THE CHINESE UNIVERSITY OF HONG KONG MATH4010 Tutorial Note 2 Sep 19, 2019

If you find any mistakes or typos, please report them to ypyang@math.cuhk.edu.hk

Examples of linear operators

Operator norm. Given two normed spaces X and Y (over the same base field), a linear map $T: X \to Y$ is continuous if and only if it is bounded. One can show that the following definitions are all equivalent if $V \neq \{0\}$,

$$||T|| = \inf\{C : ||Tx|| \le C||x|| \text{ for all } x \in X\}$$

$$= \sup\{||Tv|| : x \in X \text{ with } ||x|| \le 1\}$$

$$= \sup\{||Tv|| : x \in X \text{ with } ||x|| = 1\}$$

$$= \sup\left\{\frac{||Tx||}{||x||} : x \in X \text{ with } ||x|| \ne 0\right\}.$$

It is important to keep in mind that the operator norm depends on our choice of norms for X and Y.

When studying a given operator $T: X \to Y$, we usually do three things,

- show that T is linear (usually trivial);
- estimate ||Tx||, obtain some inequality $||Tx|| \leq C||x||, \forall x \in X$ and conclude that $T \in B(X,Y)$ with $||T|| \leq C$. The difficulty and techniques in this step depends on properties of the operator T;
- deduce that ||T|| = C. It suffices to show $||T|| \ge C$, which is not always doable. Because when we enlarge ||Tx|| in order to obtain the estimate $||Tx|| \le C||x||$, we may go beyond too much. That's to say, the estimate $||Tx|| \le C||x||$ is not optimal and the constant C is not exactly ||T||.

If we expect ||T|| to be exactly C, we may try to find $x_0 \in X$ such that $||x_0|| = a > 0$, $||Tx_0|| \ge Ca$. Then we have

$$Ca \le ||Tx_0|| \le ||T|| ||x_0|| = a||T|| \Longrightarrow ||T|| \ge C.$$

However, such x_0 may not exist. In this case, $\forall r \in (0, C)$, we find $x \in X$ with ||x|| = 1, $||Tx|| \ge r$. We consequently conclude that $||T|| \ge r$ and then let $r \to C$ to get $||T|| \ge C$.

For some complicated operators, it is difficult to find the exact value of ||T||.

Examples

1. Let
$$X = (C[0,1], \|\cdot\|_{\infty})$$
 and $(Tf)(x) = xf(x), (Sf)(x) = x \int_0^1 f(y) \, dy$. Find $\|T\|, \|S\|, \|TS\|, \|ST\|$.

Solution: It can be seen that T, S are both linear operators on C[0, 1].

- First, $||Tf||_{\infty} = \max_{x \in [0,1]} |xf(x)| \le \max_{x \in [0,1]} |f(x)| = ||f||_{\infty} \Longrightarrow ||T|| \le 1$. Take $f \equiv 1$ and then $||f||_{\infty} = 1$ and $||Tf||_{\infty} = \max_{x \in [0,1]} |x| = 1 \le ||T|| ||f||_{\infty} = ||T||$. Therefore, ||T|| = 1.
- $||Sf||_{\infty} = \max_{x \in [0,1]} \left| x \int_0^1 f(y) \, dy \right| = \left| \int_0^1 f(y) \, dy \right| \le ||f||_{\infty} \Longrightarrow ||S|| \le 1.$ Take $f \equiv 1$ again as an example and we can also get $||S|| \ge 1$.
- Since $(TSf)(x) = x^2 \int_0^1 f(y) dy$, we can compute ||TS|| = 1 in the same way.
- Notice that $(STf)(x) = x \int_0^1 y f(y) \, dy$, $||STf||_{\infty} = \left| \int_0^1 y f(y) \, dy \right| \le \int_0^1 y \max_{x \in [0,1]} f(y) \, dy = \frac{1}{2} ||f||_{\infty} \Longrightarrow ||ST|| \le \frac{1}{2}.$ Take $f \equiv 1$ and we can see $||ST|| \ge \frac{1}{2}$.

Remark. We can see from this example that in general $||ST|| \neq ||TS||$ and $||ST|| \leq ||S|| ||T||$. 2 (Generalization of example 4.6). Let $I = [a, b], Tf(x) = \int_a^x f(t) dt$. Then $T \in B(L^1(I), C(I))$ and $T \in B(L^1(I), L^1(I))$. Find ||T|| for each case.

