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MATH 3093 Fourier Analysis
Tutorial 4 (February 24)

The following will be discussed in the tutorial this week:

1. Let Dy denote the Dirichlet kernel
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(a) Show that
Ly > clog N

for some constant ¢ > 0.

(b) Show that, for each n > 1, there is a continuous function f, on [—m, x| such
that |f,| <1 and |S,(f.)(0)] > ¢ logn.
Solution. (a) Recall that |sinz| < |z| for every x € R, we have
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For the integral Ly, we first substitute (N 4+ 1/2)0 = x, so that
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By the comparison % > f:“ % dz, we have Ly > :—2 log(N +1).
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(b) For each n > 1, we let

1, if D,(z) > 0;
~1, it Dy(z) < 0.

Notice that

5,0(0) = g0+ Da(0) = 5 | " u(2)Dy(—)d.

2 J_.

Since D, (z) is an even function, we have

™

1
Sngn(0) = —/ |Dy(z)|dx = L.
2 ),
The only problem is that g, is not a continuous function.

For the fixed number n, by Lemma 3.2 in Chapter 2, there is a sequence of
continuous functions { fy} on the circle [—m, 7|, approximating g, in the sense
below.

Q) N fxlloo < llgnllee =1
(i) S7 | fu(x) = gu(z)|dz — 0 as k — oco.

Now,

1

1500) = S02(0)] = (e = 92) + DalO)| < 5 [ Vo) = gulo)]

where M, is the bound for the continuous function D,, on [—m,7].

By (ii), Snfr(0) — S,g.(0) — 0 as k — oco. So for some large k, f will be the
desired function. (We may put ¢’ = §).

<

2. Suppose f is a Riemann integrable function on [—7,7] such that |f(n)| < K/|n|.
Show that ||Sn(f)|lee < ||fllec +4K on [—7,7].
Solution. Recall that, for any r € (0,1) and = € [—m, 7],

o0

A()(@) ==Y M fm)e™ = fx Po(x),

n=—oo

where P,.(z) is the Poisson kernel given by

Py(z) R
(z) = > 0.
1 —2rcosxz +1r?

Note that for any r € (0,1),z € [—n, 7],

AN < o [ 15— 1Py < ey [ Plo)dy = [l

21 —r -
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Moreover, we have

_
SV - AN <& Y TR S

n

0<|n|<N [n|>N+1
2K
<2KN(1-— —_—
S NA =1+ 50—
=4K,
if we take r =1 — 1/N. The result then follows. <

3. Suppose a series » -, ¢ is Cesaro summable to s.
If ¢, = O(1/k) (i-e. |key| < M for all k), show that Y .- | ¢y converges to s.

Solution. Note that
o= 1Y s = 1Y (= k+D)a

Sp = Zzzl Ck

For m > n, we have

3
3

mam—nan:Z(m—k+1)ck— n—k+1)c
k=1 k=1
= (m—n)c + Z(m—k‘+1)0k
k=1 k=n+1
m—1
=(m—n)s, + Z(m — k)cpi
k=n

m—1
m m k
Sp — Op = (Um - Un) - Z(l - E)Ck-i-l

Now we claim that s,, — 7, goes to 0 as n goes to co. For each ¢ > 0 and n € N, we
consider particularly m = n + [en], where [en] is the largest integer less that en.

: m_ _ 14 m 1+e
It can be seen that lim, . - = =, hence - < == + 1 for some large n, say

n > N;. On the other hand, by the convergence of lim, o 0y, |00 — 05| < € for
n 2 NQ.

Therefore, the first term can be controled in the sense that

(we assumed € < £ for simplicity.)

m

(O —on)| < €(2e +1) <2 for n > max{Ny, Na}.
m—n
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For the second term
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|kcpi1] = [(k + 1)ckpr — cper| < M + k+1 < 2M. By comparison 5 L < fk I3 Ldz, we

have
— 1 m—1 [en] en
— < =In(1 <
Zk_ (n—l) n(+n—1)_n—1
Therefore,
m ol m en m-—n
Zl——ck+1< ( - )2M
m—n — m-—nn—1 m

Note # < 1+ € for large n, say n > N3, and recall that % < % +1 forn > Nj.

The second term is now bounded by 2M ((1 + 2¢)(1 +¢€) — 1) < 10Me, when € is
small enough and n > max{N;, N3}. This completes the proof.
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