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Suggested Solution to Assignment 3

Exercise 3.1

2. Let v(x,t) = u(x,t) — 1. Then v(x,t) will satisfy

vt = kvgg, v(z,0) =—1, v(0,t) =0.

Hence,

1 ®_@=y? (zt9)?
v(x,t) = — e~ dkt —e  akt |d
@t) == [ Jdy

T
= —-&r .
f( Tkt)
T

u(z,t) =v(x,t)+1=1—-8&r .
(@.6) = (a1 A=)

3. By the method of even reflection, we can translate the original problem for the half-line to the problem
for the whole line and then using the formula for the latter to obtain

1
Varkt

For the details, please see your textbook. O

w(z,t) = /O el /ARt o= M g )y

4. (a) With the rule for differentiation under an integral sign and the property of source function, v(z,t)
satisfies

v = kUgg, v(x,0) = f(z).

(b) By (a), w(x,t) satisfies
wy = kwge, w(z,0) = f'(x) — 2f(x).

(c¢) By the definition of f,

1—2x, x > 0;
-1 -2z, x<0.

f(2) —2f(z) = {

142z, >0
"(—z) —2f(—x) = ’ ’
Ji=o) J(=2) {14—21’, z < 0.

= —[f'(z) - 2f(2)].

Hence, f'(z) — 2f(x) is an odd function.
(d) Since w(z,0) is an odd function, using the conclusion in Exercise 2.4.11, w is an odd function of x.

(e) By (a), v(z,t) satisfies DE and IC. By (d), v(x,t) satisfies BC. Thus we have proved that v(z,t)
satisfies (1) for z > 0. Hence, using the assumption for the uniqueness, the solution of (1) is given

by
1 [
ut) = —— / e~ @/ gy
where

Ys y > 05
fly) = O
y+1, y<O.
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5. (a)Let f(x) =z for x > 0,= x+2/h for z < 0, v(z) be the functions in Exercise 4 and define w = v, — hv,
then w; = kwy, and w(x,0) = f'(z) — hf(x). By the definition of f(x), we can know that f'(z) — hf(z)
is an odd function. Thus, w is an odd function. Using the same argument in Exercise 4(e), we can obtain
the solution.

(b)Let f(x) = ¢(x) for z > 0,= F(x) for x < 0 (where F(z) need to be determined), v(z) be the functions
in Exercise 4 and define w = v, — hv, then w; = kwy, and w(x,0) = f'(x) — hf(z). By the definition of
f(z), in order that f’(z)—hf(x) is an odd function, we have to solve F'(x ) hF( )= —qb’( x)+ho(—x)
for z < 0. Solving the ODE, we obtain F(z) = (F(—1) 4 ¢(1))eh(1+2) — -2 f hz+y) ¢f () dy for
x < 0. Thus, for F'(x) defined as above, w is an odd function. Using the same argument in Exercise 4(e),
we can obtain the solution.

Exercise 3.2
1. By the method of even extension, we have

x+ct
U(I, t) = %[Qbeven(x + Ct) + ¢even($ - Ct)] + 210/ djeven(y)dy

ct

_ ) slé(z +ct) + oz —ct)] + o fxm y)dy, T > ct
slo(z +ct) + o(—z + ct)] + 5 0”“1/1( Yy + [y p(y)dy], 0 < a <t

It is similar for ¢t < 0.

2. We can do this problem by even extension, then we obtain the solution to this problem wu(x,t) =
B Yext(8)ds, where exi(s) = V for a < s < 2a, —2a < s < —a, and zero otherwise. Substi-

2¢c Jx—ct

tute t = 0,a/c,3a/2¢,2a/c,3a/c into this formula and we omit it. O

3. If the string is fixed at the end z = 0, then we have the homogeneous Dirichlet condition u(0,t) = 0.
Therefore the vibrations u(z,t) of the string for ¢ > 0 is given the odd reflection formula with initial date
f(z) and cf’(z), that is,

(2.1) = flx +ct) x> ct
= flx+ect)—flct—z) O0<x<ct

For details see the formulas (1)-(3) in section 3.2 of the book. O

5. Using the odd reflection method or formulas(2) and (3), we have

1, x > 2[t|;
u(x,t) =
0, x < 2[t|.

Hence the singularity is on the lines x = 2[¢|. ]

6. Since u(0,t) + au,(0,t) = 0, we can consider the function w(z,t) defined on the whole line

u(x,t) + aug(z,t) x > 0;
wie,t) = {0, r=0;
—ut(—z,t) — aug(—z,t), t<O0.

