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CUHK

Exercise 2.1

Suggested Solution to Assignment 2

1. By d’Alembert’s formula, the solution is

2. By d’Alembert’s

1 1
u(z,t) = =[e*T 4 e ) 4 /
2 2c J,

2

formula, the solution is

u(x,t) =

x+ct

sin sds

%{log[l + (z 4 ct)?] + log[l + (z — ct)?]} + % /

r—ct

1 1
="t 4+ " + 2—[603(1‘ —ct) —cos(x +ct)]. O
c

z+ct

(4+ s)ds

= %{log[l + (z 4 ct)?] +log[l + (z — ct)?]} + 4t + at. O

4. Define v = uz + cuy, then vy — cv, = 0. By the Geometric Method or Coordinate Method in Section
1.2, we obtain v(z,t) = a(z + ct) and u; + cuy = a(x + ct), which is a nonhomogeneous transport

equation. Change variables t' = x + c¢t, 2’ = x — ct, then uy = (ut + cu,)/(2¢) = a(t')/(2¢). Thus

w= [a(t")/(2c)dt’ +b(z') = f(z + ct) + g(z — ct).

5. By d’Alembert’s

formula, the solution is

u(z,t) =
r—ct
So we have
3 3
0 iL‘G( Ooa_?a]u[?a7oo)7
1 3a a 3a
(5 -7 zels, Sk
u(z,a/2c) = 2ac 2 2a2a
2c vEl=3:5k
1 3a 3a a
\276(?—1_%‘) 6[ 27_5]7
oa oa
0 T € (_007_?] U [?,OO),
1 ba a 5a
2*(7 —z) z€ [5, 7];
u(z,3a/2c) = ¢ 5° o
c x € [*575];
1 ba 5a a
\g(f‘“@ T € [—77—5],
0 x € (—o0, —6a] U [6a, 00);
1
2—(6a—x) x € [4a,6al;
c
u(x,da/c) =
( /) a4 x € [—4a,4al;
c
1
%(Ga—kx) x € [—6a, —4al;

Here we omit the figures.

O

u(z,a/c) =

u(z,2a/c) =

x+ct 1
5 / P(s)ds = Q—C[length of (x — ct,x + ct) N (—a,a)].

0

1
%(Q(I—x)

1
20(2@4—:6)
(0

1

%(Sa — )

a

c

1
\ %(Sa—i-a:)

x € (—o0,—2a] U [2a, 00);

z € [0, 2al;

x € [—2a,0];

x € (—o0, —3a] U [3a, 00);
x € [a, 3al;
LS [—Q,CL];

x € [-3a, —al;
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7. Since ¢ and v are odd function of z,

—x+ct
u(—xz,t) = =[p(—x + ct) + ¢p(—x — ct)] + 21c/_ » Y(s)ds

N = N

(o —et) — o+ ct)] + o T (e s)d(—s)

2c +ct

x+ct
| e = —uw).

—ct

= {518z — ct) + Bl + )] + o

Thus u(x,t) is odd in z for all t. O
8. (a) Change variables v = ru, then
Vg = Ty, Vpp = (Ty + W)y = TUpp + 2y,

which implies

2 2
Vg = TC (urr‘ + ;ur) = C Upp

(b) Using the same skill related to the wave equation(1), we have v(r,t) = f(r + ct) + g(r — ct), where
f and g are two arbitrary functions of a single variable. Hence u = 1 f(r + ct) + Lg(r — ct).
T T

(c) Since v(r,0) = r¢(r) and v(r,0) = 9 (r) are both odd, we can extend v to all of R by odd reflection.
That is, we set

v(r,t), r > 0;
o(r,t) =40, r=0;
—v(=r,t), r<O.

Hence d’Alembert’s formula implies
1 r—+ct
o(r,t) = 5[(7‘ +ct)p(r +ct) + (r — ct)p(r — ct)] — — / st(s)ds.
Therefore for r» > 0,

r+ct
u(rit) = Lol 0) = 5[+ )l +et) + ()l — et = o [ suls)ds. O

2r 2cr Jo_ o

10. Using the same way above, since (8% - 4%)(% + 5%)71 = 0, we can obtain that the general solution is

u(z,t) = f(z + 1t) + g(z — £t). The initial conditions implies
1 z 1 T
) = o) +20 [ i(s)ds+ €. ala) = glooa) ~20 [ w(s)as L.
Therefore, the solution is

1 1 120 [oHit
u(z,t) = §[4¢($ + Zt) + 5¢(z — gt)] + 9 /_1t P(s)ds. O
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Exercise 2.2

1. By the law of conservation of energy, £ = % I (puf + Tu2) da is a constant independent of ¢. Since
¢ =0 and ¢ =0, we have F = 0. Thus, the first vanishing theorem implies u; = 0 and u, =0. Sou =0
since ¢ =0. [

2. (a) By the chain rule,

e /0t = uguy + Uggt, 0e/0r = Uty + UgpUsy,

Op/ 0t = wptigy + Uiy, Op/OT = Uplgy + Uz Uy
Since Uy = Uge and Uy = Uy,
de/ot = Op/dx, De/Ox = Op/ot.

