MATH 3093 Fourier Analysis Tutorial 4 (February 24)

The following will be discussed in the tutorial this week:

1. Let D_N denote the Dirichlet kernel

$$
D_N(\theta) = \sum_{k=-N}^{N} e^{ik\theta} = \frac{\sin((N+1/2)\theta)}{\sin(\theta/2)},
$$

and define

$$
L_N = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(\theta)| d\theta.
$$

(a) Show that

$$
L_N \geq c \log N
$$

for some constant $c > 0$.

(b) Show that, for each $n \geq 1$, there is a continuous function f_n on $[-\pi, \pi]$ such that $|f_n| \leq 1$ and $|S_n(f_n)(0)| \geq c' \log n$.

Solution. (a) Recall that $|\sin x| \leq |x|$ for every $x \in \mathbb{R}$, we have

$$
|D_N(\theta)| \ge \left| \frac{\sin((N + 1/2)\theta)}{\theta/2} \right|
$$

For the integral L_N , we first substitute $(N + 1/2)\theta = x$, so that

$$
L_N \geq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{\sin((N+1/2)\theta)}{\theta/2} \right| d\theta
$$

\n
$$
= \frac{1}{\pi} \int_{0}^{\pi} \frac{|\sin((N+1/2)\theta)|}{\theta/2} d\theta
$$

\n
$$
= \frac{1}{\pi} \int_{0}^{(N+1/2)\pi} \frac{|\sin x|}{\frac{x}{2(N+1/2)}} \frac{dx}{N+1/2}
$$

\n
$$
= \frac{2}{\pi} \int_{0}^{(N+1/2)\pi} \frac{|\sin x|}{x} dx
$$

\n
$$
\geq \frac{2}{\pi} \sum_{k=1}^{N} \int_{(k-1)\pi}^{k\pi} \frac{|\sin x|}{x} dx
$$

\n
$$
= \frac{2}{\pi} \sum_{k=1}^{N} \int_{0}^{\pi} \frac{|\sin(k-1)\pi + y|}{(k-1)\pi + y} dy
$$

\n
$$
= \frac{2}{\pi} \sum_{k=1}^{N} \int_{0}^{\pi} \frac{\sin y}{(k-1)\pi + y} dy
$$

\n
$$
\geq \frac{2}{\pi} \sum_{k=1}^{N} \frac{1}{k\pi} \int_{0}^{\pi} \sin y dy = \frac{4}{\pi^2} \sum_{k=1}^{N} \frac{1}{k}
$$

By the comparison $\frac{1}{k} \geq \int_{k}^{k+1}$ 1 $\frac{1}{x} dx$, we have $L_N \geq \frac{4}{\pi^2}$ $\frac{4}{\pi^2} \log(N+1)$. (b) For each $n \geq 1$, we let

$$
g_n(x) = \begin{cases} 1, & \text{if } D_n(x) \ge 0; \\ -1, & \text{if } D_x(x) < 0. \end{cases}
$$

Notice that

$$
S_n g_n(0) = g_n * D_n(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g_n(x) D_n(-x) dx.
$$

Since $D_n(x)$ is an even function, we have

$$
S_n g_n(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(x)| dx = L_n.
$$

The only problem is that g_n is not a continuous function.

For the fixed number n , by Lemma 3.2 in Chapter 2, there is a sequence of continuous functions $\{f_k\}$ on the circle $[-\pi, \pi]$, approximating g_n in the sense below.

(i) $||f_k||_{\infty} \leq ||g_n||_{\infty} = 1$ (ii) $\int_{-\pi}^{\pi} |f_k(x) - g_n(x)| \, dx \to 0$ as $k \to \infty$. Now,

$$
|S_n f_k(0) - S_n g_n(0)| = |(f_k - g_n) * D_n(0)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f_k(x) - g_n(x)| M_n \, dx,
$$

where M_n is the bound for the continuous function D_n on $[-\pi, \pi]$. By (ii), $S_n f_k(0) - S_n g_n(0) \to 0$ as $k \to \infty$. So for some large k, f_k will be the desired function. (We may put $c' = \frac{c}{2}$ $\frac{c}{2}$.

2. Suppose f is a Riemann integrable function on $[-\pi, \pi]$ such that $|\hat{f}(n)| \leq K/|n|$. Show that $||S_N (f)||_{\infty} \leq ||f||_{\infty} + 4K$ on $[-\pi, \pi]$.

