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Dual space of C[a, b]

Hahn-Banach theorem for normed spaces. Let f be a bounded linear functional on a subspace
Z of a normed space X. Then there exists a bounded linear functional f̃ on X which is an extension
of f to X and has the same norm,

‖f̃‖X = ‖f‖Z .
The Hahn-Banach theorem has many applications. One of them is to find a general representation
formulas for bounded linear functionals on C[a, b]

The space C[a, b] consists of continuous real-valued functions defined on the closed interval [a, b].
It is a vector space under pointwise addition and scalar multiplication and is infinite dimensional
since xn ∈ C[a, b] for every n ∈ N. The uniform norm is defined on C[a, b] as

‖f‖ = sup
0≤x≤1

|f(x)|, f ∈ C[0, 1].

C[0, 1] is complete under the metric d(f, g) = ‖f − g‖. That is, if fn → f then f ∈ C[0, 1].

It turns out to consider elements of the dual space (C[0, 1])∗ which consists of the bounded linear
functionals. A linear functional l : C[0, 1]→ R is in this space if and only if

fn → 0 =⇒ l(fn)→ 0.

Example 1. Fix x0 ∈ [0, 1] and define the Dirac mass at x0,

δx0(f) = f(x0).

This is clearly in the dual space and ‖δx0‖ = 1.

Example 2. Given a sequence of points xi ∈ [0, 1], i ∈ N along with absolutely summable weights
ai, define

l(f) =
∑
i

aif(xi).

This is linear and we have ‖l‖ ≤
∑
i

|ai| so it is in the dual space. In fact, ‖l‖ =
∑

i |ai| as can be

seen by considering fn with fn(xi) = sgn(ai), i = 1, · · · , n.

Example 3. The Riemann integral is in the dual space. That is, the mapping

f 7→ I(f) =

∫ 1

0

f dx

is linear and we have ‖I‖ ≤ 1 by the triangle inequality for integration∣∣∣∣∫ f dx

∣∣∣∣ ≤ ∫ |f | dx.



2

By choosing f ≡ 1 we can see ‖I‖ = 1.

The next example is more complicated and involves defining a different type of integral known as
the Lebesgue-Stieljies integral.

Example 4. Lebesgue-Stieljies integration. A function w defined on [0, 1] is said to be of
bounded variation if its total variation Var(w) on [0, 1] is finite, where

Var(w) = sup
n∑
k=1

|w(xk)− w(xk−1)|,

the supremum being taken over all the partitions.

All functions of bounded variation on [0, 1] form a vector space. A norm on this space is given by

‖w‖ = |w(0)|+ Var(w).

The normed space thus defined is denoted by BV [0, 1].

Given w ∈ BV [0, 1] with w(0) = 0 we define an integral via the fllowing recipe. Let P = {0 =
x0 < x1 < · · · < xn = 1} be a partition of [0, 1] and make the approximating sum

S(P, f, w) =
n−1∑
k=0

f(xk+1)(w(xk+1)− w(xk)).

If f ∈ C[0, 1] then as we refine the partition and take the mesh size δ ↓ 0, the sum converges to a
number ∫ 1

0

f dw = lim
δ↓0

n−1∑
k=0

f(xk+1)(w(xk+1)− w(xk)),

which is called the Riemann-Stieljies integral of f over [0, 1] with respect to w. Note that for
w(x) = x, the integral is the familiar Riemann integral of f over [0, 1].

Also, if w has a derivative which is integrable on [0, 1], then∫ 1

0

f(x) dw(x) =

∫ 1

0

f(x)w′(x) dx.

Now from our definition it is clear that the integral is linear over both f and w. Moreover, we
have the inequality ∣∣∣∣∫ 1

0

f dw

∣∣∣∣ ≤ ∫ 1

0

|f | d|w| ≤ Var(w)‖f‖

so that ‖I‖ ≤ Var(w) and I ∈ C[0, 1]∗. The representation theorem for bounded linear functionals
on C[0, 1] by Riesz can be stated as follows.

