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Abstract We first consider subsmoothness for a function family and provide for-
mulas of the subdifferential of the pointwise supremum of a family of subsmooth
functions. Next, we consider subsmooth infinite and semi-infinite optimization prob-
lems. In particular, we provide several dual and primal characterizations for a point to
be a sharp minimum or a weak sharp minimum for such optimization problems.
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1 Introduction

Among many operations in convex analysis and variational analysis, an important one
is the classical operation of taking the pointwise supremum

Φ(x) := sup{φy(x) : y ∈ Y } ∀x ∈ X (1.1)
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366 X. Y. Zheng, K. F. Ng

of an arbitrarily indexed family of proper lower semicontinuous functions φy on a
Banach space X with the index set Y . The objective of this paper is twofold. First
we study the issue of representing the subdifferential ∂Φ(x) at x ∈ X in terms of
the subdifferentials ∂φy(x) of the functions φy . Second we consider the optimization
problem with inequality constraint defined by {φy : y ∈ Y }

min f (x) subject to φy(x) ≤ 0 ∀y ∈ Y (1.2)

or, more generally,

min f (x) subject to φy(x) ≤ 0 ∀y ∈ Y and x ∈ A (OP)

where f is an extended-real valued function and A is a subset of X .
Throughout we make the following assumptions:

• X is a Banach space (with the topological dual denoted by X∗, the closed unit ball
denoted by BX , while B(x, r) denotes the open ball with center x and radius r );

• the index set Y is a compact topological space;
• R = R ∪ {+∞};
• f : X → R is proper (so dom( f ) := {x ∈ X : f (x) < +∞} is nonempty) and

lower semicontinuous;
• the function (x, y) 	→ φy(x) is continuous on X × Y .

When X is infinite dimensional, problem (1.2) is usually called an infinite opti-
mization problem (cf. [32]). When X is finite dimensional, (1.2) is well studied as a
semi-infinite optimization problem and has many important and interesting applica-
tions in engineering design, control of robots, mechanical stress of materials and social
sciences; see the survey paper [15] and the books [3,11,28]. In the last three decades,
semi-infinite optimization and its broad range of applications have been an active study
area in mathematical programming (see [1,12,18,23,30] and references therein). In
particular, many authors have studied first order optimality conditions of semi-infinite
optimization problems with linear, convex or smooth data (cf. [17,20,33,38] and
references).

The notion of a sharp minimum (namely a strong isolated minimum or strong
unique local minimum) of real-valued functions plays an important role in the con-
vergence analysis of numerical algorithms in mathematical programming problems
(see [9,16,24,26]). As a generalization of sharp minima, the notion of weak sharp
minima for real-valued functions was introduced and studied in [10]. Extensive study
of weak sharp minima for real-valued convex functions has been done in the literature
(cf. [4,5,31,34,35]). It has been found that the weak sharp minimum is closely related
to the error bound in convex programming, a notion that has received much attention
and has produced a vast number of publications (see [14,19,25,35,36] and references
therein). Zheng and Yang [39,40] studied weak sharp minima for a semi-infinite opti-
mization problem for both smooth and convex cases.

Covering both smooth and convex cases as well as the prox-regularity introduced
by Poliquin and Rockafellar [27], a valuable extension is the notion of subsmooth-
ness introduced and well studied by Aussel et al. [2]. Motivated by [2], Definition 3.1
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Subsmooth semi-infinite and infinite optimization problems 367

introduces the notion of subsmoothness for a function family. For a subsmooth func-
tion family {φy : y ∈ Y } and under suitable Lipschitz conditions, we establish the
following representation for the subdifferential of the supremum function Φ at a ∈
X :

∂Φ(a) = cow
∗
⎛
⎝ ⋃

y∈Y (a)

∂φy(a)

⎞
⎠ (1.3)

and if X is finite dimensional,

∂Φ(a) = co

⎛
⎝ ⋃

y∈Y (a)

∂φy(a)

⎞
⎠ (1.4)

where

Y (a) := {y ∈ Y : Φ(a) = φy(a)}

and the notations co and cow
∗

(the weak∗-closed convex hull) are standard. Re-
sults of types (1.3) and (1.4) have been established by several researchers un-
der various degrees of generality and they have played a major role in establish-
ing optimality conditions (see [6,19,25,33] and references therein). In Sect. 4 of
this paper, (1.3) and (1.4) are applied to provide necessary/sufficient conditions (of
Lagrangian type) for sharp/weak sharp minima of (OP) under appropriate subsmooth
and Lipschitz assumptions on f, A and {φy : y ∈ Y }. The last section is de-
voted to the finite dimensional case (with dim(X) = m − 1 for some m ≥ 2).
Extending the well known results on smooth and convex semi-infinite optimiza-
tion problems, we show in particular that (under the subsmooth and appropriate
Lipschitz assumptions on the given data) if a feasible point x̄ is a local solution
of (OP) then there exist active indices yi and λi ∈ [0, +∞) not all zero such
that

0 ∈ λ0∂ f (x̄)+
m∑

i=1

λi∂φyi (x̄)+ N (A, x̄)

(and λ0 �= 0 under a constraint qualification). In the same spirit we also provide a
characterization for x̄ to be a sharp/weak sharp minimum of (OP) under the subsmooth
setting.

2 Preliminaries

Let A be a closed subset of X and a ∈ A. We denote by Tc(A, a) and T (A, a) the
Clarke tangent cone and the contingent cone of A at a which are defined, respectively,
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by

Tc(A, a) = lim inf
x

A→a,t→0+

A − x

t
and T (A, a) = lim sup

t→0+

A − a

t
,

where x
A→ a means that x → a with x ∈ A. Thus, v ∈ Tc(A, a) if and only if, for

each sequence {an} in A converging to a and each sequence {tn} in (0, ∞) decreasing
to 0, there exists a sequence {vn} in X converging to v such that an + tnvn ∈ A for
all n in the set N of all natural numbers, while v ∈ T (A, a) if and only if there exist
a sequence {vn} converging to v and a sequence {tn} in (0,∞) decreasing to 0 such
that a + tnvn ∈ A for all n ∈ N. We denote by N (A, a) the Clarke normal cone of A
at a, that is,

N (A, a) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 for all h ∈ Tc(A, a)}.

For ε ≥ 0 and a ∈ A, the nonempty set

N̂ε(A, a) :=
⎧⎨
⎩x∗ ∈ X∗ : lim sup

x
A→a

〈x∗, x − a〉
‖x − a‖ ≤ ε

⎫⎬
⎭

is called the set of Fréchet ε-normals of A at a. When ε = 0, N̂ε(A, a) is a convex
cone which is called the Fréchet normal cone of A at a and is denoted by N̂ (A, a).
Let NM (A, a) denote the limiting normal cone of A at a in the Mordukhovich sense,
that is,

NM (A, a) := lim sup
x

A→a,ε→0+
N̂ε(A, x).

Thus, x∗ ∈ NM (A, a) if and only if there exists a sequence {(xn, εn, x∗
n )} in A×R+ ×

X∗ such that (xn, εn) → (a, 0), x∗
n
w∗→ x∗ and x∗

n ∈ N̂εn (A, xn) for each n. It is known
that

N̂ (A, a) ⊂ NM (A, a) ⊂ N (A, a)

(cf. [22]). If A is convex, then Tc(A, a) = T (A, a) and

N (A, a) = N̂ (A, a) = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 〈x∗, a〉 for all x ∈ A}.

