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MATH 3093 Fourier Analysis
Tutorial 11 (April 27)

The following were discussed in the tutorial this week:

1. Define T
u(z,t) == ?Ht(:c),

where H;(x) is the heat kernel given by

Show that

(a) w satisfies the heat equation for ¢ > 0,
(b) limyou(x,t) =0 for every z,

(¢) u is not continuous at the origin.

2. Consider the following variant of the heat equation:
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u(z,0) = f(x),

Make the change of variables © = e™¥, —0c0 <y < co. Set U(y,t) = u(e™¥,t) and
F(y) = f(e7¥). Then equation (1) reduces to
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U(y,0) = F(y),

Take the Fourier transform in the variable y in (2) and show that
0(57 t) _ F<€>6(747r2§2+(17a)27m'§)t.
Hence show that the solution of (1) is given by
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u(z,t) =

3. Recall that the Fourier transform of h(x) := el cos z is given by
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Hence compute the integral



