MATH 3093 Fourier Analysis Tutorial 7 (March 16)

The following will be discussed in the tutorial this week:

1. Recall that a sequence of numbers $\{x_n\}$ in [0,1) is said to be *equidistributed* if for any interval $I \subset [0,1)$,

$$\frac{1}{N}\sum_{n=1}^{N}\chi_{I}(x_{n}) \to |I| \quad \text{as } N \to \infty,$$

where |I| denote the length of I.

2. We have the following characterization of equidistributed sequence:

Theorem (Weyl). Let $\{x_n\}$ be a sequence of real numbers in [0, 1). Then the following are equivalent:

- (a) $\{x_n\}$ is equidistributed;
- (b) for any $k \in \mathbb{Z} \setminus \{0\}$,

$$\frac{1}{N}\sum_{n=1}^{N}e^{2\pi ikx_n} \to 0;$$

(c) for any 1-periodic continuous function f,

$$\frac{1}{N}\sum_{n=1}^{N}f(x_n)\to \int_0^1f(y)dy.$$

- 3. Let $a \neq 0$ and $0 < \sigma < 1$. Show the sequence $\langle an^{\sigma} \rangle$ is equidistributed in [0, 1). Here $\langle x \rangle$ denotes the fractional part of x.
- 4. Prove that $\langle a \log n \rangle$ is not equidistributed for any a.