Riesz’s theorem for functionals on C[0, 1].

Given l ∈ C[0, 1]∗ there exists w ∈ BV,w(0) = 0 so that

l(f) =

∫ 1

0

f dw, ∀f ∈ C[0, 1]. (1)
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And w has the total variation
Var(w) = ‖l‖.

Proof. From the Hahn-Banach theorem, l has an extension l̃ from C[0, 1] to the normed space
B[0, 1] consisting of all bounded functions on [0, 1], together with

‖l̃‖ = ‖l‖.

We define the function w needed. For this purpose we consider the function fx defined on [0, 1] by

fx = 1[0,x] ∈ B[0, 1].

Using fx and l̃, we define w on [0, 1] by

w(0) = 0, w(x) = l̃(fx), x ∈ [0, 1].

Claim: w is of bounded variation and Var(w) ≤ ‖l‖.
Proof to the claim. For a complex number z, setting θ = arg z, we may write z = |z|e(z) where

e(z) =

{
1 if z = 0

eiθ if z 6= 0

Note that we have
|z| = ze(z).

For simplifying our formulas we write

εk = e(w(xk)− w(xk−1)).

For any partition 0 = x0 < x1 < · · · < xn = 1 we obtain

n∑
k=1

|w(xk)− w(xk−1)| = |l̃(fx1)|+
n∑
k=2

|l̃(fxk)− l̃(fxk−1
)|

= ε1l̃(fx1) +
n∑
k=2

εk

[
l̃(fxk)− l̃(fxk−1

)
]

= l̃

[
ε1fx1 +

n∑
k=2

εk(fxk − fxk−1
)

]

≤ ‖l̃‖

∥∥∥∥∥ε1fx1 +
n∑
k=2

εk(fxk − fxk−1
)

∥∥∥∥∥ .
On the right, ‖l̃‖ = ‖l‖ and the other factor equals 1 because |εk| and from the definition of the
fxk ’s we see that for each x ∈ [0, 1] only one of the terms fx1 , fx2 − fx1 , · · · is non-zero (and its
norm is 1). On the left we take the supremum over all partitions of [0, 1]. Then we have

Var(w) ≤ ‖l‖. (2)

Hence w is of bounded variation.
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Proof of (1). For every partition Pn we define a function zn by

zn = f(x0)fx1 +
n∑
k=2

f(xk−1)(fxk − fk−1). (3)

Then zn ∈ B[0, 1]. By the definition of w, we have

l̃(zn) = f(x0)l̃(fx1) +
n∑
k=2

f(xk−1)
[
l̃(fxk)− l̃(fxk−1

)
]

= f(x0)w(x1) +
n∑
k=2

f(xk−1) [w(xk)− w(xk−1)]

=
n∑
k=1

f(xk−1) [w(xk)− w(xk−1)] ,

where the last equality follows from w(x0) = w(0) = 0.

Now we choose any sequence (Pn) of partitions of [0, 1] such that δ(Pn) → 0. As n → ∞, the
sum approaches the integral in (1). And hence it suffices to show that l̃(zn) → l̃(f) = l(f) since
f ∈ C[0, 1].

From the definition of fx, we see that zn(0) = f(0) · 1. Furthermore, by (3), if xk−1 < x ≤ xk, then
we get zn(x) = f(xk−1) · 1. It follows that for those x,

|zn(x)− f(x)| = |f(xk−1)− f(x)|.

Consequently, if δ(Pn)→ 0, then ‖zn− f‖ → 0 because f in continuous and uniformly continuous
on [0, 1]. The continuity of l̃ implies that l̃(zn)→ l̃(f), so that (1) is established.

Finally, from (1) we have

|l(f)| ≤ max |f(x)|Var(w) = ‖f‖Var(w).

Taking the supremum over all f ∈ C[0, 1] with ‖f‖ = 1, we obtain ‖l‖ ≤ Var(w). Together with
(2) we conclude that ‖l‖ = Var(w).


