THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 1 (September 11, 13)

The following were discussed in the tutorial this week:

1 Negation and Quantifiers

Example 1. Negate the following statements.

- (a) If n^2 is divisible by 4, then n is divisible by 2.
- (b) For any real number $x, x^2 \ge 0$.
- (c) For any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $1/N < \varepsilon$.

2 Algebraic Properties of \mathbb{R}

The Field Axioms of \mathbb{R} . $(\mathbb{R}, +, \cdot)$ satisfies the following properties:

(A1) "+" commutative(M1) " \cdot " commutative(D) distributive law(A2) "+" associative(M2) " \cdot " associative(A3) "0"(M3) "1", $1 \neq 0$ (A4) "+" inverse(M1) " \cdot " inverse

Example 2. Let $a, b \in \mathbb{R}$. Prove the following statements. State clearly any axioms or theorems used in each step.

- (a) $a \cdot 0 = 0$,
- (b) If a + b = 0, then b = -a,
- (c) (-1)a = -a
- (d) (-a)(-b) = ab

Solution. We only prove (d) here. Note that

$$(-a)(-b) + (-ab) = (-a)(-b) + (-a)b + (-(-a)b) + (-ab)$$
(by A3, A4)
$$= (-a)(-b) + (-a)b + (-1)(-a)b + (-1)ab$$
(by (c))
$$= (-a)(-b + b) + (-1)b(-a + a)$$
(by M1, M2, D)
$$= (-a)(0) + (-1)b(0)$$
(by A4)
$$= 0 + 0$$
(by (a))
$$= 0.$$
(by A3)

By (b), we have (-a)(-b) = -(-ab) = ab.

3 Order Properties of \mathbb{R}

The Order Properties of \mathbb{R} . There is a nonempty subset \mathbb{P} of \mathbb{R} , called the set of positive real numbers, that satisfies the following properties:

(I) $a, b \in \mathbb{P} \implies a + b \in \mathbb{P}$,

 $(II) \ a, b \in \mathbb{P} \implies ab \in \mathbb{P},$

(III) If $a \in \mathbb{R}$, then exactly one of the following holds:

 $a \in \mathbb{P}, \qquad a = 0, \qquad -a \in \mathbb{P}.$

Write a > 0 if $a \in \mathbb{P}$; and write a > b if $a - b \in \mathbb{P}$.

Example 3. Let $a, b \in \mathbb{R}$. Show that if a > 0, then 1/a > 0.

Solution. Note that $1/a \neq 0$. By Theorem 2.18(a), $(1/a)^2 > 0$. Now $1/a = a \cdot (1/a)^2 \in \mathbb{P}$ since both $a, (1/a)^2 \in \mathbb{P}$. Hence 1/a > 0.

4 The Completeness Property of \mathbb{R}

Definition 4.1. Let S be a nonempty subset of \mathbb{R} .

- (a) Suppose S is bounded above. Then $u \in \mathbb{R}$ is said to be a supremum of S if
 - (i) u is an upper bound of S (that is, $s \leq u$ for all $s \in S$);
 - (ii) if v is any upper bound of S, then $u \leq v$.

Here (ii) is equivalent to

(ii)' if v < u, then there exists $s_v \in S$ such that $v < s_v$.

- (b) Suppose S is bounded below. Then $w \in \mathbb{R}$ is said to be an **infimum** of S if
 - (i) w is a lower bound of S (that is, $w \leq s$ for all $s \in S$);
 - (ii) if v is any lower bound of S, then $v \leq w$.

Here (ii) is equivalent to

(ii)" if w < v, then there exists $s_v \in S$ such that $s_v < v$.

Remark. 1. Supremum and infimum may not be elements of S.

2. u and w above are unique and we write $\sup S = u$, $\inf S = w$.

The Completeness Property of \mathbb{R} . Every nonempty set of real numbers that has an upper bound also has a supremum in \mathbb{R} .

Example 4. Let $A := \{x \in \mathbb{R} \setminus \{0\} : 1/x < x\}$. Find sup A and inf A. Justify your answers.

Solution. Note that

$$\frac{1}{x} < x \iff \frac{x^2 - 1}{x} > 0 \iff \frac{(x - 1)(x + 1)}{x} > 0 \iff x \in (-1, 0) \cup (1, \infty).$$

Thus $A = (-1, 0) \cup (1, \infty)$.

It is easy to see that A is not bounded above, so $\sup A$ does not exist. Next we want to show that $\inf A = -1$. Clearly

x > -1 for all $x \in A$.

So -1 is a lower bound of A. Let v > -1. **Want:** show that v is not a lower bound of A, that is $\exists s_v \in A$ s.t. $s_v < v$. Take $s_v := \min\{(v-1)/2, -1/2\}$. Then

$$-1 < s_v \leq -1/2 < 0,$$

so that $s_v \in A$. Moreover,

$$s_v \le (v-1)/2 < (v+v)/2 = v.$$

Hence $\inf A = -1$.