(b) From the result of (a),
€tt = Pzt = Ptz = €xx, Ptt = €xt = €tz = Pz

So both e(z,t) and p(x,t) satisfy the wave equation. [

3. (a) (wx =y, 1)y = un(r —y,t) = Cuse( — y,t) = ¢ (u(z =y, 1)) -
(b) (ua(@,1) = Uanr(w,1) = Crigga(2,t) =  (ug(2,1)) 1
(¢) (u(az,at)),, = a*uy(az,at) = a*cPugy(az, at) = 2 (u(az, at)),,. O

5. For damped string, uy — c*ug, + rug = 0, where ¢ = \/§, the energy is

1 o0
E = 2/ p(u? + c*u?)dx.

— 00

Hence,

1 o0
dE/dt = 2/ p(2uguy + 262uxuxt)d:z

—00

o
2 2, 2
= / p(Cuptgy — ruy + c Ugug)de

—0o0

o 00
= / p(Cugtiyy — 102 — Cugguy)de + (Cuguy)

— 00 —00

= —/ pruide < 0. O

Exercise 2.3

2. By the definition of maximum and minimum, M (T) increases(i.e. nondecreasing) and m(7T") decreases(i.e.
nonincreasing). [

3. (a) Use the strong minimum principle, we omit the details here.
(b) Use the minimum principle. Since u(0,t) = u(1,t) = 0, u(x,t) > u(z,tp) for Vg <t < 1. So u(t) is
dereasing.
Or let the maximum occur at point X (¢), so that u(t) = u(X(¢),t). Differentiale p(t), assuming that
X (t) is differentiable, we have

W (t) = ua (X (1), 1) X" (t) + ue(X (1), 1)

Note at point (X(¢),t) we have uy, = 0,uz; < 0. Hence, p/(t) = uge(X(¢),t) < 0 and pu(t) is
decreasing.
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(c) Here we omit the figure. Note that u(0,t) = u(1,¢) = 0 and the result in (b). O

4. (a) Note that u(0,t) = u(1,t) = 0 and u(z,0) = 4x(1 — x) € [0,1]. Then the conclusion can be verified
by strong maximum principle.
(b) Let v(x,t) = u(l — z,t), then v(0,t) = v(1,t) = 0 and v(z,0) = 4x(1 — z) = u(z,0). Then the
uniqueness theorem for the diffusion theorem implies u(z,t) = u(1 — x,t).

(c)
d ! 1 1 1
— u2d1::/ 2uudr = 2/ Ul g dT = —2/ uidaz.
dt Jo 0 0 0

Since u(z,t) > 0 for all t > 0 and 0 < = < 1, so u, is not zero function. Hence, % fol u*dr < 0 and
fol u?dz is a strictly decreasing function of t. [

5. (a) We omit the details to verify that v = —2xt — 22 is a solution. When t is fixed, u attains its
maximum at (—t,t) and u(—t,t) = t2. So u attains its maximum at (—1,1) in the closed rectangle
{—2<2<20<t<1}.

(b) In our proof the maximum principle for the diffusion equation, the key point is that v(x,t) =
u(z, t) + ex? satisfies vy — kvge < 0. However, here vy — kvgy = Uy — z(u+ 63:2)m = —2ex so that the
sign of vy — kv, is not unchanged in the closed rectangle {—2 <z <2, 0<t<1}. O

6. Let w = u — v and use maximum principle for the diffusion equation. We omit the details. O

7. (a) Let w(z,t) = u(z,t) — v(z,t) and we(z,t) = w(z,t) + ex?. Since wy — kwy, = f — g < 0, we can use
the same method in the text book to derive the maximum principle for w. Sou <wvatx =0, x =1
and t = 0 implies w < 0 in the rectangle, i.e. u < v for 0 <z <[, 0 <t < co. Here we omit the
details of the method in the text book.