Solution: For the first case, we have

$$||Tf||_{\infty} = \max_{a \le x \le b} \left| \int_{a}^{x} f(t) dt \right| \le \max_{a \le x \le b} \int_{a}^{x} |f(t)| dt \le \int_{a}^{b} |f(t)| dt = ||f||_{1}.$$

Hence $||T|| \le 1$. Take $f \equiv 1$ and then $||f||_1 = b - a$, Tf(x) = x - a. Therefore,

$$b - a = ||Tf||_{\infty} \le ||T|| ||f||_1 = (b - a)||T|| \Longrightarrow ||T|| \ge 1.$$

For the second case,

$$||Tf||_1 = \int_a^b \left| \int_a^x f(t) \, dt \right| \, dx \le \int_a^b \int_a^x |f(t)| \, dt \, dx = \int_a^b \int_t^b |f(t)| \, dx \, dt$$

$$= \int_a^b (b-t)|f(t)| \, dt \le \int_a^b (b-a)|f(t)| \, dt = (b-a)||f||_1 \Longrightarrow ||T|| \le b-a.$$

Take
$$f_n(t) = \begin{cases} 1, & a \le t \le a + \frac{b-a}{n}, \\ 0, & a + \frac{b-a}{n} < t < b \end{cases}$$
 and then $||f_n||_1 = \frac{b-a}{n}, Tf_n(x) = \begin{cases} x-a, & a \le t \le a + \frac{b-a}{n}, \\ \frac{b-a}{n}, & a + \frac{b-a}{n} < t < b \end{cases}$. Therefore,

$$\frac{(b-a)^2}{n} - \frac{(b-a)^2}{2n^2} = ||Tf_n||_1 \le ||T|| ||f||_1 = \frac{b-a}{n} ||T|| \Longrightarrow ||T|| \ge b-a - \frac{b-a}{2n}.$$

Let $n \to \infty$ and hence $||T|| \ge b - a$.

Remark: We can see from this example that when regarded as operators on different normed spaces, the operator norm may differ.

3. For a infinite column vector $x = (x_1, x_2, \dots)^T$, define $Ax = (2x_1, x_2 - x_1, x_3 - x_2, \dots)$. Then $A \in B(l^1, l^1)$ and $A \in B(l^{\infty}, l^{\infty})$. Find ||T|| for each case.

Solution: For $T \in B(l^1, l^1)$,

$$||Ax||_1 = |2x_1| + |x_2 - x_1| + |x_3 - x_2| + \dots \le 2|x_1| + (|x_1| + |x_2|) + (|x_2| + |x_3|) + \dots$$

= $3|x_1| + 2|x_2| + 2|x_2| + \dots \le 3||x||_1 \Longrightarrow ||A|| \le 3.$

Consider $x = e_1 = (1, 0, 0, \cdots)$ and we can conclude $||A|| \ge 3$.

For $A \in B(l^{\infty}, l^{\infty})$,

$$||Ax||_{\infty} = \sup\{|2x_1|, |x_2 - x_1|, \dots\} \le \sup\{|2x_1|, |x_2| + |x_1|, \dots\}$$

$$< 2\sup\{|x_1|, |x_2|, \dots\} = 2||x||_{\infty} \Longrightarrow ||A|| < 2.$$

Take $x = (1, 0, 0, \cdots)$ and we can see that $||A|| \ge 2$.

4. Examples 4.4-4.5 in the text.

General cases. 1. Suppose $A = (a_{ij})$ is an infinite matrix and $x = (x_1, x_2, \cdots)^T$. We formally define

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & \cdots \\ a_{21} & a_{22} & \cdots & a_{2n} & \cdots \\ \cdots & \cdots & \vdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & \cdots \\ \cdots & \cdots & \cdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ \vdots \end{bmatrix}$$

as normal matrix product, which means $Ax = (y_1, y_2, \cdots)^T$ where

$$y_i = \sum_j a_{ij} x_j, \quad i = 1, 2, \cdots.$$

Then we have

- if $C := \sup_{j} \sum_{i} |a_{ij}| < \infty$, then $A \in B(l^1, l^1)$ and $||A||_1 = C$.
- if $C := \sup_{i} \sum_{j} |a_{ij}| < \infty$, then $A \in B(l^{\infty}, l^{\infty})$ and $||A||_{\infty} = C$.
- if $C := \sum_{i,j} |a_{ij}|^2 < \infty$, then $A \in B(l^2, l^2)$ and $||A|| \le C^{\frac{1}{2}}$.

Remark: When A is finite, we know $||A||_2 = \sqrt{\lambda_{\max}(A^T A)}$.

2 (Generalization of example 4.3). Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space, the operator T is defined as

$$(Tf)(x) = \int_{\Omega} k(x, y) f(y) d\mu(y), \quad x \in \Omega$$

where k(x, y) is a $\mu \times \mu$ -measurable function on Ω , then we have

- if $C := \left\| \int_{\Omega} |k(x,y)| \, d\mu(x) \right\|_{\infty} < \infty$, then $T \in B(L^1(\Omega), L^1(\Omega))$ and $\|T\| = C$.
- if $C := \left\| \int_{\Omega} |k(x,y)| \, d\mu(y) \right\|_{\infty} < \infty$, then $T \in B(L^{\infty}(\Omega), L^{\infty}(\Omega))$ and $\|T\| = C$.
- if $C := \int_{\Omega \times \Omega} |k(x,y)|^2 d\mu(x) d\mu(y) < \infty$, then $T \in B(L^2(\Omega), L^2(\Omega))$ and $||T|| \le C^{\frac{1}{2}}$.
- if $\Omega \subset \mathbb{R}^n$ is bounded and closed, and $k(x,y) \in C(\Omega)$, then $T \in B(C(\Omega),C(\Omega))$ and

$$||T|| = \max_{x \in \Omega} \int_{\Omega} |k(x, y)| \, dy.$$