Let f : X → R := R ∪ {+∞} be a proper lower semicontinuous function. For
x ∈ dom( f ) := {y ∈ X : f (y) < +∞} and h ∈ X , the generalized Rockafellar
directional derivative of f at x along the direction h is defined by (see [6,29])

f ◦(x; h) := lim
ε↓0

lim sup

z
f→x, t↓0

inf
w∈h+εBX

f (z + tw)− f (z)

t
,
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where z
f→ x means that z → x and f (z) → f (x). When f is locally Lipschitz at

x , it is known that the generalized Rockafellar directional derivative reduces to the
Clarke directional derivative, that is,

f ◦(x, h) = lim sup
y→x, t→0+

f (y + th)− f (y)

t
.

Let ∂ f (x) denote the Clarke subdifferential of f at x , that is,

∂ f (x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ f ◦(x; h) ∀h ∈ X}.

It is well known that

∂ f (x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N (epi( f ), (x, f (x)))}.

The Fréchet subdifferential and limiting(basic/Mordukhovich) subdifferential of f at
x are denoted by ∂̂ f (x) and ∂M f (x), respectively, that is,

∂̂ f (x) := {x∗ ∈ X∗ : (x∗,−1) ∈ N̂ (epi( f ), (x, f (x)))}

and

∂M f (x) := {x∗ ∈ X∗ : (x∗,−1) ∈ NM (epi( f ), (x, f (x)))}.

It is well known that

∂̂ f (x) =
{

x∗ ∈ X∗ : lim inf
y→x

f (y)− f (x)− 〈x∗, y − x〉
‖y − x‖ ≥ 0

}
.

Recall that a Banach space X is called an Asplund space if every continuous convex
function on X is Fréchet differentiable at each point of a dense subset of X . It is well
known (cf. [22]) that X is an Asplund space if and only if every separable subspace of
X has a separable dual space. In particular, every reflexive Banach space is an Asplund
space. When X is an Asplund space, it is known (cf. [22]) that

N (A, a) = cow
∗
(NM (A, a)), NM (A, a) = lim sup

x
A→a

N̂ (A, x), (2.1)

∂M f (x) = lim sup

u
f→x

∂̂ f (u) and ∂ f (x) = cow
∗
(∂M f (x)+ ∂∞

M f (x)), (2.2)

where ∂∞
M f (x) := {x∗ ∈ X∗ : (x∗, 0) ∈ NM (epi( f ), (x, f (x)))}.

The following three lemmas can be found in [6] and are useful in the proofs of main
results.

123



370 X. Y. Zheng, K. F. Ng

Lemma 2.1 Let x1, x2 ∈ X and suppose that f is a Lipschitz function on an open set
containing the line segment [x1, x2]. Then there exists u ∈ (x1, x2) and u∗ ∈ ∂ f (u)
such that

f (x2)− f (x1) = 〈u∗, x2 − x1〉.

Lemma 2.2 Let f1, f2 : X → R be proper lower semicontinuous functions. Let
x̄ ∈ dom( f1) and suppose that f2 is locally Lipschitz at x̄ . Then

∂( f1 + f2)(x̄) ⊂ ∂ f1(x̄)+ ∂ f2(x̄).

Lemma 2.3 Let X,W be Banach spaces, g : X → W be a smooth function and
ψ : W → R be a lower semicontinuous convex function. Let x̄ ∈ X be such that
g(x̄) ∈ dom(ψ). Then

∂(ψ ◦ g)(x̄) = g′(x̄)∗(∂ψ(g(x̄))),

where g′(x̄)∗ denotes the conjugate operator of the derivative g′(x̄).

We will also need the following approximate projection result (cf. [37, Theorem
3.1]).

Lemma 2.4 Let X be a Banach space and A be a closed nonempty subset of X. Let
γ ∈ (0, 1). Then for any x �∈ A there exist a boundary point a of A and a∗ ∈ N (A, a)
with ‖a∗‖ = 1 such that

γ ‖x − a‖ < min
{
d(x, A), 〈a∗, x − a〉},

where d(x, A) := inf{‖x − u‖ : u ∈ A}.

3 Subsmoothness for a function family

As an extension of convexity, prox-regularity expresses a variational behavior of “order
two” and plays an important role in variational analysis and optimization (see [7,8,
27,29]). As a generalization of the prox-regularity, Aussel et al. [2] introduced and
studied the subsmoothness. A closed set A in X is said to be subsmooth at a ∈ A if
for any ε > 0 there exists r > 0 such that

〈x∗ − u∗, x − u〉 ≥ −ε‖x − u‖

whenever x, u ∈ A ∩ B(a, r), x∗ ∈ N (A, x) ∩ BX∗ and u∗ ∈ N (A, u) ∩ BX∗ .
It is known (cf. [37]) that A is subsmooth at a ∈ A if and only if for any ε > 0

there exists r > 0 such that

〈u∗, x − u〉 ≤ ε‖x − u‖ ∀x, u ∈ A ∩ B(a, r) and u∗ ∈ N (A, u) ∩ BX∗ .

The following known lemma (cf. [37, Proposition 2.1]) is useful for us.
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Subsmooth semi-infinite and infinite optimization problems 371

Lemma 3.1 Let A be subsmooth at a ∈ A. Then, for any ε > 0 there exists δ > 0
such that

〈u∗, x − u〉 ≤ d(x, A)+ ε‖x − u‖ ∀x ∈ B(a, δ)

whenever u ∈ A ∩ B(a, δ) and u∗ ∈ N (A, u) ∩ BX∗ .

From this, it is easy to verify the following proposition.

Proposition 3.1 Let f : X → R be a proper lower semicontinuous function and sup-
pose that f is locally Lipschtiz at a ∈ dom( f ). Then epi( f ) is subsmooth at (a, f (a))
if and only if for any ε > 0 there exists δ > 0 such that

〈u∗, x − u〉 ≤ f (x)− f (u)+ ε‖x − u‖ ∀x, u ∈ B(a, δ) and ∀u∗ ∈ ∂ f (u). (*)

In view of Proposition 3.1, we say that a proper lower semicontinuous function
f : X → R is subsmooth at a if for any ε > 0 there exists δ > 0 such that the above
(*) holds.

In the same line we can define the subsmoothness for a function family {φy : y ∈ Y }
as follows.

Definition 3.1 We say that a function family {φy : y ∈ Y } is subsmooth at a ∈ X if
for any ε > 0 there exists δ > 0 such that

〈u∗, x − u〉 ≤ φy(x)− φy(u)+ ε‖x − u‖ (3.1)

whenever (x, y), (u, y) ∈ B(a, δ)× Y and u∗ ∈ ∂φy(u).
Further, we say that the family {φy : y ∈ Y } is subsmooth around a if there exists

δ > 0 such that it is subsmooth at each x ∈ B(a, δ).

The following proposition shows that the smooth assumption on the family {φy :
y ∈ Y } (often considered in the literature on semi-infinite optimization problem (1.2))
implies the subsmoothness.

