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Suggested Solution to Assignment 4

Exercise 4.1

2. The solution to this problem satisfies the following PDE

u = kugy, (0<z<l, 0<t<o0)
u(0,t) = u(l,t) =0
u(x,0) =

Following the process in Page 85 of the textbook, we have

(2 2 nnmx
E Ane ; kt T?

and the initial condition implies

1 —ZA blnmm

By the assumption, we have A,, = % for odd n and A,, = 0 for even ones. Then

_(@knmyey,  (2k — D)ma
)2kt \eh — L)L
g 2k “r 1 sin ;i . O

4. Let u(z,t) = T(t) X (x), we have

Hence,

Since 0 < r < 2mc/l, we get

t) = [Ay cos(v/—Ant/2) + By sin(v/—Ant/2)]e 2 n =12,

where A, = r? — (2nmc/l)? relative to the equation

nmc

M 4rA 4+ (—)? =0

Therefore |,
:ZA cos(y/—Ant/2) + By sin(y/—Ant/2)]e 2 sin ;m O

5. Let u(z,t) =T(t) X (z), we have
T// +7"T/ Xl/ )\
ceer x0T

Hence,
Ap = (nll)?, X(z) :sin?7 n=12---.

When n = 1, since 27¢/l < r < 4dze/l,

Ty (t) = Alexl'—t + Ble)‘l_t,
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where \f = are the roots of the equation A* + rA + (%)% = 0.

When n > 2,
t) = [An cos(v/—Apt/2) + By sin(x/—Apt/2)]e % n=1,2,- -,
where A,, = 72 — (2nmc/1)? relative to the equation A? + A + (27€)2 = 0.

Therefore ,

u(z,t) = [Ale’\ 1t BreM sm +Z (A cos(v/—Apt/2) + By sin(r/—Apt/2)]e /2 sin?_ .

6. Let u(z,t) =T(t) X (z), we have
tr' —27 X"
T X

Ao =n?, X(z) =sinnz, n=1,2,-- .

= )\,

The initial condition implies
tT' — 2T = —\T, T(0) = 0.

Therefore,
u(x,t) = ctsinx, for any constante,

are solutions. So uniqueness is false for this equation! O

Exercise 4.2

1. Let u(z,t) = T(t) X (x), we have

T/ X//
TX TN
The initial condition implies
—X"=)X,X(0)=X'(l) =0.
41 !
So by solving the above DE, the eigenvalues are [(nl2)7r]2 the eigenfunctions are X, (z) = sin (n l2)7ra:

forn=20,1,2,---, and the solution is

n ﬂ' l
Ze_[( +3) Pt g, (n +l2)7ra:‘ .

2. (a) This can be proved as above. Here we give another proof. Since X’(0) = 0, the we can use even
expansion, this is, X (—z) = X(z) for — <z <0, then X satisfies
—X"=XX, X(-1)=X(l) =0.
Hence,
1 1
An = [(n+ 5)71']2/l2, Xn(x) = cos[(n + i)ﬂx/l], n=0,1,2,---.
(b) Having known the eigenvalues, it is easy to get the solution

o0

t Dyret 1
Z A, cosi)mthnsin (n+l2)7rc cos (n+l2)7rx‘ O
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3. We just show how to solve the eigenvalue problem under the periodic boundary conditions; As before, let
u(x,t) =T(t) X (z),
7 X"
KT~ X
Solving T = —AkT gives T = Ae 7T . The general solutions of X” + AX = 0 are X = Ce’® 4+ De™ %,

where let A is a complex number and ~ is either one of the two roots of —\; the other one is —v. The
boundary conditions yield

—-A

Ce "+ D = Ce?' + De™ ! 4y (Ce ™ — D) = y(Ce? — De™ ).
Hence > = 1 and then

v ==4nmi/l, \=—~* = (nw/1)?, n=0,1,2,---

1

5 A =0
X (z) =4 2°7° oy .
Ancos@—ansin%,T:e_(””/l) bt n=1,2,---

Therefore, the concentration is

1 o
u(z,t) = §Ag -+ Z (An cos nlﬂ + B, sin n7lryc> o—(nm/D)2kt O
n=0

Exercise 4.3

1. Firstly, let’s look for the positive eigenvalues A = % > 0. As usual, the general solution of the ODE is
X (z) = Ccos Bz + Dsin fx.
The boundary conditions imply
C =0, DBcos(Bl)+ aDsin(pl) = 0.

