MATH 3093 Fourier Analysis Tutorial 5 (March 2)

The following will be discussed in the tutorial this week:

Please refer to exercises 15,16 in Chapter 3 of our textbook, by E.M. Stein and R. Shakarchi.

Let f be a 2π -periodic Riemann integrable function on $[-\pi, \pi]$, and $0 < \alpha \leq 1$.

- 1. (Hölder Continuity)
 - (a) f is said to be α -Hölder continuous at x_0 if there is a constant $C = C(x_0) > 0$ such that

$$|f(x_0+h) - f(x_0)| \le C|h|^{\alpha} \quad \forall h$$

(b) f is said to be α -Hölder continuous if there is a constant C > 0 such that

$$|f(x_0+h) - f(x_0)| \le C|h|^{\alpha} \quad \forall x, h.$$

2. It is proved in lecture that if f is α -Hölder continuous at x_0 , then

$$S_N f(x_0) \to f(x_0)$$
 as $N \to \infty$.

If f is α -Hölder continuous, then we can say more, i.e.

 $S_N f \to f$ uniformly as $N \to \infty$.

While the general case will not be proved in the tutorial class, for $1/2 < \alpha$, it is a consequence of item 5. (Ex 16)

- 3. If f is α -Hölder continuous, can we say something about the order of decay of $\hat{f}(n)$? Yes! We have $\hat{f}(n) = O(1/|n|^{\alpha})$. (Ex. 15)
- 4. The order of decay cannot be improved in general. As an example, one can show that, for $0 < \alpha < 1$, (Ex. 15)

$$f(x) := \sum_{k=0}^{\infty} 2^{-k\alpha} e^{i2^k x}$$

is α -Hölder continuous and satisfies $\hat{f}(n) = 1/n^{\alpha}$ for $n = 2^k, k = 0, 1, ...$

5. If f is α -Hölder continuous with $1/2 < \alpha \leq 1$, we can obtain a stronger convergence for the Fourier series of f, namely the absolute convergence, that is (Ex. 16)

$$\sum_{n=-\infty}^{\infty} |\hat{f}(n)| < \infty$$