Proposition 3.2 Suppose that φy is smooth for each y ∈ Y and that the function
(u, y) 	→ φ′

y(u) is continuous on X × Y , where φ′
y(u) denotes the derivative of φy at

u. Then {φy : y ∈ Y } is subsmooth at each a ∈ X.

Proof Let a ∈ X . We claim that for any ε > 0 there exists δ > 0 such that

‖φ′
y(x1)− φ′

y(x2)‖ < ε ∀(x1, y), (x2, y) ∈ B(a, δ)× Y. (3.2)

Granting this and noting that ∂yφ(u) = {φ′
y(u)} and

φy(x)− φy(u)− 〈φ′
y(u), x − u〉 = 〈φ′

y(u + θ(x − u))− φ′
y(u), x − u〉

for all (x, y), (u, y) ∈ X × Y with corresponding θ ∈ (0, 1), it is easy to verify the
desired assertion that {φy : y ∈ Y } is subsmooth at a. To prove (3.2), suppose to the
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contrary that there exist ε0 > 0 and a sequence {(xn, un, yn)} in X × X × Y such that
(xn, un) → (a, a) and

‖φ′
yn
(xn)− φ′

yn
(un)‖ ≥ ε0 ∀n ∈ N, (3.3)

where N denotes the set of all natural numbers. Since Y is compact, we can assume
without loss of generality that {yn} converges to some y0 ∈ Y (passing to a general-
ized subsequence if necessary). Since (u, y) → φ′

y(u) is continuous, it follows that
φ′

yn
(xn) → φ′

y0
(a) and φ′

yn
(un) → φ′

y0
(a). This contradicts (3.3). Hence, for any

ε > 0 there exists δ > 0 such that (3.2) holds. The proof is completed.

For several results later, let us introduce the following notion: a family {φy : y ∈ Y }
is said to be locally Lipschitz at a ∈ X if for any v ∈ Y there exist Lv, rv ∈ (0, +∞)

and a neighborhood Uv of v such that

|φy(x1)− φy(x2)| ≤ Lv‖x1 − x2‖ ∀(x1, y), (x2, y) ∈ B(a, rv)× Uv. (3.4)

The following simple lemma is useful for our analysis later. Recall that Φ denotes
the pointwise maximum of {φy : y ∈ Y }, that is,

Φ(x) = sup
y∈Y

φy(x) ∀x ∈ X.

Lemma 3.2 Let {φy : y ∈ Y } be locally Lipschitz at a. Then there exist L , r ∈
(0, +∞) such that

|φy(x1)− φy(x2)| ≤ L‖x1 − x2‖ ∀x1, x2 ∈ B(a, r) and y ∈ Y (3.5)

and

|Φ(x1)−Φ(x2)| ≤ L‖x1 − x2‖ ∀x1, x2 ∈ B(a, r). (3.6)

Proof As it is easy to verify that (3.5) implies (3.6), we only need to show that
(3.5) holds for some L , r ∈ (0, +∞). By the assumption, for each v ∈ Y there
exist Lv, rv ∈ (0, +∞) and a neighborhood Uv of v such that (3.4) holds. Hence
{Uv : v ∈ Y } is an open cover of Y , and it follows from the compactness of Y that
there exist v1, . . . , vk ∈ Y such that Y = ⋃k

i=1 Uvi . Letting L := max1≤i≤k Lvi and
r := min1≤i≤k rvi , it follows from (3.4) that (3.5) holds.

An important class of subsmooth families is the composite-convex one.

Proposition 3.3 Let X,W be Banach spaces and Y be a compact topological space.
Let ψ : W × Y → R be a continuous function such that the function z 	→ ψ(z, y) is
convex for each y ∈ Y and let g : X → W be a smooth function. Let

φy(x) = ψ(g(x), y) ∀(x, y) ∈ X × Y.

Then {φy : y ∈ Y } is subsmooth and locally Lipschitz at each a ∈ X.
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Proof Let a ∈ X . We first show that the family {ψ(·, y) : y ∈ Y } is locally Lipschitz
at g(a). Let v ∈ Y . Then there exist M, δ ∈ (0, +∞) and a neighborhood U of v
such that

|ψ(x, y)| ≤ M ∀(x, y) ∈ B(g(a), 2δ)× U (3.7)

(thanks to the continuity of ψ). Let y ∈ U, z1, z2 ∈ B(g(a), δ) with z1 �= z2, and let
z := z2 + δ(z2−z1)‖z2−z1‖ . Then z ∈ B(g(a), 2δ) and z2 = z

1+t + t z1
1+t , where t = δ

‖z2−z1‖ . It
follows from the convexity assumption and (3.7) that

ψ(z2, y)− ψ(z1, y) ≤ 1

1 + t
(ψ(z, y)− ψ(z1, y))

≤ 2M

1 + t
= 2M‖z2 − z1‖

δ

Exchanging z1 for z2, it follows that |ψ(z2, y)− ψ(z1, y)| ≤ 2M‖z2−z1‖
δ

. This shows
that {ψ(·, y) : y ∈ Y } is locally Lipschitz at g(a). By Lemma 3.2, there exist
L , r ∈ (0, +∞) such that

|ψ(z1, y)− ψ(z2, y)| ≤ L‖z1 − z2‖ ∀(z1, y), (z2, y) ∈ B(g(a), r)× Y. (3.8)

It follows that

sup{‖z∗‖ : z∗ ∈ ∂ψ(·, y)(B(g(a), r))} ≤ L ∀y ∈ Y. (3.9)

Let ε > 0. Since g is smooth, there exist L1, δ > 0 such that

g(x) ∈ B(g(a), r), ‖g(x)− g(u)‖ ≤ L1‖x − u‖

and

‖g(x)− g(u)− g′(u)(x − u)‖ ≤ ε‖x − u‖
L

(3.10)

for all x, u ∈ B(a, δ). It follows from (3.8) that

|φy(x)− φy(u)| ≤ L L1‖x − u‖ ∀x, u ∈ B(a, δ) and y ∈ Y.

This shows that {φy : y ∈ Y } is locally Lipschitz at a.
On the other hand, by the convexity and smoothness assumptions, Lemma 2.3

implies that

∂yφ(u) = g′(u)∗(∂ψ(·, y)(u)) ∀(u, y) ∈ X × Y.
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Let x, u ∈ B(a, δ), y ∈ Y and z∗ ∈ ∂ψ(·, y)(u). Then, by (3.10), (3.9) and the
convexity assumption, one has

〈g′(u)∗(z∗), x − u〉 = 〈z∗, g′(u)(x − u)〉
≤ 〈z∗, g(x)− g(u)〉 + ‖z∗‖‖g(x)− g(u)− g′(u)(x − u)‖
≤ ψ(g(x), y)− ψ(g(u), y)+ ε‖x − u‖
= φy(x)− φy(u)+ ε‖x − u‖.

This shows that {φy : y ∈ Y } is subsmooth at a. The proof is completed.

The following theorem is a key of the proofs of the main results in this paper. Recall
that

Y (x) = {y ∈ Y : φy(y) = Φ(x)} ∀y ∈ Y.

Since the index set Y is compact and the function (x, y) 	→ φy(x) is continuous, Y (x)
is nonempty.

