
MATH2050B 1920 HW6
TA’s solutions1 to selected problems

Q1. Let (xn) be a C-contractive sequence (0 < C < 1):

|xn+1 − xn| ≤ C|xn − xn−1|, ∀n ≥ 2.

Show by MI that |xn+1−xn| ≤ Cn−1|x2−x1| and that |xm−xn| ≤ (Cm−2+ · · ·+Cn−1)|x2−x1|,
∀m > n. Using ε-N definition and limnC

n = 0 show hence that (xn) is Cauchy.

Solution. Claim. |xn+1 − xn| ≤ Cn−1|x2 − x1|.

It is clear that the inequality holds for n = 1. Suppose that |xk+1 − xk| ≤ Ck−1|x2 − x1| for
some k. By assumption that (xn) is C-Cauchy, |xk+2 − xk+1| ≤ C|xk+1 − xk|. By induction
hypothesis, |xk+2 − xk+1| ≤ Ck|xk+1 − xk|. So the claim is proved by MI.

Claim. |xm − xn| ≤ (Cm−2 + · · ·+ Cn−1)|x2 − x1| for all m > n.

Let m,n, m > n. Then by triangle inequality and the previous claim,

|xm − xn| = |(xm − xm−1) + (xm−1 − xm−2) + · · ·+ (xn+1 − xn)|
≤ (Cm−2 + Cm−3 + · · ·+ Cn−1)|x2 − x1|

Claim. (xn) is Cauchy.

We use the fact that
∑∞

k=1C
k is convergent.

Let ε > 0. Since the series
∑∞

k=1C
k is convergent, therefore there is N ∈ N so that for all

m,n > N , m > n, we have
m−2∑

k=n−1
Ck < ε.

Therefore for all m,n > N , m > n, by previous claim we have

|xm − xn| < ε|x2 − x1|.

Because |x2 − x1| is fixed and ε can be arbitrarily small. So (xn) is Cauchy.

Q2. Respectively by MCT and by Q1, show the sequence (xn) converges, where x1 = 99 and

xn+1 =
1

3
(xn + 10), ∀n

Find the limit.

Solution. (MCT method) Claim. (xn) is decreasing.

x2 = 109/3 < x1. Suppose that for some k, xk < xk−1. Then +10 on both sides, multiply 1
3 on

both sides:

xk+1 =
1

3
(xk + 10) <

1

3
(xk−1 + 10) = xk

Thus (xn) is decreasing by MI.

1please kindly send an email to nclliu@math.cuhk.edu.hk if you have spotted any typo/error/mistake.
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By definition of (xn), xn is always positive, so it is bounded below by 0. So MCT applies.

(”Q1” Method) For all n ≥ 3,

xn+1 − xn =
1

3
(xn + 10)− 1

3
(xn−1 + 10)

=
1

3
(xn − xn−1)

So (xn) is C-contractive with C = 1
3 .

To find the limit, since the sequence converges, suppose L = limn xn, then

L =
1

3
(L+ 10),

and hence L = 5.

Q3. Use MCT to show that (yn) converges; find its limit:

y1 := 81 and yn+1 =
√
yn ∀n

Solution. Claim. (yn) is decreasing and bounded below by 1.

We have y1 = 81, y2 = 9, so y1 > y2 > 1. If for some k, yk−1 > yk > 1, then yk > yk+1 > 1 by
taking square roots. The claim follows by MI.

By MCT (yn) converges, say L = limn yn, then L ≥ 1 because yn > 1 for all n. Now since
yn+1 =

√
yn,

L =
√
L.

This gives L2 = L. So L = 0 or L = 1. But L ≥ 1, so L = 1.

Q4. Let (xn) be a bounded sequence and recall that

lim sup
n

xn := lim
n
yn(= l ∈ R, say),

where yn = sup{xn, xn+1, xn+2, . . . } for all n. Let α, β be real numbers such that

α < l < β

Show that

(i) ∃N ∈ N s.t.
xn < β, ∀n ≥ N

(ii) ∀N ∈ N, ∃n ≥ N s.t.
α < xn

Remark. For a sequence (xn), (yn) defined by yn = sup{xn, xn+1, xn+2, . . . } may not be a
subsequence of (xn)(many of you think it is so). It can happen that for any n, k, yn 6= xk.

Solution. For (i), Since l < β, so there is N ∈ N s.t.

ym < β, ∀m ≥ N.
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In particular yN < β. Note yN = sup{xN , xN+1, xN+2, . . . }, so

xn < β, ∀n ≥ N

For (ii), suppose not. Then there is N ∈ N so that for all n ≥ N , xn ≤ α. So yn ≤ α for all
n ≥ N . In this case yn cannot converge to l. Contradiction.

Q5. With α = l − 1
k and β = l + 1

k in Q4, show that ∃ a strictly increasing sequence (nk) of
natural numbers such that

l − 1

k
< xnk

< l +
1

k
∀k ∈ N.

Show that limk xnk
= lim supn xn.

Solution. For k = 1, by Q4 (i) there is N1 so that xn < l+ 1
1 , for all n ≥ N1. For this N1, by

Q4 (ii), there is n1 ≥ N s.t. l − 1
1 < xn1 .

For k = 2, by Q4 (i), there is N2 so that xn < l+ 1
2 for all n ≥ N2. For the number max(N2, n1),

there is n2 ≥ max(N2, n1) s.t. l − 1
2 < xn2 .

Inductively, if we have constructed xn1 , xn2 , . . . , xnk
, we can apply the same step to construct

xnk+1
. (**Please fill in the details**)

Since

l − 1

k
< xnk

< l +
1

k
, ∀k ∈ N,

taking k →∞ gives limk xnk
= lim supn xn.

Q6. Show conversely that if (xmk
) is a convergent subsequence of (xn) then

lim
k
xmk

≤ lim sup
n

xn.

Solution. Note xmk
≤ ymk

. The sequence (ymk
) is a subsequence of (yk), so is convergent to

lim supn xn. So
lim
k
xmk

≤ lim
k
ymk

= lim sup
n

xn.

Q7. Let X consist of all real numbers expressible as the limit of a convergent subsequence of
(xn). Show that maxX = lim supn xn. Show further that minX = lim infn xn, i.e. minX =
limn zn, where zn = inf{xn, xn+1, . . . }.

Solution. By Q5, lim supn xn ∈ X. By Q6, for all x ∈ X, x ≤ lim supn xn. So maxX =
lim supn xn.

Consider −X := {−x : x ∈ X}. Then −X consists of all real numbers expressible as the limit
of a convergent subsequence of (−xn). So by the above,

max(−X) = lim sup
n

(−xn).

Note max(−X) = −minX, and lim supn(−xn) = − lim infn xn, so minX = lim infn xn.

Q8. Let 0 < xn and lim supn
xn+1

xn
= γ ∈ (0, 1). Show that

∑∞
n=1 xn < +∞.

Solution. Let η be a number such that γ < η < 1. Since lim sup xn+1

xn
= γ < η, so (by Q4)

there is N ∈ N such that
xn+1

xn
< η, ∀n ≥ N.

3



This shows that xN+k < ηkxN for all k ≥ 1.

For all large m, m > N , we have

m∑
n=1

xn =
N∑

n=1

xn +
m−N∑
n=1

xN+n

≤
N∑

n=1

xn + xN

m−N∑
n=1

ηn

≤
N∑

n=1

xn + xN

∞∑
n=1

ηn

Note that the R.H.S. is independent of m. (R.H.S. depends on N , and N depends on η only).
Hence

∑∞
n=1 xn < +∞.
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