Here, u(0,t) + auz(0,t) = 0 enables w(z,t) is continuous and differentiable around x = 0. Since w(z,t)
is a linear combination of derivatives of u(x,t), it also satisfies the wave equation, that is,

2
Wit = C Wyy-
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By direct calculation,

V, x> 0;
w(z,0) = ¢(z) = {0, z = 0;
-V, z < 0.

wi(z,0) = g (2,0) 4 aigs(z,0) = gy (x,0) + aug(z,0)
= c292,(0) + ad,(V) = 0.

Then the d’Alembert’s formula implies

V, x> ct,

V/2, z=ct,
w(z, ) = %[qb(x Fet)4dle—ct)] =20, —ct<a<ct
-V/2 z=—ct,
-V oz < —ct.

Let o(s) = u(x + as,t + s), and then ¢'(s) = ut + auy = w(x + as,t + s), o(—t) = u(x — at,0) = 0 and
©(0) = u(z,t). Hence,

0
u(w,t) = / w(x + as,t + s)ds.

—t

Denote A = {(azl,tl);O S tl S t} = {(560,750);:60 = Cto,o S to S t} N {(ﬁo,to);l‘ — Ty = a(t — to),o S to S
t}(i.e. (x1,t1) is the point where the line xg = cto intersects the line x — z¢ = a(t — tp) when 0 < ¢ty < t)
and B = {(z2,12);0 < t; <t} = {(xo,t0); 20 = —cto,0 < to <t} N{(xo,t0);z— 0 = a(t —1y),0 <ty < t}.

Hence, when z > at, A = B = () and
0
u(z,t) = / Vds =Vt
—t

at —x at —x
when ct < x < at, t; = , tg = and
a— a—+c

’ fat —ct — 21 — (a2 2
u(x,t) :/ Vds+/ —Vds = V:E ¢ _Vat T _ % ax — (a® +c )t;
t

It _t a—c a-+c a? — c2
at —x
when 0 <z <ct, A=0,ty = and
a-+c
t2—t at — x
u(z,t) :/ —Vds =-V .
¢ a-+c

8. In the diamond-shaped region (0,0), we have ¢t < x <l —ct, 0 <t <1/(2c) and v(x,t) = 1/2¢(x + ct) +
1/2¢(x — ct) + 1/(2c¢) ffjcit (s)ds. In the diamond-shaped region (m,m), m > 1, we have ¢t — ml <
x<c—(m-=-Dl,ml—ct <x< (m+1)l—ct,(m—1/2)l/c <t < (m+1/2)l/c, and v(x,t) =
1/2¢(x+ct —ml) 4+ 1/2¢(z — ct + ml) + 1/(20)[[36 oty Y (8)ds —i—fHCt " (s)ds —I—fol (—s)ds] if m is

even, = —1/2¢(—x—ct+(m+1)l)—1/2¢(—z+ct —(m—1)1)+1/(2¢)| fo ds+f et (mo1y —Y(=s)ds+

i”l*d*(m“)l —w(—s)ds] if m is odd. In the diamond-shaped region (m,m — 1), m > 1, we have 0 < x <

ct—(m—1l, x <ml—ct,((m—1)l/c <t <ml/cand v(z,t) = =1/2¢(—x — ct +ml) + 1/2¢(x — ct +
ml) +1/Q2)[[2_ e ¥ () ds+ JERmmE_yy(—s)ds] if m is even, = 1/2¢(x + ct — (m — 1)I) — 1/2¢(—a
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ct —(m—1)I) +1/(2¢c)[f, aet=—(m-1)l P(s ds—i—f et (m—1)l —1)(—s)ds] if m is odd. In the diamond-shaped
region (m—1,m), m > 1 we have ct —(m—1)l <z <l, x >ml—ct, (m—1)l/c <t <ml/cand v(z,t) =
1/2¢(z+ct—ml)—1/2¢(—z+ct— (m—2)1)+1/(2¢)] ”Ct—mw (s)ds+ [2 et (m_ay —(—s)ds] if m is even,

= —1/2¢(—2—ct+(m+1)1)+1/26(x—ct+(m—1))+1/20)[fo_oy 1y P(8)ds+ [ 57 D —gp(—s)ds]
if m is odd.

