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MATH 3093 Fourier Analysis

Tutorial 4 (February 24)

The following will be discussed in the tutorial this week:

1. Let DN denote the Dirichlet kernel

DN(θ) =
N∑

k=−N

eikθ =
sin((N + 1/2)θ)

sin(θ/2)
,

and define

LN =
1

2π

∫ π

−π
|DN(θ)|dθ.

(a) Show that
LN ≥ c logN

for some constant c > 0.

(b) Show that, for each n ≥ 1, there is a continuous function fn on [−π, π] such
that |fn| ≤ 1 and |Sn(fn)(0)| ≥ c′ log n.

Solution. (a) Recall that | sinx| ≤ |x| for every x ∈ R, we have

|DN(θ)| ≥
∣∣∣∣sin((N + 1/2)θ)

θ/2

∣∣∣∣
For the integral LN , we first substitute (N + 1/2)θ = x, so that

LN ≥
1

2π

∫ π

−π
|sin((N + 1/2)θ)

θ/2
| dθ

=
1

π

∫ π

0

| sin((N + 1/2)θ)|
θ/2

dθ

=
1

π

∫ (N+1/2)π

0

| sinx|
x

2(N+1/2)

dx

N + 1/2

=
2

π

∫ (N+1/2)π

0

| sinx|
x

dx

≥ 2

π

N∑
k=1

∫ kπ

(k−1)π

| sinx|
x

dx

=
2

π

N∑
k=1

∫ π

0

| sin(k − 1)π + y|
(k − 1)π + y

dy

=
2

π

N∑
k=1

∫ π

0

sin y

(k − 1)π + y
dy

≥ 2

π

N∑
k=1

1

kπ

∫ π

0

sin y dy =
4

π2

N∑
k=1

1

k

By the comparison 1
k
≥
∫ k+1

k
1
x

dx, we have LN ≥ 4
π2 log(N + 1).
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(b) For each n ≥ 1, we let

gn(x) =

{
1, if Dn(x) ≥ 0;
−1, if Dx(x) < 0.

Notice that

Sngn(0) = gn ∗Dn(0) =
1

2π

∫ π

−π
gn(x)Dn(−x)dx.

Since Dn(x) is an even function, we have

Sngn(0) =
1

2π

∫ π

−π
|Dn(x)|dx = Ln.

The only problem is that gn is not a continuous function.

For the fixed number n, by Lemma 3.2 in Chapter 2, there is a sequence of
continuous functions {fk} on the circle [−π, π], approximating gn in the sense
below.

(i) ‖fk‖∞ ≤ ‖gn‖∞ = 1

(ii)
∫ π
−π |fk(x)− gn(x)| dx→ 0 as k →∞.

Now,

|Snfk(0)− Sngn(0)| = |(fk − gn) ∗Dn(0)| ≤ 1

2π

∫ π

−π
|fk(x)− gn(x)|Mn dx,

where Mn is the bound for the continuous function Dn on [−π, π].

By (ii), Snfk(0)− Sngn(0)→ 0 as k →∞. So for some large k, fk will be the
desired function. (We may put c′ = c

2
).

J

2. Suppose f is a Riemann integrable function on [−π, π] such that |f̂(n)| ≤ K/|n|.
Show that ‖SN(f)‖∞ ≤ ‖f‖∞ + 4K on [−π, π].

Solution. Recall that, for any r ∈ (0, 1) and x ∈ [−π, π],

Ar(f)(x) :=
∞∑

n=−∞

r|n|f̂(n)einx = f ∗ Pr(x),

where Pr(x) is the Poisson kernel given by

Pr(x) =
1− r2

1− 2r cosx+ r2
≥ 0.

Note that for any r ∈ (0, 1), x ∈ [−π, π],

|Ar(f)(x)| ≤ 1

2π

∫ π

−π
|f(x− y)|Pr(y)dy ≤ ‖f‖∞

1

2π

∫ π

−π
Pr(y)dy = ‖f‖∞.
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Moreover, we have

|SN(f)(x)− Ar(f)(x)| ≤ K
∑

0<|n|≤N

1− r|n|

n
+
K

N

∑
|n|≥N+1

r|n|

≤ 2KN(1− r) +
2K

N(1− r)
= 4K,

if we take r = 1− 1/N . The result then follows. J

3. Suppose a series
∑∞

k=1 ck is Cesàro summable to s.
If ck = O(1/k) (i.e. |kck| ≤M for all k), show that

∑∞
k=1 ck converges to s.

Solution. Note that

σn = 1
n

∑n
k=1 sk = 1

n

∑n
k=1 (n− k + 1) ck

sn =
∑n

k=1 ck

For m > n, we have

mσm − nσn =
m∑
k=1

(m− k + 1) ck −
n∑
k=1

(n− k + 1) ck

=
n∑
k=1

(m− n)ck +
m∑

k=n+1

(m− k + 1)ck

= (m− n)sn +
m−1∑
k=n

(m− k)ck+1

From which we deduce that for m > n, we have

sn − σn =
m

m− n
(σm − σn)− m

m− n

m−1∑
k=n

(1− k

m
)ck+1

Now we claim that sn− σn goes to 0 as n goes to ∞. For each ε > 0 and n ∈ N, we
consider particularly m = n+ [εn], where [εn] is the largest integer less that εn.

It can be seen that limn→∞
m

m−n = 1+ε
ε

, hence m
m−n <

1+ε
ε

+ 1 for some large n, say
n ≥ N1. On the other hand, by the convergence of limn→∞ σn, |σm − σn| < ε2 for
n ≥ N2.

Therefore, the first term can be controled in the sense that

(we assumed ε < 1
2

for simplicity.)∣∣∣∣ m

m− n
(σm − σn)

∣∣∣∣ ≤ ε(2ε+ 1) ≤ 2ε for n ≥ max{N1, N2}.
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For the second term

m

m− n

m−1∑
k=n

(1− k

m
)ck+1 =

m

m− n

m−1∑
k=n

(
1

k
− 1

m
)kck+1,

|kck+1| = |(k + 1)ck+1 − ck+1| ≤ M + M
k+1
≤ 2M . By comparison 1

k
≤
∫ k
k−1

1
x

dx, we
have

m−1∑
k=n

1

k
≤ ln

(
m− 1

n− 1

)
= ln(1 +

[εn]

n− 1
) ≤ εn

n− 1

Therefore,

m

m− n

m−1∑
k=n

(1− k

m
)ck+1 ≤

m

m− n
(
εn

n− 1
− m− n

m
)2M

Note n
n−1 ≤ 1 + ε for large n, say n ≥ N3, and recall that m

m−n <
1+ε
ε

+ 1 for n ≥ N1.

The second term is now bounded by 2M((1 + 2ε)(1 + ε) − 1) ≤ 10Mε, when ε is
small enough and n ≥ max{N1, N3}. This completes the proof.

J


