THE CHINESE UNIVERSITY OF HONG KONG MATH4010 Tutorial Note 6 Oct 24, 2019

If you find any mistakes or typos, please report them to ypyang@math.cuhk.edu.hk

Fundamental theorems

Open Mapping Theorem. If a continuous linear operator $T : X \to Y$ between Banach spaces X, Y is surjective, then T is an open map.

Proposition (Bounded Inverse Theorem). If T is a bijective continuous linear operator between the Banach spaces X and Y , then the inverse operator is continuous as well.

Example 6.6. Let $X = (l^1, \|\cdot\|_1), Y = (l^1, \|\cdot\|_{\infty})$ and let T be the identity map from X onto Y. It can be seen that T is bounded since

$$
||x||_{\infty} = \sup_{k} |x_k| \le \sum_{k} |x_k| = ||x||_1, \forall x \in l^1.
$$

On the other hand, for $x^{(n)} = e_1 + \cdots + e_n$,

$$
||x^{(n)}||_1 = n, \quad ||x^{(n)}||_{\infty} = 1,
$$

so the inverse of T is not bounded. The space Y is not a Banach space. Indeed, consider the sequence

$$
y^{(n)} = \left(1, \frac{1}{2}, \cdots, \frac{1}{n}, 0, 0, \cdots\right)
$$

in Y. Suppose $y^{(n)} \to y = (y_1, y_2, \dots)$ in Y. Then

$$
||y^{(n)} - y||_{\infty} = \sup_{n} \left\{ \max_{1 \le k \le n} \left| y_k - \frac{1}{k} \right|, |x_{k+1}|, \dots \right\} \to 0
$$

as $n \to \infty$. It follows that $x = (1, 1/2, \dots, 1/n, \dots)$, which is not in l^1 .

Example 6.7. Let $X = C[0, 1]$ and $Y = \{x \in C^1[0, 1] : x(0) = 0\}$, both equipped with the sup-norm. We define $T: X \to Y$ by

$$
(Tx)(t) = \int_0^t x(u) \, du.
$$

Then T is bounded since

$$
||Tx|| \le \sup_{u \in [0,1]} |x(u)| = ||x||.
$$

The inverse operator $T^{-1}: Y \to X$ is the differentiation operator $\frac{d}{dt}$ $\frac{d}{dt}$, which is unbounded. To see that Y is not a Banach space, we can consider $f_n =$ ¹ $x +$ 1 $n²$ − 1 n .

Closed Graph Theorem. If X and Y are Banach spaces and $T : X \to Y$ is a linear operator, then T is continuous if and only if its graph $G(T) = \{(x, Tx) : x \in X\}$ is closed in $X \times Y$, that is, if $\{x_n\}$ is a sequence in X that converges to $x \in X$ and $\{Tx_n\}$ converges to y in Y, then $Tx = y$. **Example 6.9.** Let $X = C^1[0,1]$ and $Y = C[0,1]$ both with the sup-norm. The differentiation operator $T = d/dt$ maps X onto Y. This operator is unbounded.

We also claim that $G(T)$ is closed. Let $\{(f_n, f'_n)\}\)$ be a sequence in $G(T)$ which converges to (f, g) in the space $X \times Y$. There are several different ways to introduce a norm in $X \times Y$ such that

 $\|(x_n, y_n)\| \to 0 \Leftrightarrow \|x_n\| \to 0$ and $\|y_n\| \to 0$, $\forall \{(x_n, y_n)\} \subset X \times Y$.

A norm satisfying such condition is called a product norm. Usual product norms include

$$
||(x,y)|| = ||x|| + ||y||, \quad ||(x,y)|| = \max{||x||, ||y||}, \quad ||(x,y)|| = \sqrt[p]{||x||^p + ||y||^p}, p > 1.
$$

Then f_n converges to f and $Tf_n = f'_n$ converges to g in the sup-norm. So $f_n \to f$ and $f'_n \to g$ uniformly. Hence we have that $Tf = f' = g$. Hence $G(T)$ is closed. Therefore, $(f_n, f'_n) \to (f, f')$ in $G(T)$. It follows that $G(T)$ is closed.

Uniform Boundedness Theorem. Let X be a Banach space and Y a normed space. Suppose that $\{T_i : i \in I\}$ is a collection of continuous linear operator from X to Y. If

$$
\sup_{i \in I} \|T_i x\| < \infty, \ \ \forall x \in X,
$$

then

$$
\sup_{i\in I} \|T_i\| < \infty.
$$

Proposition. Let $A \subset X$. If $f(A)$ is bounded for any $f \in X^*$, then A is bounded.

Example. Let

$$
X = \{p(x) = a_0 + a_1x + \dots + a_dx^d | a_i \in \mathbb{K}, d \in \mathbb{N}\}\
$$

be the space of polynomials equipped with the norm $||p(x)|| = \max_i |a_i|$. We give an example of a sequence of linear maps $T_n : X \to \mathbb{F}$ which are pointwise bounded but not uniformly bounded. Let

$$
T_n(p) = a_0 + \cdots + a_{n-1}.
$$

We can see that

 $|T_n(p)| \leq |a_0| + \cdots + |a_{n-1}| \leq n||p||,$

so that $||T|| \leq n$. In fact, this estimates can be improved as

$$
|T_n(p)| \le d||p||.
$$

This show that the sequence $\{T_n(p)\}\$ is bounded for every $p \in X$. However, we claim that $||T_n|| = n \to \infty$ by taking $p(x) = 1 + x + x^2 + \cdots + x^{n-1}$. The Uniform Bounded Theorem fails here because X is not a Banach space.