Hence, tan(fl) = —g. The graph is omitted.

Seconddly, let’s look for the zero eigenvalue, i.e., X (z) = Az + B, by the boundary conditions, al +1 = 0.
Hence, A = 0 is an eigenvalue if and only if al +1 = 0.

Thirdly, let’s look for the negative eigenvalues A\ = —v? < 0. As usual, the solution of the ODE is
X (x) = C cosh(yz) + D sinh(yz).
Then the boundary condtions imply
C =0, Dycosh(vl) + aD sinh(vl) = 0.
Hence, tanh(yl) = —21. The graph is omitted. O
2. (a) If A\=0, then X(z) = Az + B. The boundary conditions imply
A—ayB=0, A+aq(Al+ B)=0.
These two equalities are equivalent to
aop + a; = —agayl.

Hence, A = 0 is an eigenvalue if and only if ag + a; = —agpayl.
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(b) By (a), we have X (x) = B(apx + 1), here B is constant. O

3. If A = —% < 0, we have
X (xz) = Ccoshyz + Dsinhvyz.

Hence,
X'(z) = Crysinhyz + Dy coshyx,

and the boundary conditions imply
D’y — CLQC = 0,
Cvysinh~l 4+ D~ cosh vl + a;[C coshyl + D sinh~vi] = 0.
Therefore, the eigenvalues satisfy

(ap + ar)y

tanhyl = — ,
! 72 + ao

and the corresponding eigenfunctions are

X(x) = Ccoshvyz + %C’ sinh vz,

where C' is a constant. O

4. It is easily known that the rational curve y = —(;LQOIC?O’Z has a single maximum at v = /aga; and is

monotone in the two intervals (0, \/apa;) and (y/apa;, 00). Furthermore,

ag + qp . , ag + qp
max =— >1, lim =0, for y'(0) = — .
(e y(7) = =5 Jaoa = Jim y(v) y'(0) o
Note that tanh -~/ is monotone in [0, 00),
. / ag + ay
tanh~y! < 1 when v € [0,00), lim tanh~l =1, and (tanh~l)'|,—o =1 > — )
Y—00 apay
Therefore, the rational curve y = —(,?20:;0’37 and the curve y = tanh~yl intersect at two points, that is,

there are two negative eigenvalue.

5. When \ = % > 0, 3 satisfies (10), i.e.

(ao + al),B

t | = .
an 6% — apq

Since y = tan 81 is monotonically increasing when 8 € ((n — 3)7/l, (n + $)7/l) (n=0,1,2,---) and

lim tan gl = —oo, lim  tan 8l = oo,
B—(n—3)m/l B—(n+3)m/l

(ag+ay)B
B2—apa;

while y =

is negative, monotonically increasing when 8 € (,/aga;, o) and

lim 7(% + )8

B—oo B2 — ap

the two curves intersects at infinite many points, that is, there are an infinite many number of positive
eigenvalues. The graph is similiar to the Figure 1 in Section 4.3 in the textbook but y = % is
positive first and then negative now. g
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Figure 1:

6. (a) If @ > 0, the case turns out to be case 1 in Section 4.3 and thus there are no negative eigenvalues;
if a = 0, the case turns out to be the Neumann boundary condition problem and thus there are no
negative eigenvalues, either;

