THE CHINESE UNIVERSITY OF HONG KONG MATH4010 Tutorial Note 4 Oct 3, 2019

If you find any mistakes or typos, please report them to ypyang@math.cuhk.edu.hk

Dual space of $C[a, b]$

Hahn-Banach theorem for normed spaces. Let f be a bounded linear functional on a subspace Z of a normed space X. Then there exists a bounded linear functional \hat{f} on X which is an extension of f to X and has the same norm,

$$
\|\tilde{f}\|_{X} = \|f\|_{Z}.
$$

The Hahn-Banach theorem has many applications. One of them is to find a general representation formulas for bounded linear functionals on $C[a, b]$

The space $C[a, b]$ consists of continuous real-valued functions defined on the closed interval [a, b]. It is a vector space under pointwise addition and scalar multiplication and is infinite dimensional since $x^n \in C[a, b]$ for every $n \in \mathbb{N}$. The uniform norm is defined on $C[a, b]$ as

$$
||f|| = \sup_{0 \le x \le 1} |f(x)|, \quad f \in C[0, 1].
$$

 $C[0, 1]$ is complete under the metric $d(f, g) = ||f - g||$. That is, if $f_n \to f$ then $f \in C[0, 1]$.

It turns out to consider elements of the dual space $(C[0, 1])^*$ which consists of the bounded linear functionals. A linear functional $l : C[0, 1] \to \mathbb{R}$ is in this space if and only if

$$
f_n \to 0 \Longrightarrow l(f_n) \to 0.
$$

Example 1. Fix $x_0 \in [0, 1]$ and define the Dirac mass at x_0 ,

$$
\delta_{x_0}(f) = f(x_0).
$$

This is clearly in the dual space and $\|\delta_{x_0}\| = 1$.

Example 2. Given a sequence of points $x_i \in [0, 1], i \in \mathbb{N}$ along with absolutely summable weights a_i , define

$$
l(f) = \sum_i a_i f(x_i).
$$

This is linear and we have $||l|| \leq \sum$ i $|a_i|$ so it is in the dual space. In fact, $||l|| = \sum_i |a_i|$ as can be seen by considering f^n with $f^n(x_i) = \text{sgn}(a_i), i = 1, \dots, n$.

Example 3. The Riemann integral is in the dual space. That is, the mapping

$$
f \mapsto I(f) = \int_0^1 f \, dx
$$

is linear and we have $||I|| \leq 1$ by the triangle inequality for integration

$$
\left| \int f \, dx \right| \leq \int |f| \, dx.
$$

By choosing $f \equiv 1$ we can see $||I|| = 1$.

The next example is more complicated and involves defining a different type of integral known as the Lebesgue-Stieljies integral.

Example 4. Lebesgue-Stielies integration. A function w defined on $[0, 1]$ is said to be of bounded variation if its total variation $Var(w)$ on [0, 1] is finite, where

$$
Var(w) = \sup \sum_{k=1}^{n} |w(x_k) - w(x_{k-1})|,
$$

the supremum being taken over all the partitions.

All functions of bounded variation on [0, 1] form a vector space. A norm on this space is given by

$$
||w|| = |w(0)| + \text{Var}(w).
$$

The normed space thus defined is denoted by $BV[0, 1]$.

Given $w \in BV[0,1]$ with $w(0) = 0$ we define an integral via the fllowing recipe. Let $P = \{0 =$ $x_0 < x_1 < \cdots < x_n = 1$ be a partition of [0, 1] and make the approximating sum

$$
S(P, f, w) = \sum_{k=0}^{n-1} f(x_{k+1})(w(x_{k+1}) - w(x_k)).
$$

If $f \in C[0, 1]$ then as we refine the partition and take the mesh size $\delta \downarrow 0$, the sum converges to a number

$$
\int_0^1 f \, dw = \lim_{\delta \downarrow 0} \sum_{k=0}^{n-1} f(x_{k+1})(w(x_{k+1}) - w(x_k)),
$$

which is called the Riemann-Stieljies integral of f over $[0, 1]$ with respect to w. Note that for $w(x) = x$, the integral is the familiar Riemann integral of f over [0, 1].

Also, if w has a derivative which is integrable on $[0, 1]$, then

$$
\int_0^1 f(x) \, dw(x) = \int_0^1 f(x) w'(x) \, dx.
$$

Now from our definition it is clear that the integral is linear over both f and w . Moreover, we have the inequality

$$
\left| \int_0^1 f \, dw \right| \le \int_0^1 |f| \, d|w| \le \text{Var}(w) \|f\|
$$

so that $||I|| \leq Var(w)$ and $I \in C[0, 1]^*$. The representation theorem for bounded linear functionals on $C[0, 1]$ by Riesz can be stated as follows.

Riesz's theorem for functionals on $C[0, 1]$.