10. u(x,t) = 1/2[cos(x + 3t) + cos(x — 3t)]

Exercise 3.3

1. Using the method of reflection and the formula (2) in Section 3.3, we have
se.t)= [ S v ot [ [ S0t ) oaalv s
= [ 18 =) = St -+ oty
/ / Sx—y,t—s)—S(x+y,t—9)|f(y,s)dyds,

where foqq(y, $) is the odd extension of f(y,s) w.r.t the variable y, and

1 o2
S(x,t) = me_m, t>0. O

2. Let V(z,t) = v(x,t) — h(t). Then V(x,t) will satisfy
Vi — kVye = f(x,t) — B/ (t) for0 <z <o0, 0<t< o0,
V(0,t) =0, V(z,0) = ¢(z) — h(0).
Using the result above, we have
Vi) = [ 156 = 9.0 = S+ 5.0l0) ~ hO)ldy
t 00
[ 18wt = s) = Syt = 9[F )~ H(B)dyds,
0o Jo
v(z,t) = h(t) + / [S(z —y,t) = Sz +y,1)][¢(y) — h(0)]dy
w86 vt =9~ St bt ) W s,
where foq4(y, s) and S(z,t) are shown above. O
3. Let W(z,t) = w(x,t) — zh(t). Then W (x,t) will satisfy
Wi — kW, = —xh(t) for0< oz <oo, 0<t< oo,

W, (0,t) =0, W(x,0) = ¢(x) — zh(0).
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Using the method of reflection of even functions, we have
W (z,t) / S(x =y, t)Peven(y dy+/ / S(x —y,t —$) feven(y, s)dyds
= [ 186 =)+ G+ .0l1800) ~ (01
/ / (x—y,t —s)+ Sz +y,t — s)][—yh'(s)]dyds,

w(z,t) = W(z,t) + zh(t),

2

where feven(y, s) is the even extension of f(y,s) in the variable y, and
I a2
e 1k, t > 0. O

Sta,t) = Varkt

Exercise 3.4

1. By the Theorem 1 in Section 3.4, we have

1 x+ct s act?’
u@,t) = 20//y5dyd8‘// oy VWE=% O
'\ s

2. By the Theorem 1 in Section 3.4, we have

1 z+c(t—s)
u(zx,t) = % // W dyds = / / o e dyds
A T—C S

ax act —act
e <e —|—2€ _1>’ 04 0:

_ a2c2
1,42 —
§t , a=0.

0

3. By the Theorem 1 in Section 3.4, we have

1 1 x+ct 1

u(z,t) = =[sin(x + ct) + sin(x — ct)] + / (14 s)ds+ — // cosy dyds
2 2¢ Jop_et 2c

A

= sinz cos(ct) + (v + 1)t + ciz cos x[1 — cos(ct)]. O
4. Let u; be the solution of the wave equation
U = gy + f, u(z,0) =0, uy(z,0) =0,
u9 be the solution of the wave equation
Ut = gy, u(z,0) = d(z), us(z,0) =0,
ug be the solution of the wave equation

Ugt = Ctige, u(z,0) =0, u(z,0) = Y(z).

Then u = uq +uo +ug is the unique solution for the original problem since the equation and conditions are
linear and the uniqueness of the wave equation. Note that uy, us, ug are terms for f, ¢ and i respectively.
Hence the solution of the original problem can be written in the sum of three terms, one each for f, ¢

and . O
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5. We write u(z,t) fo f;ti:cf y, s)dyds. Then by direct calculation, we have
I I
Uy =— | [f(z+ct—cs)— flx—ct+cs)lds, uzg, = / [f(x + ct —es) — f'(x — ct + cs)]ds,
2c 0 2c 0
1/t c [t ,
u =g [f(x +ct —cs)+ f(x — ct + cs)lds, utt:f(x)+§ [f'(x + ct —es) — f'(x — ct + es)]ds.
0 0

Hence, we have
2
Ut = CUgy + f

u(x,0) / / f(y,s)dyds =0,
26 x+cs

/ [f(z —ecs)+ f(x 4 cs)]ds = 0. O

u(z,0) = 5 ;

8. For arbitrary C2 function ¢, ¢ = & [**%y(y)dy. We have

2c Jx—ct

(Sl = [ (@ + ct) — (2 — )] = LS Ve

T2

— 5o [ $)ds =0, [A0] = [0() + ¥(a)] = (o)

So we conclude that
Sy — L =0, L(0)=0, £0)=I1. O

9. According to the definition of u(x,t) and the result above, we have

wn = S0 () + / Fi(t — 5 f(s)ds = /0 it — 5)f(s)ds

uy = (0 /%tt—s S:f(t)"‘/otfﬂtt(t_s)f(s)ds
s = /0 St = 3)f(5)ds

So we conclude that
0 0
Ut — Cguxz = f, 'LL(.%',O) = / y(_s)f(s)ds =0, ut(o) = / %(—S)f(s)ds =0 O
0 0

11. By the definition of u, u(z,0) = 0 since z > 0 = ¢t and u(0,t) = h(t) since x = 0 < c¢t. For = < ct,
ug = h"(t — x/c) = Puge. For x > t, uy =0 = gy
12. For zg > ctg > 0, integrate over A, where A is the region bounded by three lines