2
if —2/1 < a <0, we have (tanh~l)'|y—o =1 < _Gota ——, using the same way as Exercise 4.3.4
apay a
above, we conclude that there is only one negative eigenvalue;
2
if a < —2I, we have (tanh~l)'|,—o =1 > — dota_ =2 and thus there are two negative eigenvalues.
aoay a
(b) Exercise 4.3.2 implies that A\ = 0 is an eigenvalue if and only if a9 + a; = —apal, i.e., a = 0 or
a= -2/l O
7. Under the condition ag = a; = a, the eigenvalue satisfies
2a03
A= /82, tan,@l = m
Hence, when a — co and “F < 3, < w, F% is negative and tends to 0. So Figure 1 in Section 4.3
implies
1
lim {ﬁn(a) - M} —0. O
a—00 l

8. (a)-(c)Please see Figure 1. (d)]ag| = |a1]| = oo.

9. (a) If A = 0, then X(z) = az + b for some constants a and b. Then the boundary conditions imply
a + b= 0. Therefore, Xo(x) = ax — a for some nonzero constant a.

(b) If A = B2, then X (z) = Acos Bz + Bsin Bz. Then the boundary conditions imply
A+ BB =0, Acos+ Bsinfs =0.

Since A, B can not both be 0, we have = tan j.
(c) omit.
(d) If A = —2, then X (z) = Ae¥® 4 Be™® and

A+ B+ Ay—By=0, Ae" + Be 7" =0.

. 1-— . . .
Then we find the coefficent matrix ;2_77 6_77 is always nonsingular(since €7 > %}Y when v > 0,
verify by yourself!), then a = b = 0. So we conclude that there is not any negative eigenvalue. g
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10. Let u(x,t) = X (z)T'(t), by the summary on Page 97, we can have

[e.e]
= Z(Cn cos fBpct+Dy, sin By,ct)(cos anJrZ)—O sin B,x)+(Co cosh yet+ Dy sinh yet) (cosh 7x+% sinhyz),
n=1

n

_ (aotar)y
72+a0al b

where 7 is determined by the intersection point of tanh [ = and the intitial conditions are

Z C(cos Brx + D0y Bnzx) + Co(coshyx + P ginh Yz,
Y

Bn

Z D, Bre(cos Brx —l— 0 sin Brnx) + Doyc(cosh ya + O sinh yx). O
Y

Bn

11. (a) By the wave equation,
dE (' 1
o [?ututt + Uz Ugt|dz

l
- / [utua:ac +uwu:vt]
0

l
= (utuz) 0

= ut(l, t)uzp(l,t) — ue (0, t)uz (0, 1).

The Dirichlet boundary conditions u(l, ) = u(0,t) = 0 imply w(I,t) = uz(I,t) = 0. Hence, & = 0.
(b) Same as above. Omit here.

(c) By the computation in (a) and the Robin boundary conditions, we can get that

dE !
TtR = Ut + aque(l, t)u(l, t) + apue(0, t)uy(0,t) = 0. O
12. (a) Let A =0, we have v(x) = Az + B. Since v(z) = Az + B sitisfy the boundary conditions for any A
and B, A =0 is a double eigenvalue.
(b) Let A = 32 > 0 and suppose 8 > 0, we have v(x) = C cos fz + Dsin Bz. Then boundary conditions

imply
Ccos Bl + Dsin Bl —

Dp=—-CpBsinBl + D cos Bl = ;

Therefore, eigenvalues A > 0 satisfies the equation
A\ = (2, sin Bl(—sin Bl + Bl) = (1 — cos Bl)>.
(c) Let v = %l V/\, then v is a root of the following equation

~sinvycosy = sin’ .

(d) By (c), we have siny = 0 or v = tan~y. So the positive eigenvalues are 4";72“2 and 442 /1?> where
Yo = tanvy, € (nm —m,nm — 5) for n =1,2,---. The graph is omitted here.