Given $l \in C[0,1]^*$ there exists $w \in BV$, $w(0) = 0$ so that

$$
l(f) = \int_0^1 f \, dw, \ \ \forall f \in C[0, 1]. \tag{1}
$$

And w has the total variation

$$
Var(w) = ||l||.
$$

Proof. From the Hahn-Banach theorem, l has an extension \tilde{l} from $C[0, 1]$ to the normed space $B[0, 1]$ consisting of all bounded functions on [0, 1], together with

$$
\|\tilde{l}\| = \|l\|.
$$

We define the function w needed. For this purpose we consider the function f_x defined on [0, 1] by

$$
f_x = \mathbf{1}_{[0,x]} \in B[0,1].
$$

Using f_x and \tilde{l} , we define w on [0, 1] by

$$
w(0) = 0, \quad w(x) = \tilde{l}(f_x), \quad x \in [0, 1].
$$

Claim: w is of bounded variation and $Var(w) \leq ||l||$.

Proof to the claim. For a complex number z, setting $\theta = \arg z$, we may write $z = |z|e(z)$ where

$$
e(z) = \begin{cases} 1 & \text{if } z = 0\\ e^{i\theta} & \text{if } z \neq 0 \end{cases}
$$

Note that we have

$$
|z| = z\overline{e(z)}.
$$

For simplifying our formulas we write

$$
\varepsilon_k = \overline{e(w(x_k) - w(x_{k-1}))}.
$$

For any partition $0 = x_0 < x_1 < \cdots < x_n = 1$ we obtain

$$
\sum_{k=1}^{n} |w(x_k) - w(x_{k-1})| = |\tilde{l}(f_{x_1})| + \sum_{k=2}^{n} |\tilde{l}(f_{x_k}) - \tilde{l}(f_{x_{k-1}})|
$$

$$
= \varepsilon_1 \tilde{l}(f_{x_1}) + \sum_{k=2}^{n} \varepsilon_k \left[\tilde{l}(f_{x_k}) - \tilde{l}(f_{x_{k-1}}) \right]
$$

$$
= \tilde{l} \left[\varepsilon_1 f_{x_1} + \sum_{k=2}^{n} \varepsilon_k (f_{x_k} - f_{x_{k-1}}) \right]
$$

$$
\leq ||\tilde{l}|| \left\| \varepsilon_1 f_{x_1} + \sum_{k=2}^{n} \varepsilon_k (f_{x_k} - f_{x_{k-1}}) \right\|.
$$

On the right, $\|\tilde{l}\| = \|l\|$ and the other factor equals 1 because $|\varepsilon_k|$ and from the definition of the f_{x_k} 's we see that for each $x \in [0,1]$ only one of the terms $f_{x_1}, f_{x_2} - f_{x_1}, \cdots$ is non-zero (and its norm is 1). On the left we take the supremum over all partitions of $[0, 1]$. Then we have

$$
Var(w) \le ||l||. \tag{2}
$$

Hence w is of bounded variation.

Proof of (1). For every partition P_n we define a function z_n by

$$
z_n = f(x_0)f_{x_1} + \sum_{k=2}^n f(x_{k-1})(f_{x_k} - f_{k-1}).
$$
\n(3)

Then $z_n \in B[0,1]$. By the definition of w, we have

$$
\tilde{l}(z_n) = f(x_0)\tilde{l}(f_{x_1}) + \sum_{k=2}^n f(x_{k-1}) \left[\tilde{l}(f_{x_k}) - \tilde{l}(f_{x_{k-1}}) \right]
$$

$$
= f(x_0)w(x_1) + \sum_{k=2}^n f(x_{k-1}) [w(x_k) - w(x_{k-1})]
$$

$$
= \sum_{k=1}^n f(x_{k-1}) [w(x_k) - w(x_{k-1})],
$$

where the last equality follows from $w(x_0) = w(0) = 0$.

Now we choose any sequence (P_n) of partitions of $[0,1]$ such that $\delta(P_n) \to 0$. As $n \to \infty$, the sum approaches the integral in (1). And hence it suffices to show that $\tilde{l}(z_n) \to \tilde{l}(f) = l(f)$ since $f \in C[0,1].$

From the definition of f_x , we see that $z_n(0) = f(0) \cdot 1$. Furthermore, by (3), if $x_{k-1} < x \leq x_k$, then we get $z_n(x) = f(x_{k-1}) \cdot 1$. It follows that for those x,

$$
|z_n(x) - f(x)| = |f(x_{k-1}) - f(x)|.
$$

Consequently, if $\delta(P_n) \to 0$, then $||z_n - f|| \to 0$ because f in continuous and uniformly continuous on [0, 1]. The continuity of \tilde{l} implies that $\tilde{l}(z_n) \to \tilde{l}(f)$, so that (1) is established.

Finally, from (1) we have

$$
|l(f)| \le \max |f(x)| \text{Var}(w) = ||f|| \text{Var}(w).
$$

Taking the supremum over all $f \in C[0,1]$ with $||f|| = 1$, we obtain $||l|| \leq \text{Var}(w)$. Together with (2) we conclude that $||l|| = Var(w)$.