Solution. Recall that, for any $r \in (0, 1)$ and $x \in [-\pi, \pi]$,

$$
A_r(f)(x) := \sum_{n=-\infty}^{\infty} r^{|n|} \hat{f}(n) e^{inx} = f * P_r(x),
$$

where $P_r(x)$ is the Poisson kernel given by

$$
P_r(x) = \frac{1 - r^2}{1 - 2r \cos x + r^2} \ge 0.
$$

Note that for any $r \in (0, 1), x \in [-\pi, \pi],$

$$
|A_r(f)(x)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x - y)| P_r(y) dy \le ||f||_{\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(y) dy = ||f||_{\infty}.
$$

J

Moreover, we have

$$
|S_N(f)(x) - A_r(f)(x)| \le K \sum_{0 < |n| \le N} \frac{1 - r^{|n|}}{n} + \frac{K}{N} \sum_{|n| \ge N+1} r^{|n|}
$$

\n
$$
\le 2KN(1 - r) + \frac{2K}{N(1 - r)}
$$

\n
$$
= 4K,
$$

if we take $r = 1 - 1/N$. The result then follows.

3. Suppose a series $\sum_{k=1}^{\infty} c_k$ is Cesàro summable to s. If $c_k = O(1/k)$ (i.e. $|kc_k| \leq M$ for all k), show that $\sum_{k=1}^{\infty} c_k$ converges to s.

Solution. Note that

$$
\sigma_n = \frac{1}{n} \sum_{k=1}^n s_k = \frac{1}{n} \sum_{k=1}^n (n - k + 1) c_k
$$

$$
s_n = \sum_{k=1}^n c_k
$$

For $m > n$, we have

$$
m\sigma_m - n\sigma_n = \sum_{k=1}^m (m - k + 1) c_k - \sum_{k=1}^n (n - k + 1) c_k
$$

=
$$
\sum_{k=1}^n (m - n) c_k + \sum_{k=n+1}^m (m - k + 1) c_k
$$

=
$$
(m - n) s_n + \sum_{k=n}^{m-1} (m - k) c_{k+1}
$$

From which we deduce that for $m > n$, we have

$$
s_n - \sigma_n = \frac{m}{m - n}(\sigma_m - \sigma_n) - \frac{m}{m - n} \sum_{k=n}^{m-1} (1 - \frac{k}{m})c_{k+1}
$$

Now we claim that $s_n - \sigma_n$ goes to 0 as n goes to ∞ . For each $\epsilon > 0$ and $n \in \mathbb{N}$, we consider particularly $m = n + \lfloor \epsilon n \rfloor$, where $\lfloor \epsilon n \rfloor$ is the largest integer less that ϵn . It can be seen that $\lim_{n\to\infty} \frac{m}{m-n} = \frac{1+\epsilon}{\epsilon}$ $\frac{+ \epsilon}{\epsilon}$, hence $\frac{m}{m-n} < \frac{1+\epsilon}{\epsilon} + 1$ for some large n , say $n \geq N_1$. On the other hand, by the convergence of $\lim_{n\to\infty} \sigma_n$, $|\sigma_m - \sigma_n| < \epsilon^2$ for $n \geq N_2$.

Therefore, the first term can be controled in the sense that (we assumed $\epsilon < \frac{1}{2}$ for simplicity.)

$$
\left|\frac{m}{m-n}(\sigma_m-\sigma_n)\right| \leq \epsilon(2\epsilon+1) \leq 2\epsilon \quad \text{for } n \geq \max\{N_1, N_2\}.
$$

For the second term

$$
\frac{m}{m-n} \sum_{k=n}^{m-1} (1 - \frac{k}{m})c_{k+1} = \frac{m}{m-n} \sum_{k=n}^{m-1} (\frac{1}{k} - \frac{1}{m})kc_{k+1},
$$

 $|kc_{k+1}| = |(k+1)c_{k+1} - c_{k+1}| \leq M + \frac{M}{k+1} \leq 2M$. By comparison $\frac{1}{k} \leq \int_{k-1}^{k}$ 1 $\frac{1}{x} dx$, we have \sum_{m-1}

$$
\sum_{k=n}^{m-1} \frac{1}{k} \le \ln\left(\frac{m-1}{n-1}\right) = \ln(1 + \frac{[en]}{n-1}) \le \frac{\epsilon n}{n-1}
$$

Therefore,

$$
\frac{m}{m-n} \sum_{k=n}^{m-1} (1 - \frac{k}{m})c_{k+1} \le \frac{m}{m-n} (\frac{\epsilon n}{n-1} - \frac{m-n}{m}) 2M
$$

Note $\frac{n}{n-1} \leq 1 + \epsilon$ for large n, say $n \geq N_3$, and recall that $\frac{m}{m-n} < \frac{1+\epsilon}{\epsilon} + 1$ for $n \geq N_1$. The second term is now bounded by $2M((1 + 2\epsilon)(1 + \epsilon) - 1) \leq 10M\epsilon$, when ϵ is small enough and $n \ge \max\{N_1, N_3\}$. This completes the proof.

 \blacktriangleleft