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Fundamental theorems

Open Mapping Theorem. If a continuous linear operator T : X → Y between Banach spaces
X, Y is surjective, then T is an open map.

Proposition (Bounded Inverse Theorem). If T is a bijective continuous linear operator
between the Banach spaces X and Y , then the inverse operator is continuous as well.

Example 6.6. Let X = (l1, ‖ · ‖1), Y = (l1, ‖ · ‖∞) and let T be the identity map from X onto Y .
It can be seen that T is bounded since

‖x‖∞ = sup
k
|xk| ≤

∑
k

|xk| = ‖x‖1,∀x ∈ l1.

On the other hand, for x(n) = e1 + · · ·+ en,

‖x(n)‖1 = n, ‖x(n)‖∞ = 1,

so the inverse of T is not bounded. The space Y is not a Banach space. Indeed, consider the
sequence

y(n) =

(
1,

1

2
, · · · , 1

n
, 0, 0, · · ·

)
in Y . Suppose y(n) → y = (y1, y2, · · · ) in Y . Then

‖y(n) − y‖∞ = sup
n

{
max
1≤k≤n

∣∣∣∣yk − 1

k

∣∣∣∣ , |xk+1|, · · ·
}
→ 0

as n→∞. It follows that x = (1, 1/2, · · · , 1/n, · · · ), which is not in l1.

Example 6.7. Let X = C[0, 1] and Y = {x ∈ C1[0, 1] : x(0) = 0}, both equipped with the
sup-norm. We define T : X → Y by

(Tx)(t) =

∫ t

0

x(u) du.

Then T is bounded since
‖Tx‖ ≤ sup

u∈[0,1]
|x(u)| = ‖x‖.

The inverse operator T−1 : Y → X is the differentiation operator
d

dt
, which is unbounded.

To see that Y is not a Banach space, we can consider fn =

√
x +

1

n2
− 1

n
.
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Closed Graph Theorem. If X and Y are Banach spaces and T : X → Y is a linear operator,
then T is continuous if and only if its graph G(T ) = {(x, Tx) : x ∈ X} is closed in X × Y , that is,
if {xn} is a sequence in X that converges to x ∈ X and {Txn} converges to y in Y , then Tx = y.

Example 6.9. Let X = C1[0, 1] and Y = C[0, 1] both with the sup-norm. The differentiation
operator T = d/dt maps X onto Y . This operator is unbounded.

We also claim that G(T ) is closed. Let {(fn, f ′n)} be a sequence in G(T ) which converges to (f, g)
in the space X × Y . There are several different ways to introduce a norm in X × Y such that

‖(xn, yn)‖ → 0⇔ ‖xn‖ → 0 and ‖yn‖ → 0, ∀{(xn, yn)} ⊂ X × Y.

A norm satisfying such condition is called a product norm. Usual product norms include

‖(x, y)‖ = ‖x‖+ ‖y‖, ‖(x, y)‖ = max{‖x‖, ‖y‖}, ‖(x, y)‖ = p
√
‖x‖p + ‖y‖p, p > 1.

Then fn converges to f and Tfn = f ′n converges to g in the sup-norm. So fn → f and f ′n → g
uniformly. Hence we have that Tf = f ′ = g. Hence G(T ) is closed. Therefore, (fn, f

′
n) → (f, f ′)

in G(T ). It follows that G(T ) is closed.

Uniform Boundedness Theorem. Let X be a Banach space and Y a normed space. Suppose
that {Ti : i ∈ I} is a collection of continuous linear operator from X to Y . If

sup
i∈I
‖Tix‖ <∞, ∀x ∈ X,

then
sup
i∈I
‖Ti‖ <∞.

Proposition. Let A ⊂ X. If f(A) is bounded for any f ∈ X∗, then A is bounded.

Example. Let
X = {p(x) = a0 + a1x + · · ·+ adx

d|ai ∈ K, d ∈ N}

be the space of polynomials equipped with the norm ‖p(x)‖ = max
i
|ai|. We give an example of

a sequence of linear maps Tn : X → F which are pointwise bounded but not uniformly bounded.
Let

Tn(p) = a0 + · · ·+ an−1.

We can see that
|Tn(p)| ≤ |a0|+ · · ·+ |an−1| ≤ n‖p‖,

so that ‖T‖ ≤ n. In fact, this estimates can be improved as

|Tn(p)| ≤ d‖p‖.

This show that the sequence {Tn(p)} is bounded for every p ∈ X.

However, we claim that ‖Tn‖ = n→∞ by taking p(x) = 1 + x + x2 + · · ·+ xn−1.

The Uniform Bounded Theorem fails here because X is not a Banach space.