Theorem 3.1 Suppose that {φy : y ∈ Y } is subsmooth at a ∈ X. Then

∂Φ(a) ⊃ cow
∗
⎛
⎝ ⋃

y∈Y (a)

∂φy(a)

⎞
⎠ (3.11)

and for any ε > 0 there exists δ > 0 such that

〈x∗, x − a〉 ≤ Φ(x)−Φ(a)+ ε‖x − a‖ (3.12)

whenever x ∈ B(a, δ) and x∗ ∈ cow
∗ (⋃

y∈Y (a) ∂φy(a)
)

. If, in addition, {φy : y ∈ Y }
is locally Lipschitz at a, then

∂Φ(a) = cow
∗
⎛
⎝ ⋃

y∈Y (a)

∂φy(a)

⎞
⎠ . (3.13)

Proof Let ε > 0. By the subsmoothness assumption, there exists δ > 0 such
that (3.1) holds for all (x, y), (u, y) ∈ B(a, δ) × Y and u∗ ∈ ∂φy(u). Let

x∗ ∈ cow
∗ (⋃

y∈Y (a) ∂φy(a)
)

. Then there exists a generalized sequence {x∗
α}α∈�

in co
(⋃

y∈Y (a) ∂φy(a)
)

such that x∗
α

w∗→ x∗. For each α ∈ �, take a finite subset Iα
of Y (a), ti ≥ 0 and x∗

i ∈ ∂φi (a) (i ∈ Iα) such that

∑
i∈Iα

ti = 1 and x∗
α =

∑
i∈Iα

ti x∗
i .
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Noting that φy′(a) = Φ(a) for all y′ ∈ Y (a), it follows from (3.1) that

〈x∗
α, x − a〉 =

∑
i∈Iα

ti 〈x∗
i , x − a〉

≤
∑
i∈Iα

ti (φi (x)− φi (a)+ ε‖x − a‖)

≤ Φ(x)−Φ(a)+ ε‖x − a‖

for all x ∈ B(a, δ). This implies that (3.12) holds. Hence x∗ ∈ ∂̂Φ(a) ⊂ ∂Φ(a) and
so (3.11) holds. Next suppose that the Lipschitz assumption holds. To prove (3.13),
by (3.11) we only need to show that

∂Φ(a) ⊂ co∗
⎛
⎝ ⋃

y∈Y (a)

∂φy(a)

⎞
⎠ .

To do this, suppose to the contrary that there exists

x∗
0 ∈ ∂Φ(a)\cow

∗
⎛
⎝ ⋃

y∈Y (a)

∂φy(a)

⎞
⎠ .

Noting that the weak∗-closed convex set cow
∗ (⋃

y∈Y (a) ∂φy(a)
)

is nonempty (be-

cause Y (a) �= ∅ and ∂φy(a) �= ∅ for all y ∈ Y (a)), it follows from the separation
theorem that there exists h ∈ X\{0} such that

〈x∗
0 , h〉 > sup{〈x∗, h〉 : x∗ ∈

⋃
y∈Y (a)

∂φy(a)}. (3.14)

By the local Lipschitz assumption and Lemma 3.2, Φ is locally Lipschitz at a. Hence
there exists a sequence {(xn, tn)} in X × (0, +∞) such that (xn, tn) → (a, 0) and

lim
n→∞

Φ(xn + tnh)−Φ(xn)

tn
= Φ◦(a, h).

Noting that 〈x∗
0 , h〉 ≤ Φ◦(a, h), it follows that

〈x∗
0 , h〉 ≤ lim

n→∞
Φ(xn + tnh)−Φ(xn)

tn
. (3.15)

For each n ∈ N, take yn ∈ Y (xn + tnh). Then

φyn (xn + tnh)− φyn (xn) ≥ Φ(xn + tnh)−Φ(xn) ∀n ∈ N (3.16)
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and

φy(xn + tnh) ≤ φyn (xn + tnh) ∀(y, n) ∈ Y × N. (3.17)

Since Y is compact, we can assume without loss of generality that yn → y0 ∈ Y
(taking a generalized subsequence if necessary). Noting that xn + tnh → a and the
function (x, y) 	→ φy(x) is continuous, it follows from (3.17) that φy(a) ≤ φy0(a)
for all y ∈ Y , that is, y0 ∈ Y (a). By the Lipschitz assumption and Lemma 3.2, there
exist L ∈ (0, +∞), r ∈ (0, δ) such that (3.5) holds. Since (xn, tn) → (a, 0), we
can assume without loss of generality that xn, xn + tnh ∈ B(a, r) for all n ∈ N. By
(3.5) and Lemma 2.1, there exist θn ∈ (0, 1) and x∗

n ∈ ∂φyn (xn + θntnh) such that
‖x∗

n‖ ≤ L and

φyn (xn + tnh)− φyn (xn) = 〈x∗
n , tnh〉.

Since BX∗ is compact with respect to the weak∗ topology, we can assume that x∗
n
w∗→ a∗

(passing to a generalized subsequence if necessary). Hence

lim sup
n→∞

φyn (xn + tnh)− φyn (xn)

tn
= 〈a∗, h〉.

It follows from (3.15) and (3.16) that

〈x∗
0 , h〉 ≤ 〈a∗, h〉. (3.18)

On the other hand, by (3.1) and r ∈ (0, δ), one has

〈x∗
n , x − (xn + tnh)〉 ≤ φyn (x)− φyn (xn + tnh)+ ε‖x − (xn + tnh)‖

for all x ∈ B(a, δ) and n ∈ N. It follows that 〈a∗, x − a〉 ≤ φy0(x) − φy0(a) for
all x ∈ B(a, δ). This implies that a∗ ∈ ∂̂φy0(a) ⊂ ∂φy0(a), contradicting (3.14) and
(3.18). The proof is completed.

In the finite dimensional case, we have the following sharper result.

Theorem 3.2 Suppose that {φy : y ∈ Y } is subsmooth at a ∈ X and locally Lipschitz
at a. Further suppose that X is finite dimensional. Then

∂Φ(a) = co

⎛
⎝ ⋃

y∈Y (a)

∂φy(a)

⎞
⎠ . (3.19)

Proof Let x∗ ∈ cow
∗ (⋃

y∈Y (a) ∂φy(a)
)

. By Theorem 3.1, it suffices to show that

x∗ ∈ co

⎛
⎝ ⋃

y∈Y (a)

∂φy(a)

⎞
⎠ .
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Take a generalized sequence {x∗
α}α∈� in co

(⋃
y∈Y (a) ∂φy(a)

)
such that x∗

α

w∗→ x∗.

Let m := dim(X) + 1, where dim(X) denotes the dimension of X . Then, by the
Carathéodory theorem, for each α ∈ � there exist yα(k) ∈ Y (a), x∗

α(k) ∈ ∂φyα(k)(a)
and tα(k) ∈ [0, 1] (k = 1, . . . ,m) such that

m∑
k=1

tα(k) = 1 and x∗
α =

m∑
k=1

tα(k)x
∗
α(k)

w∗→ x∗. (3.20)

Since Y (a) is a closed subset of the compact topological space Y , without loss of
generality, we assume that

tα(k) → tk and yα(k) → yk ∈ Y (a), k = 1, . . . ,m. (3.21)

By the Lipschitz assumption and Lemma 3.2, there exist L , r ∈ (0, +∞) such that
(3.5) holds. It follows that ‖xα(k)∗‖ ≤ L for all α ∈ � and k = 1, . . . ,m. Without
loss of generality, we can assume that

x∗
α(k)

w∗→ x∗
k , k = 1, . . . ,m (3.22)

It follows from (3.20) and (3.21) that

m∑
k=1

tk = 1 and
m∑

k=1

tk x∗
k = x∗. (3.23)

Let ε > 0. By the subsmoothness assumption, there exists δ > 0 such that

〈x∗
α(k), x − a〉 ≤ φyα(k)(x)− φyα(k)(a)+ ε‖x − a‖

for all x ∈ B(a, δ), α ∈ � and k = 1, . . . ,m. Since the function (x, y) 	→ φy(x) is
continuous, it follows from (3.21) and (3.22) that

〈x∗
k , x − a〉 ≤ φyk (x)− φyk (a)+ ε‖x − a‖ ∀x ∈ B(a, δ) and k = 1, . . . ,m.