(e) By (a)and (d), for A = O the eigenfuntions are 1 and z; for A = 4”;”2, n=1,2, -, the eigenfunctions
are cos(Q"”) for A = l2 , where v, = tan~y, € (nm — m,nm — %71’), n=1,2,---, the eigenfunctions
are

29, . 2y
sin .

l l

Y, COS
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(f) From above, we have

— g 29 2Yn
u(x,t)zA—i-Bx—i-ZC’ne 2% [y, cos l sin ;i ]

n=1

> an?x2 2nmx
—I—E D,e 12 cos T
n=1

(g) By (f), we have lgn u(z,t) = A+ Bz since tli}m e Mt = 0. O
13. (a)By Example 2 in Section 1.3, we know that the string should satisfies uy = c*uz,. By the arguments
in Sections 1.4 and Newton’s laws of motion, we obtain the boundary conditions u(0,t) = 0 and uu (I, t) =
—kug(1,t).
(b)Let u(z,t) = X (x)T(t), then
X//(x) B T//(t)
X(x)  2T(t)
u(0,t) = 0 implies X(0) = 0 and c?uz,(I,t) = uy(l,t) = —kuy(l,t) implies 2 X" (1) = —kX'(l). The
eigenvalue problem is X”(z) = —AX (z) with the boundary conditions X (0) = 0 and ¢?X"(I) = —kX'(l).
(c)Let A = 32 > 0. Then X (z) = Acos(Bz) + Bsin(Bz). By boundary conditions, we obtain A = 0 and
kcos(Bl) = c*Bsin(pl). Thus, tan(Bl) = %, which has solutions n7/l < 3, < (n+1/2)7/l,n =0,1,2,....,
and the corresponding eigenfunctions are X, (x) = sin(S,x).

Y

15. Let A = 82, then

X(z) = Acos b + Bsin b

,0< o <a;
K1 K1
X (x) = Ccos B2z + Dsin ﬂpzx’ a<z<l
K2 K2
Hence, the boundary condtions imply
l l
A=0; CCOSBﬂ—f—DSinBﬁ:O;
K2 )
A cos Bpia + Bsin Bpia = (Ccos Bp2a + Dsin B'OQQ;
K1 K1 K2 K2
—A@ sin Bpia + B@ cos bpia = —C@ sin Bpaa + D@ cos Bpga.
K1 K1 K1 K1 Ko Ko K1 Ko

Hence, when the eigenvalue is positive, i.e. A\ = 82 > 0, 3 satisfies

[ —
1a I P2 o Bp2(l —a)
1 K2 K2

ﬂc b =0.
K

ot
K1

Let A =0, then the boundary conditions imply

X(x) Az 0<a<l;
€Tr) =
Bx—1) a<z<l.

Since X (x) should be differentiable at = a, such A and B can not exist except A = B = 0.
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Let A = —2 < 0, then

Bp1x Bp1x

X(z) = Acosh + Bsinh , 0< 2 <a;
K1 K1
X(x) = C cosh B2z + Dsinh 5p2337 a<z<l
Ko Ko
Hence, the boundary condtions imply
l l
A=0; Ccoshﬁﬁ—FDsinh@:O;
K2 K2
A cosh Bpia + Bsinh Bpia = (' cosh Bp2a + D sinh 5/)2a;
K1 K1 K2 k2
A@ sinh fpia + B@ cosh bpia = C@ sinh Bp2a + D@ cosh ﬁan.
K1 K1 K1 K1 Ko Ko K1 Ko

Hence, when the eigenvalue is negative, i.e. A = 52 > 0, 3 satisfies

l _
PLooen Bora 2 o Beal—a)
K1 R1 R2 R2

However, since the left handside is always positive. Therefore, there is no negative eigenvalues. O

16. Let A = #* > 0 where 3 > 0, and X (z) = A cosh Bz 4 Bsinh Bz + C cos fx + Dsin Bz. By the boundary

conditions na
)4, X, (x) = sin 5 = 1,2,---

nm nm

n = "7 > An:
p l (l

The details are as the following exercise. O