(b) Let u(x,t) = (1 — e !)sinz, and then u; — uy, = sinz and w = 0 at = 0, x = 7 and ¢t = 0.
Therefore, the result above implies v(z,t) > (1 — e ) sinz. O

Extra 1. (1) Define v(z,t) := e~ %u(x,t), then v; = kvg,, V(0,t) = v(1,t) = 0,v(x,0) = sin(nz). By the Strong
Maximum Principle, 0 < v(x,t) < 1,Vt > 0,0 < 2 < 1. Thus, 0 < u(z,t) = e®v(z,t) < 1,Vt > 0,0 < x <
1

(2)Define v(z,t) := u(l — x,t), then we can easily check that v solves the same problem as u. By the
uniqueness of the solution, u = v

Extra 2. (a)Follow the proof of the Maximum Principle in the textbook. We only need to change the diffusion
inequality (2) in Page 42 to be

Ve — kUge = Up — kg — 2ek < —2ek < 0

(b)Define u(z,t) := v(x,t) — t MaX_ o<z too,0<t<T f(2,t), then

_ o _ o -
Ut ku:pz vt —oo<ac2—%§,0<t<T f({L‘, t) k"sz f —oo<:vir-l&-%§,0<t<T f(:L‘, t) - 0
= _oo<xg}r%§0§t§ru($at) = _Oo<g£riixoo7t:0u(m,t) =0,by(a)

t) <t t)<T t
= vl@ ) < foo<zg}3>)§,0<t<Tf(x’ )< ,Oo<x2%§0<t<Tf(957 )
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Exercise 2.4

1. By the general formula,

u(m,t (z—vy) /4ktdy

VAarkt
(I—z) /\/E )
—p
\F/l x)/\/4kt ke
=41 f[”l] erfit !
V4 VAakt

I}

2. By the general formula,

1 o 2
u(z,t) = e—(@=y)?/akt g, o 3¢~ (@=)*/dkt g,
(1) \/4771{:75/0 Y \/471'7
1 1 T 3 3 x
=—+4+=&r + - —=&r
A m]
=2-6rfl——
Il Tkt]
5. Similar to Exercise 2.2.3.
8. By the definition of S(x,t),
L 52 ape
max = ——e¢
6<ar<oo vVarkt
SO !
lim max = lim 76_‘52/4’“ = lim ﬂe—x(sg/‘lk 0
t—0+ d<z<oo t—071 A /47Tkt T—+00 47Tk
11. (a) Since u(zx,t) and —u(—z,t) are the solutions and u(z,0) = ¢(z) = —¢(—z) =

from the uniqueness theorem that u(x,t) =
(b) Similar to (a).
(c) Similar to (a). O

—u(—z,t).

14. Since )
e~ (=) /4t )| < Ce*(96*1/)2/4kt+ay2 — Celo )V’ 3k i

(z—y) /4k:t¢( )

u(x,t) =

Varkt

makes sense for a —
2
e . O

—u(—x,0), it follows

4 <0,ie 0<t< 1/(4a/~c), but not necessarily for large ¢, for example, ¢(z) =

15. Suppose that both uw and v are solution of the diffusion problem with the same Neumann boundary

condition. Let w(z,t) = u(x,t) —v(x,t), then w satisfies

W = kWgg, w(x,0) =wg(0,t) =wy(l,t) =0.
Thus by the integration by part and the Neumann boundary condition,

d (‘1

!
w2(x t)dx = —k/ w2 (x, t)dx < 0.
dt )
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Hence, the initial condition implies

/Ol %wQ(ac,t)dx < /Ol %w2(m, 0)dz = 0.
Therefor, w =0, i.e. u =wv forall ¢t > 0. O
16. Let v(z,t) = e®u(z,t), then v satisfies
vt — kvge =0, v(z,0) = u(z,0) = ¢(z).

Hence, the general solution of v is

1 o
”(”"’t)‘m/ e~ @0 gy dy,

and the general solution of u is
o bt

varkt

18. Let v(z,t) = u(x + Vt,t), then v satisfies

u(x,t) =

/ T Y

vy — kvge =0, v(z,0) = u(z,0) = ¢(z).

Since ) -~
vat) = [ et ay,
1 o0 A Vi—
u(z,t) = m/ e~ (a=Vt y)2/4kt¢(y) dy. O

Exercise 2.5

1. Let u(x,t) = —x® — (t — 1)? be the unique solution of the wave equation with boundary conditions:
Upp = Upy, Tor — 1 <x<1,0<t< 00,
u(z,0) = —22 — 1, w(x,0) = 2,
u(—1,t) = u(l,t) = —t2 + 2t — 2.

But u attains its maximum 0 at (0,1). O