Hence x∗
k ∈ ∂̂φyk (a) ⊂ ∂φyk (a) for each k. This and (3.23) imply that x∗ ∈

co
(⋃

y∈Y (a) ∂φy(a)
)

. The proof is completed.

Remark The subdifferential formula of a pointwise maximum function is important
in both theory and application. The following results can be found in [35] and [6].

Theorem I Suppose that φy is convex for each y ∈ Y . Then (3.13) holds.

Theorem II Suppose that Y is a compact metric space and that there exist L , r ∈
(0, +∞) such that

|φy(x1)− φy(x2)| ≤ L‖x1 − x2‖ ∀(x1, y), (x2, y) ∈ B(a, r)× Y.
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Then

∂Φ(a) ⊂
⎧⎨
⎩

∫

Y

∂ [Y ]φy(a)dμ : μ ∈ M(a)

⎫⎬
⎭ ,

where M(a) denotes the set of all Radon probability measures whose supports are
contained in Y (a) and ∂ [Y ]φy(a) denotes the set

cow
∗ {

x∗ ∈ X∗ : x∗
n ∈ ∂φyn (xn), xn → x, yn → y, x∗ is a weak∗ cluster of {x∗

n }} .

Theorem I is well known as Ioffe and Tikhomirov theorem. Recently, under the
convexity assumption, Hantoute et al. [13] and Lopez and Volle [21] further provided
some formulas for the subdifferential of pointwise supremum functions.

Remark Under the subsmoothness assumption, we can prove that (x, y) → ∂[Y ]φy(x)
is weak∗ closed. In the case when the index set Y is a compact metric space, Theo-
rem 3.1 can be proved in virtue of Theorem II.

By Proposition 3.3, Theorem 3.1 clearly extends Theorem I and can be regarded as
a supplement of Theorem II.

4 Subsmooth infinite optimization problem

In this section, we consider the case when X is a general Banach space. Let Z denote
the feasible set of (OP), that is,

Z = {x ∈ A : φy(x) ≤ 0 ∀y ∈ Y }.

In the remainder of this paper, we always assume that x̄ is a fixed feasible point (x̄ ∈ Z )
and

Sx̄ := {x ∈ Z : f (x) = f (x̄)};

we will often use the following condition:

Condition S f, {φy : y ∈ Y } and A are subsmooth at x̄ .

Needless to say, this condition is weaker than the following one:

Condition S+ f and A are subsmooth at x̄ and {φy : y ∈ Y } is subsmooth around
x̄ and locally Lipschitz at x̄ .

As in [39,40], we say that x̄ is a sharp minimum of (OP) if there exist η, δ ∈
(0, +∞) such that

η‖x − x̄‖ ≤ f (x)− f (x̄)+ sup
y∈Y

[φy(x)]+ + d(x, A) ∀x ∈ B(x̄, δ) (SM)
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and that x̄ is a weak sharp minimum of (OP) if there exist η, δ ∈ (0, +∞) such that

ηd(x, Sx̄ ) ≤ f (x)− f (x̄)+ sup
y∈Y

[φy(x)]+ + d(x, A) ∀x ∈ B(x̄, δ), (WM)

where [φy(x)]+ := max{φy(x), 0}.
Clearly, (WM) implies that

ηd(x, Sx̄ ) ≤ f (x)− f (x̄) ∀x ∈ Z ∩ B(x̄, δ)

and so x̄ is a local solution of (OP). It is clear that (SM) implies that x̄ is a local solution
of (OP) and B(x̄, δ) ∩ Sx̄ = {x̄}, which means that x̄ is an isolated solution of (OP).

For u ∈ Z , let

Y0(u) := {y ∈ Y : φy(u) = 0}.

It is clear that if u ∈ Z and Y0(u) �= ∅ then

Y (u) = Y0(u) and Φ(u) = 0.

For a set Ω , we adopt the following convention

[0, 1]Ω =
{ {tω : t ∈ [0, 1] and ω ∈ Ω}, if Ω �= ∅

{0}, if Ω = ∅

First we provide a dual sufficient condition for a feasible point to be a weak sharp
minimum of optimization problem (OP).

Theorem 4.1 Suppose that ConditionS is satisfied and that there exist η, r ∈
(0, +∞) such that

N (Sx̄ , u) ∩ ηBX∗ ⊂ ∂ f (u)+ [0, 1]cow
∗ ⋃

y∈Y0(u)

∂φy(u)+ N (A, u) ∩ BX∗ (4.1)

whenever u ∈ Sx̄ ∩ B(x̄, r). Then x̄ is a weak sharp minimum of (OP).

Proof Let ε ∈ (
0, η

3

)
. By Condition S and Lemma 3.1, there exists δ ∈ (0, r) such

that

〈u∗
1, x − u〉 ≤ f (x)− f (u)+ ε‖x − u‖, (4.2)

〈u∗
2, x − u〉 ≤ φy(x)− φy(u)+ ε‖x − u‖ (4.3)

and

〈u∗
3, x − a〉 ≤ d(x, A)+ ε‖x − a‖ (4.4)
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whenever x, u ∈ B(x̄, δ), a ∈ A ∩ B(x̄, δ), y ∈ Y, u∗
1 ∈ ∂ f (u), u∗

2 ∈ ∂φy(u) and
u∗

3 ∈ N (A, a) ∩ BX∗ . Since Φ(u) = φy(u) for all y ∈ Y (u), it is easy from (4.3) to
verify that

〈u∗
4, x − u〉 ≤ Φ(x)−Φ(u)+ ε‖x − u‖ (4.5)

for all x, u ∈ B(x̄, δ) and u∗
4 ∈ cow

∗ ⋃
y∈Y (u) ∂φy(u). Let x ∈ B(x̄, δ2 )\Sx̄ and

γ ∈ (max{ 3ε
η
,

2d(x,Sx̄ )
δ

}, 1). By Lemma 2.4, there exist u ∈ Sx̄ and u∗ ∈ N (Sx̄ , u)
such that ‖u∗‖ = 1 and

γ ‖x − u‖ ≤ min{〈u∗, x − u〉, d(x, Sx̄ )}. (4.6)

