THE CHINESE UNIVERSITY OF HONG KONG MATH4010 Tutorial Note 6 Oct 24, 2019

If you find any mistakes or typos, please report them to ypyang@math.cuhk.edu.hk

Fundamental theorems

Open Mapping Theorem. If a continuous linear operator $T : X \to Y$ between Banach spaces X, Y is surjective, then T is an open map.

Proposition (Bounded Inverse Theorem). If T is a bijective continuous linear operator between the Banach spaces X and Y, then the inverse operator is continuous as well.

Example 6.6. Let $X = (l^1, \|\cdot\|_1), Y = (l^1, \|\cdot\|_\infty)$ and let T be the identity map from X onto Y. It can be seen that T is bounded since

$$||x||_{\infty} = \sup_{k} |x_k| \le \sum_{k} |x_k| = ||x||_1, \forall x \in l^1.$$

On the other hand, for $x^{(n)} = e_1 + \cdots + e_n$,

$$||x^{(n)}||_1 = n, \quad ||x^{(n)}||_{\infty} = 1,$$

so the inverse of T is not bounded. The space Y is not a Banach space. Indeed, consider the sequence

$$y^{(n)} = \left(1, \frac{1}{2}, \cdots, \frac{1}{n}, 0, 0, \cdots\right)$$

in Y. Suppose $y^{(n)} \to y = (y_1, y_2, \cdots)$ in Y. Then

$$||y^{(n)} - y||_{\infty} = \sup_{n} \left\{ \max_{1 \le k \le n} \left| y_k - \frac{1}{k} \right|, |x_{k+1}|, \cdots \right\} \to 0$$

as $n \to \infty$. It follows that $x = (1, 1/2, \dots, 1/n, \dots)$, which is not in l^1 .

Example 6.7. Let X = C[0,1] and $Y = \{x \in C^1[0,1] : x(0) = 0\}$, both equipped with the sup-norm. We define $T : X \to Y$ by

$$(Tx)(t) = \int_0^t x(u) \, du.$$

Then T is bounded since

$$||Tx|| \le \sup_{u \in [0,1]} |x(u)| = ||x||.$$

The inverse operator $T^{-1}: Y \to X$ is the differentiation operator $\frac{d}{dt}$, which is unbounded. To see that Y is not a Banach space, we can consider $f_n = \sqrt{x + \frac{1}{n^2}} - \frac{1}{n}$. **Closed Graph Theorem.** If X and Y are Banach spaces and $T: X \to Y$ is a linear operator, then T is continuous if and only if its graph $G(T) = \{(x, Tx) : x \in X\}$ is closed in $X \times Y$, that is, if $\{x_n\}$ is a sequence in X that converges to $x \in X$ and $\{Tx_n\}$ converges to y in Y, then Tx = y. **Example 6.9.** Let $X = C^1[0, 1]$ and Y = C[0, 1] both with the sup-norm. The differentiation operator T = d/dt maps X onto Y. This operator is unbounded.

We also claim that G(T) is closed. Let $\{(f_n, f'_n)\}$ be a sequence in G(T) which converges to (f, g) in the space $X \times Y$. There are several different ways to introduce a norm in $X \times Y$ such that

 $||(x_n, y_n)|| \to 0 \Leftrightarrow ||x_n|| \to 0 \text{ and } ||y_n|| \to 0, \quad \forall \{(x_n, y_n)\} \subset X \times Y.$

A norm satisfying such condition is called a product norm. Usual product norms include

$$||(x,y)|| = ||x|| + ||y||, ||(x,y)|| = \max\{||x||, ||y||\}, ||(x,y)|| = \sqrt[p]{||x||^p + ||y||^p}, p > 1.$$

Then f_n converges to f and $Tf_n = f'_n$ converges to g in the sup-norm. So $f_n \to f$ and $f'_n \to g$ uniformly. Hence we have that Tf = f' = g. Hence G(T) is closed. Therefore, $(f_n, f'_n) \to (f, f')$ in G(T). It follows that G(T) is closed.

Uniform Boundedness Theorem. Let X be a Banach space and Y a normed space. Suppose that $\{T_i : i \in I\}$ is a collection of continuous linear operator from X to Y. If

$$\sup_{i\in I} \|T_i x\| < \infty, \quad \forall x \in X,$$

then

$$\sup_{i\in I}\|T_i\|<\infty$$

Proposition. Let $A \subset X$. If f(A) is bounded for any $f \in X^*$, then A is bounded.

Example. Let

$$X = \{p(x) = a_0 + a_1 x + \dots + a_d x^d | a_i \in \mathbb{K}, d \in \mathbb{N}\}$$

be the space of polynomials equipped with the norm $||p(x)|| = \max_i |a_i|$. We give an example of a sequence of linear maps $T_n : X \to \mathbb{F}$ which are pointwise bounded but not uniformly bounded. Let

$$T_n(p) = a_0 + \dots + a_{n-1}.$$

We can see that

 $|T_n(p)| \le |a_0| + \dots + |a_{n-1}| \le n ||p||,$

so that $||T|| \leq n$. In fact, this estimates can be improved as

$$|T_n(p)| \le d ||p||.$$

This show that the sequence $\{T_n(p)\}$ is bounded for every $p \in X$. However, we claim that $||T_n|| = n \to \infty$ by taking $p(x) = 1 + x + x^2 + \cdots + x^{n-1}$. The Uniform Bounded Theorem fails here because X is not a Banach space.