Lo = [({L‘O — cto, 0), (l‘o =+ cto, 0)], I, = [(1’0 =+ cto, 0), (x(], to)], Ly = [(l’o, to), (1‘0 — cto, 0)]

(see figure 6 in Page 76), by Green’s theorem, we have

// fdxdt = // Uy — Cugpdrdt = / —Puydt — wpdz
N N Lo+L1+L2
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On Lg,dt = 0,u(x fL —Ruydt — ugdy = — [Tt P(z)dx

xo—cto

On Li,x +ct = x9 —l— cto — dx + cdt = 0, —Puydt — wdr = cuzdx + curdt = cdu.

/ = c/ du = cu(xg,ty) — cod(xo + cto)
Ly Ly

By the same reasoning, ng =—c ng du = —cp(xg — ctp) + cu(zp, tp). Summing the three terms, we have
for

—ct

x+ct
u(:v,t):;[qb(ac—l—ct)—|—¢(.7c—ct)]—|—210/:C : w+210//f, if x> ct>0. (1)
A

For xg < ctg, integrate over A’, where A’ is the reflected region bounded by four lines
Lo = [(cto — 20, 0), (zo + cto, 0)], L1 = [(xzo + cto,0), (z0, to)],

L2 = [(1‘0, to), (0, to — xo/C)], L3 = [(0, to — J}()/C), (Cto — X, 0)]
(see figure 2 in Page 72), by Green’s theorem, we have

// fdzdt = // Uy — Cugpdrdt = / —Puydt — updx
A7 A7 Lo+L1+L2+L3

On Ly, dt = 0,us(x) = ¢(x). Hence, we have

xo+cto
/ —Pupdt — uydr = —/ Y(x)de,

cto—xo

/ / = cu(wo, to) — c(zo + cto),

c/ du = —ch(to — zo/c) + cu(zo, to),
Lo

|-

/L3 c/ du = c¢(cty — zo) — ch(ty — xo/c).

L3

N

Summing the four terms, we have

x+ct
u(x,t):;[qﬁ(x—i-ct)—gb(ct—a?)]—1/ 1/1+ht—— //f1f0<x<ct. (2)

2¢ t—x

13. By the result above, f =0, ¢(z) =z, ¥(x) = 0 and h(t) = t* imply that

[z + ct) + ¢z — ct)] +20f““«/}+20fff x>t >0
U = Lot et) — dlet )] — & [T G b2 4 L [[F O<a <
A/
K rz>ct>0 0
B s+ ({t—5)2 0<z<ct

14. Let v(z,t) = u(z,t) — zk(t). Then v satisfies

Uy — gy = —xk"(t),
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v(z,0) = —xk(0), v¢(z,0) = —2k'(0), v(0,t) = 0.
Then v,(0,t) = 0 enables us to have an even extension. So the solution of v is

x+ct

1 1
’U([IJ, t) = §[¢even<$ + Ct) + ¢even(x - Ct)] + 20/ weven + — / fevena

—ct

where Geven, Yeven and feven are the even extensions of ¢, 1) and f respectively. Finally, we can have

0 x > ct; 0
u =

g w/ck(s)ds z < ct.

Exercise 3.5
1. Since . -
2
o e P/ dp =12,
Tw/o p=1/

we have

‘\/z? / T e (e 4 Rip)dp — 1<Z>(:c+>\ < \/1? /ooo e P g(x + Vhip) — d(a+)|dp

1 o4 (o . L g bz
Tz | e ote 4 Vi)~ oGl + = [T ot Vi) — o)y

For Ve > 0, choose pg large enough such that fpooo e~P?/ 4dp is small enough and then

*p/4¢w+\ﬁp z+)|dp < C mazx|p OO(3*192/4dp<f;
i | e ote 4 VD) ool < € masto) [ :

after this, we can choose t is small enough such that

|$(z + VEtp) — p(a+)| < €

and then

/A5 . B L >€:6
S [ e et + Vi) - ool < (S [Ter ) e= 5

Hence,

\/ZT/ e~P/4 x+\/>p)dp—> qﬁ(:z:—l—) as t \,0;
T

similarly we can prove that

\/Z—W /0 e*p2/4¢(x + Vktp) dp — —%gf)(z—) as t N\, 0. O

2. Since ¢(x) is bounded, by the same argument in Theorem 1, we can show that (1) is an infinitely differ-
entiable solution for ¢ > 0. In addition, by Exercise 1,

lim u(z,t) = %[qf)(ﬂﬁ-) + ¢(z—)]

)



