum of thee series is 3 f ]
6. The series is cosz =Y oo  apsinnz. If n > 1,
2 (7 1 1 —1 T 2n(1 -1H)"
an = / cos z sin nzdr = ——[Cos(n + Dz cosln )x] = 21+ (=1)")
T Jo T n+1 n—1 0 (n?2 —1)r
If n =1, a; = 0. The sum series is 0 if x = —7,0, 7. By Theorem 4 in Section 4, the sum series converges
to cos x pointwisely in 0 < z < m, and to —cosx for —7m < x < 0. O
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7.

8.

(a) Obviously ¢(z) is odd. Thus, its full Fourier series is just the Sine Fourier series, i.e.

o0
E B, sinnmx,
n=1

where B,, satisfies

! 2
B, = / o(x) sinnrrder = —.

-1 nm
(b) By (a), the first three nonzero terms are

2 1
—sin7wx, —sin 272, — sin 3nx.
T s 3

(c) Since
1 1
/ |p(z)[Pdx = 2/ (1—z)%dz <2,
-1 0
it cconverges in the mean square sense according to Corollary 7.
(d) Since ¢(z) is continuous on (—1,1) except at the point = 0. Therefore, Theorem 4 in Section 4
implies it converges pointwisely on (—1,1) expect at = 0.

(e) Since the series does not converge pointwise, it does not converge uniformly.

(a)f(x) = 23, f'(x) = 322, f"(x) = 62 exist and continuous on [0,1], f(0) = 0,f(l) = I* # 0 and
fé 28dx = 17 /7 is finite, thus, the Fourier sine series of f(z) converges pointwise on (0,1) and in the mean
square sense but not uniformly.

(b)f(x) = lx — 22, f'(x) = | — 2z, f"(z) = —2 exist and continuous on [0,1], f(0) = f(I) = 0 and
fé(lx — 22)2dx = 1°/30 is finite, thus, the Fourier sine series of f(x) converges pointwise, uniformly on
[0,{] and in the mean square sense.

(e)f(x) = 272, f'(x) = =223, f"(x) = 62~ exist and continuous on (0,1), do not exist when z = 0 and
fé r~4dz is not finite, thus, the Fourier sine series of f(x) converges pointwise on (0,7) but not in the
mean square sense nor uniformly.

Exercise 5.6

1.

(a) (Use the method of shifting the data.)
Let v(x,t) := u(x,t) — 1, then v solves

V¢ = Vg, 02(0,1) = v(1,t) =0, andv(z,0) = 2% — 1.

By the method of seperation of variables, we have

= 1
v(x,t) = Z:OAne(TH;)z’rzt cos[(n + 5)7@],
where )
A, = (1) (n + 5)_37r_3.
Hence,
- 1
u(z,t) =1+ Z Ape(nt3) cos|(n + 5)%1’],

n=0

where A,, is as before.
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(b) 1. O

2. In the case j(t) = 0 and h(t) = €, by (10) and the initial condition u,(0) = 0,
2nmk

f = t_ p=Ankty

wl) = mrrne© ¢
Therefore,
N 2nmk ¢ o ket nmx
$t:ZAk+1l2€_e ")smT. O
n:l
) el sin bz
5. It is easy to check that 15252 solves
vit = Pvge + €' sin bz, and v(0,t) = v(m,t) = 0.

Using the method of shifting the data, we have

t .. 5 o
u(z,t) = % + nz_:l(An cos(nct) + By, sin(nct)) sin(nx),
where
2 (7 1 ! 5)
- n =
An:—/ ———— sinbzsinnr dr = 1+ 25¢2 :
m™Jo 1+25¢c 5 otherwise
2 s
B, = ner )y [sin 3z — T 2582 sin 5z| sinnz dx
1 _
) - a=5
5e(1+25¢2)
0 otherwise

So the formula of the solution can be simplfied as

1 1 1
u(z,t) = 3 sin 3ct sin 3z + 1T <et — cos bet — e sin 50t> sin 5. O

8. (Expansion Method) Let

nmwx
t) = (1) sin —— |
u(z,t) nz:lu (t) sin l
ou > nmwx
1) = 3 vty sin T
n=1
0%u > nmx
2 (z,t) = nz::lwn(t) sin ——
Then
L ou nwT diy,
n(t) =7 | o;sin——de=—-,
on(t) =7 Oatsm LT
Loy nwe du,
W) =2 [ Elin MM gy = Din
wnlt) =7 | gz sin 7 —dr =5
_ 2 /l(m)Qu(x t) sin P + g(u sin ——— — "y cos —mm) l
oLy 1 ’ l 1 l l I 7o

= —Antn(t) — 2nml 2 (—1)" At,
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11.

where )\, = (nm/l)%. Here we used the Green’s second identity and the boundary conditions. Hence, by
the PDE u; = kuy, and the initial condition u(x,0) = 0, we get

duy, _
% = k[~ Anun(t) — 2nml~2(—1)"At],
un(0) = 0.
Hence,
n+1 2 1 e M
’U,n(t):( 1) 2nml™ A[rn—m‘i‘ )\2]€ ]
Therefore,
> t 1 e~ nkt nwT
— n+1 -2 .
u(z,t) = ;(—1) onml A[)\—n eI + 20 Jsin ==,
where \, = (nm/l)?.
The general solution is y,(t) = 01y1( )+ 02y2( ) + Y( ), where y;(t) = e V=Anl 4o (t) = e~V Al are a
fundamental set of solutions and Y (t) = —y; (¢ fo W(y1 y2 (S) ds+ya(t fo W(y1 y2 (S ds (here W (y1,y2)(s) =

y1(8)9h(s) ¥ (s)ya(s) = —2¢V/A, #om £ 0, g(s) = —2nml2((—1)"k(s)— h(s))+ fu(s)). The constant

c1 and cy are determined by the initial conditions.