Hence ‖x − u‖ ≤ d(x,Sx̄ )
γ

< δ
2 , and so ‖u − x̄‖ ≤ ‖u − x‖ + ‖x − x̄‖ < δ < r . It

follows from (4.1) that there exist u∗
1 ∈ ∂ f (u), u∗

2 ∈ [0, 1]cow
∗ ⋃

y∈Y0(u) ∂φy(u) and
u∗

3 ∈ N (A, u) ∩ BX∗ such that ηu∗ = u∗
1 + u∗

2 + u∗
3. We divide into two cases: (C1)⋃

y∈Y0(u) ∂φy(u) �= ∅ and (C2)
⋃

y∈Y0(u) ∂φy(u) = ∅. When (C1) holds, Y0(u) �= ∅.
Since u ∈ Sx̄ ⊂ Z , this implies that Y0(u) = Y (u). Hence Φ(u) = 0 and there
exist t ∈ [0, 1] and u∗

4 ∈ cow
∗ ⋃

y∈Y (u) ∂φy(u) such that u∗
2 = tu∗

4 and so ηu∗ =
u∗

1 + tu∗
4 + u∗

3. By (4.2) and (4.4)–(4.6), this implies that

γ η‖x − u‖ ≤ f (x)− f (u)+ tΦ(x)+ d(x, A)+ 3ε‖x − u‖.
Noting that tΦ(x) ≤ supy∈Y [φy(x)]+ and f (u) = f (x̄), it follows that

(γ η − 3ε)‖x − u‖ ≤ f (x)− f (x̄)+ sup
y∈Y

[φy(x)]+ + d(x, A). (4.7)

When (C2) holds, u∗
2 = 0 and ηu∗ = u∗

1 + u∗
3. It follows from (4.2), (4.4) and (4.6)

that

γ η‖x − u‖ ≤ f (x)− f (u)+ d(x, A)+ 2ε‖x − u‖
= f (x)− f (x̄)+ d(x, A)+ 2ε‖x − u‖
≤ f (x)− f (x̄)+ sup

y∈Y
[φy(x)]+ + d(x, A)+ 2ε‖x − u‖.

It follows that (4.7) also holds in this case. Since u ∈ Sx̄ , (4.7) implies that

(γ η − 3ε)d(x, Sx̄ ) ≤ f (x)− f (x̄)+ sup
y∈Y

[φy(x)]+ + d(x, A).

Letting γ → 1−, one has

(η − 3ε)d(x, Sx̄ ) ≤ f (x)− f (x̄)+ sup
y∈Y

[φy(x)]+ + d(x, A).

Since x is arbitrary in B
(
a, δ2

) \Sx̄ , this implies that x̄ is a weak sharp minimum. The
proof is completed.
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Next we provide a necessary condition for a feasible point to be a weak sharp minimum
of (OP).

Theorem 4.2 Let x̄ be a weak sharp minimum of (OP) and suppose that ConditionS+
is satisfied. Then there exist η, δ ∈ (0, +∞) such that

N̂ (Sx̄ , u) ∩ ηBX∗ ⊂ ∂ f (u)+ [0, 1]cow
∗ ⋃

y∈Y0(u)

∂φy(u)+ N (A, u) ∩ BX∗ (4.8)

whenever u ∈ Sx̄ ∩ B(x̄, δ).

Proof Thanks to Condition S+, Theorem 3.1 and Lemma 3.2 can be applied and there
exist L , r ∈ (0, +∞) such that

∂Φ(u) = cow
∗ ⋃

y∈Y (u)

∂φy(u) ∀u ∈ B(x̄, r), (4.9)

|φy(x2)− φy(x1)| ≤ L‖x2 − x1‖ ∀x1, x2 ∈ B(x̄, r) and y ∈ Y (4.10)

and

|Φ(x2)−Φ(x1)| ≤ L‖x2 − x1‖ ∀x1, x2 ∈ B(x̄, r). (4.11)

Note further that

∂[Φ]+(u) ⊂ [0, 1]cow
∗ ⋃

y∈Y0(u)

∂φy(u) ∀u ∈ Z ∩ B(x̄, r), (4.12)

where the function Φ+ is defined by [Φ]+(x) = max{Φ(x), 0} for all x ∈ X . Indeed,
let u ∈ Z ∩ B(x̄, r). Then Φ(u) ≤ 0. If Φ(u) < 0, then (4.11) implies that [Φ]+ is
identically 0 on some neighborhood of u. Hence ∂[Φ]+(u) = {0} and so (4.12) holds
in this case. Suppose next that Φ(u) = 0. Then Y0(u) = Y (u) and

∂[Φ]+(u) ⊂ co (∂Φ(u) ∪ {0}) = [0, 1]∂Φ(u).

Thus (4.9) entails (4.12). Therefore (4.12) is true.
Now by the assumption that x̄ is a weak sharp minimum of (OP), there exist η > 0

and δ ∈ (0, r) such that (WM) holds. Let u ∈ Sx̄ ∩B(x̄, δ) and u∗ ∈ N̂ (Sx̄ , u)∩ηBX∗ .
Then f (u) = f (x̄) and u∗ ∈ η∂̂d(·, Sx̄ )(u). Hence, for each n ∈ N there exists δn > 0
such that B(u, δn) ⊂ B(x̄, δ) and

〈u∗, x − u〉 ≤ ηd(x, Sx̄ )+ 1

n
‖x − u‖ ∀x ∈ B(u, δn).

Noting that [Φ(x)]+ = supy∈Y [φy(x)]+ for all x ∈ X , this and (WM) imply that

〈u∗, x − u〉 ≤ f (x)− f (u)+ [Φ(x)]+ + d(x, A)+ 1

n
‖x − u‖ ∀x ∈ B(u, δn).
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Letting

g(x) := −〈u∗, x − u〉 + f (x)− f (u)+ [Φ(x)]+ + d(x, A)+ 1

n
‖x − u‖ ∀x ∈ X,

it follows that u is a local minimizer of g. Hence

0 ∈ ∂g(u) ⊂ −u∗ + ∂ f (u)+ ∂[Φ]+(u)+ ∂d(·, A)(u)+ 1

n
BX∗ .

Noting that ∂d(·, A)(u) ⊂ N (A, u) ∩ BX∗ , this and (4.12) imply that there exist
u∗

n ∈ ∂ f (u), v∗
n ∈ [0, 1]cow

∗ ⋃
y∈Y0(u) ∂φy(u) and w∗

n ∈ N (A, u) ∩ BX∗ such that

‖u∗
n + v∗

n + w∗
n − u∗‖ ≤ 1

n
.

By (4.10), one has ‖v∗
n‖ ≤ L . Since ∂ f (u), [0, 1]cow

∗ ⋃
y∈Y0(u) ∂φy(u) and N (A, u)

are weak∗-closed and BX∗ is weak∗-compact, we can assume without loss of generality
that

v∗
n
w∗→ v∗ ∈ [0, 1]cow

∗ ⋃
y∈Y0(u)

∂xφ(u, y) and w∗
n
w∗→ w∗ ∈ N (A, u) ∩ BX∗

and so u∗
n
w∗→ u∗ − v∗ − w∗ ∈ ∂ f (u). It follows that

u∗ ∈ ∂ f (u)+ [0, 1]cow
∗ ⋃

y∈Y0(u)

∂φy(u)+ N (A, u) ∩ BX∗ .

This shows that (4.8) holds. The proof is completed.

Next we provide a characterization for a sharp minimum of (OP).

Theorem 4.3 Suppose that ConditionS+ is satisfied. Then x̄ is a sharp minimum of
(OP) if and only if there exists η ∈ (0, +∞) such that

ηBX∗ ⊂ ∂ f (x̄)+ [0, 1]cow
∗ ⋃

y∈Y0(x̄)

∂φy(x̄)+ N (A, x̄) ∩ BX∗ . (4.13)

Proof Suppose that x̄ is a sharp minimum. Then there exists δ > 0 such that Sx̄ ∩
B(x̄, δ) = {x̄} and so N̂ (Sx̄ , x̄) = X∗. Thus the necessity part is clear by Theorem 4.2.
For the sufficiency part, by Theorem 4.1, we only need to show that (4.13) implies
that Sx̄ ∩ B(x̄, r) = {x̄} for some r > 0. Suppose to the contrary that there exists a
sequence {xn} in Sx̄\{x̄} such that xn → x̄ . Take x∗

n ∈ ηBX∗ such that

〈x∗
n , xn − x̄〉 = η‖xn − x̄‖. (4.14)
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By (4.13), there exist u∗
n ∈ ∂ f (x̄), v∗

n ∈ [0, 1]cow
∗ ⋃

y∈Y0(x̄) ∂φy(x̄) and w∗
n ∈

N (A, x̄) ∩ BX∗ such that

x∗
n = u∗

n + v∗
n + w∗

n . (4.15)

Since f and A are subsmooth at x̄ , there exists δ > 0 such that

〈x∗, x − x̄〉 ≤ f (x)− f (x̄)+ η‖x − x̄‖
6

∀x ∈ B(x̄, δ) and x∗ ∈ ∂ f (x̄) (4.16)

and

〈x∗, x − x̄〉 ≤ η‖x − x̄‖
6

∀x ∈ A ∩ B(x̄, δ) and x∗ ∈ N (A, x̄) ∩ BX∗ . (4.17)

When Y0(x̄) �= ∅, we have Y0(x̄) = Y (x̄) and Φ(x̄) = 0; thus, taking a smaller δ if
necessary, it is easy from Theorem 3.1 to verify that

〈x∗, x−x̄〉 ≤ [Φ(x)]++η‖x − x̄‖
6

∀x ∈ B(x̄, δ) and x∗ ∈ [0, 1]cow
∗ ⋃
y∈Y0(x̄)

∂φy(x̄)

(when Y0(x̄) = ∅ this inequality trivially holds because [0, 1]cow
∗ ⋃

y∈Y0(x̄) ∂φy(x̄) =
{0} in this case). Noting that Sx̄ ⊂ Z ⊂ A, f (x) = f (x̄) for all x ∈ Sx̄ and xn → x̄ ,
it follows from (4.15)–(4.17) that 〈x∗

n , xn − x̄〉 ≤ η
2 ‖xn − x̄‖ for all sufficiently large

n. This contradicts (4.14). The proof is completed.

The following corollary is immediate from Proposition 3.3 and Theorems 4.1–4.3.

Corollary 4.1 Let W be a Banach space, ψ : W × Y → R be a continuous function
such that the function z 	→ ψ(z, y) is convex for each y ∈ Y and let g : X → W be
a smooth function. Let

φy(x) = ψ(g(x), y) ∀(x, y) ∈ X × Y

and consider the following statements:

(i) x̄ is a sharp minimum of (OP).
(ii) There exist η, δ ∈ (0, +∞) such that (4.13) holds.

(iii) x̄ is a weak sharp minimum of (OP).
(iv) There exist η, δ ∈ (0, +∞) such that (4.1) holds.
(v) There exist η, δ ∈ (0, +∞) such that (4.8) holds.

Then (i) ⇔ (i i) and (iv) ⇒ (i i i) ⇒ (v).
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5 Subsmooth semi-infinite optimization problem

In this section, we assume that X is a finite dimensional Euclidean space, and the cor-
responding (OP) is to be referred as a generalized semi-infinite optimization problem
((GSOP) in brief). In the remainder, let dim(X) denote the dimension of X and

m := dim(X)+ 1.

Recall that a function g : X → R is directionally differentiable at x̄ ∈ X in h ∈ X
if the limit

d+g(x̄, h) := lim
t→0+

g(x̄ + th)− g(x̄)

t

exists.
We need the following lemma.

Lemma 5.1 Suppose that f is subsmooth at x̄ and locally Lipschtiz at x̄ . Then f is
directionally differentiable at x̄ in each h ∈ X and

d+ f (x̄, h) = f ◦(x̄, h) ∀h ∈ X. (5.1)

Proof From the subsmoothness, it is easy to verify that

〈x∗, h〉 ≤ lim inf
t→0+

f (x̄ + th)− f (x̄)

t
∀(x∗, h) ∈ ∂ f (x̄)× X. (5.2)

Since f is locally Lipschitz,

f ◦(x̄, h) = max{〈x∗, h〉 : x∗ ∈ ∂ f (x̄)} and lim sup
t→0+

f (x̄ + th)− f (x̄)

t
≤ f ◦(x̄, h)

for all h ∈ X . Thus the result is clear.

Lemma 5.2 Suppose that f and {φy : y ∈ Y } are subsmooth around x̄. Further
suppose that f and {φy : y ∈ Y } are locally Lipschitz at x̄ . Then there exists δ > 0
such that

d+ f (u, h) = 0 and d+φy(u, h) ≤ 0 (5.3)

for all u ∈ Sx̄ ∩ B(x̄, δ), h ∈ T (Sx̄ , u) and all y ∈ Y0(u).

Proof By the assumptions, there exist L , r ∈ (0, +∞) satisfying (4.10) such that f
and φ are subsmooth at each u ∈ Sx̄ ∩ B(x̄, r), and

| f (x1)− f (x2)| ≤ L‖x1 − x2‖ ∀x1, x2 ∈ B(x̄, r). (5.4)
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Let u ∈ Sx̄ ∩ B(x̄, r) and h ∈ T (Sx̄ , u) and y ∈ Y0(u). Then φy(u) = 0 and there
exist tn → 0+ and hn → h such that u + tnhn ∈ Sx̄ for all n ∈ N. Hence

f (u + tnhn) = f (u) = f (x̄) and φy(u + tnhn) ≤ 0 ∀n ∈ N.

It follows from (5.4) and (4.10) that

| f (u + tnh)− f (u)| ≤ Ltn‖hn − h‖

and

φy(u + tnh)− φy(u) ≤ φy(u + tnh)− φy(u + tnhn) ≤ Ltn‖hn − h‖

for all sufficiently large n. This and Lemma 5.1 imply that (5.3) holds. The proof is
completed.

We first provide necessity conditions.

Theorem 5.1 Let x̄ be a local solution of (GSOP). Suppose that {φy : y ∈ Y } is
subsmooth at x̄ and that f and {φy : y ∈ Y } are locally Lipschitz at x̄ . Then there
exist y1, . . . , ym ∈ Y and λ0, λ1, . . . , λm ∈ R+ such that

m∑
i=0

λi = 1, λiφyi (x̄) = 0 (1 ≤ i ≤ m) (5.5)

and

0 ∈ λ0∂ f (x̄)+
m∑

i=1

λi∂φyi (x̄)+ N (A, x̄). (5.6)

If, in addition, there exists h ∈ T (A, x̄) such that

d+φy(x̄, h) < 0 ∀y ∈ Y0(x̄), (5.7)

then there exist y1, . . . , ym ∈ Y and λ1, . . . , λm ∈ R+ such that

λiφyi (x̄) = 0 (1 ≤ i ≤ m)

and

0 ∈ ∂ f (x̄)+
m∑

i=1

λi∂φyi (x̄)+ N (A, x̄).
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Proof By Lemma 3.2,Φ is locally Lipschitz at x̄ . Since x̄ is a local solution of (GSOP),
it is easy to verify that x̄ is a local solution of the following optimization problem:

min f (x) subject to Φ(x) ≤ 0 and x ∈ A.

It follows from [6, Theorem 6.1.1] that there exist λ0, λ̄ ∈ R+ such that

λ0 + λ̄ = 1, λ̄Φ(x̄) = 0 and 0 ∈ λ0∂ f (x̄)+ λ̄∂Φ(x̄)+ N (A, x̄). (5.8)

We assume that λ̄ �= 0 (otherwise the conclusion trivially holds). Thus,Φ(x̄) = 0 and
so Y0(x̄) = Y (x̄). By Theorem 3.2, one has

∂Φ(x̄) = co

⎛
⎝ ⋃

y∈Y0(x̄)

∂φy(x̄)

⎞
⎠ .

It follows from (5.8) and the Carathéodory theorem that there exist λ1, . . . , λm ∈ R+
and y1, . . . , ym ∈ Y such that (5.5) and (5.6) hold. Finally we consider the case when
there exists h ∈ T (A, x̄) such that (5.7) holds. We only need to show that λ0 �= 0 (the
result is then clear as λi ’s can be replaced by suitable multiples if necessary). Suppose
to the contrary that λ0 = 0. Then (5.6) reduces to

0 ∈
m∑

i=1

λi∂φyi (x̄)+ N (A, x̄)

and so there exist x∗
i ∈ ∂φyi (x̄) (i = 1, . . . ,m) such that −∑m

i=1 λi x∗
i ∈ N (A, x̄).

It follows that
∑m

i=1 λiφ
◦
yi
(x̄, h) ≥ ∑m

i=1 λi 〈x∗
i , h〉 ≥ 0. This and Lemma 5.1 imply

that
∑m

i=1 λi d+φyi (x̄, h) ≥ 0. Since
∑m

i=1 λi = 1, this contradicts (5.7). The proof is
completed.

In the line of Theorem 5.2, the following theorems establishes a dual characteriza-
tion for a sharp minimum of (GSOP) and is immediate from Theorems 3.1 and 4.3
together with the Carathéodory theorem.

Theorem 5.2 Suppose that ConditionS+ is satisfied. Then x̄ is a sharp minimum of
(GSOP) if and only if there exists η > 0 such that for each x∗ ∈ ηBX∗ there exist
y1, . . . , ym ∈ Y0(x̄) and λ1, . . . , λm ∈ R+ satisfying

m∑
i=1

λi ≤ 1 and x∗ ∈ ∂ f (x̄)+
m∑

i=1

λi∂φyi (x̄)+ N (A, x̄) ∩ BX∗ .

Next we provide dual characterizations for a feasible point to be a weak sharp
minimum of (GSOP).

Theorem 5.3 Suppose that f, {φy : y ∈ Y } and A are subsmooth around x̄ and that
{φy : y ∈ Y } is locally Lipsctitz at x̄ . Then the following statements are equivalent.
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(i) x̄ is a weak sharp minimum of (GSOP).
(ii) There exist η, r ∈ (0, +∞) such that for each u ∈ Sx̄ ∩ B(x̄, r) and each

u∗ ∈ N̂ (Sx̄ , u) ∩ ηBX∗ there exist y1, . . . , ym ∈ Y0(u) and λ1, . . . , λm ∈ R+
satisfying

m∑
i=1

λi ≤ 1 and u∗ ∈ ∂ f (u)+
m∑

i=1

λi∂φyi (u)+ N (A, u) ∩ BX∗ . (5.9)

(iii) Same as (i i) but N̂ (Sx̄ , u) is replaced by NM (Sx̄ , u).
(iv) Same as (i i) but N̂ (Sx̄ , u) is replaced by N (Sx̄ , u).

Proof Thanks to the assumption and by Lemma 3.2, we take L , r ∈ (0, +∞) sat-
isfying (4.10) and (4.11) such that f, {φy : y ∈ Y } and A are subsmooth at each
u ∈ B(x̄, r). By Theorem 3.2, we have

∂Φ(u) = co

⎛
⎝ ⋃

y∈Y (u)

∂φy(u)

⎞
⎠ ∀u ∈ B(x̄, r). (5.10)

Thus, by Theorems 4.1 and 4.2 together with the Carathéodory theorem, we have
(i) ⇒ (i i) and (iv) ⇒ (i). It remains to show (i i) ⇒ (i i i) and (i i i) ⇒ (iv).

(i i) ⇒ (i i i) By (i i) we can assume without loss of generality that the above r
together with some η > 0 has the property stated as in (i i). Let u ∈ Sx̄ ∩ B(x̄, r)
and u∗ ∈ NM (Sx̄ , u) ∩ ηBX∗ . Then there exist sequences {un} in Sx̄ ∩ B(x̄, r) and
{u∗

n} such that

un → u, u∗
n → u∗ and u∗

n ∈ N̂ (Sx̄ , un) ∩ ηBX∗ ∀n ∈ N.

By (i i), for each n ∈ N there exist x∗
n ∈ ∂ f (u), yi (n)∈ Y0(un), y∗

i (n)∈ ∂φyi (n)(un),

λi (n) ∈ R+ (i = 1, . . . ,m) and z∗
n ∈ N (A, un) ∩ BX∗ such that

m∑
i=1

λi (n) ≤ 1 and u∗
n = x∗

n +
m∑

i=1

λi (n)y
∗
i (n)+ z∗

n . (5.11)

This and (4.10) imply that {x∗
n } and {y∗

i (n)} are bounded. By the compactness of Y ,
we assume without loss of generality that

x∗
n → x∗, λi (n) → λi , y∗

i (n) → y∗
i , yi (n) → yi and z∗

n → z∗ as n → ∞.

It follows from (5.11) and the continuity of the function (x, y) 	→ φy(x) that

m∑
i=1

λi ≤ 1, u∗ = x∗ +
m∑

i=1

λi y∗
i + z∗ and yi ∈ Y0(u) (1 ≤ i ≤ m).
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Thus, to prove (i i i), we only need to show that

x∗ ∈ ∂ f (u), y∗
i ∈ ∂φyi (u) (1 ≤ i ≤ m) and z∗ ∈ N (A, u). (5.12)

Let ε > 0. By the subsmoothness, there exists δ > 0 such that

〈x∗
n , x − un〉 ≤ f (x)− f (un)+ ε‖x − un‖, 〈z∗

n, z − un〉 ≤ ε‖z − un‖

and

〈y∗
i (n), x − un〉 ≤ φyi (n)(x)− φyi (n)(un)+ ε‖x − un‖ (1 ≤ i ≤ m)

for any x ∈ B(u, δ), z ∈ A ∩ B(u, δ) and all sufficiently large n. It follows that

〈x∗, x − u〉 ≤ f (x)− f (u)+ ε‖x − u‖, 〈z∗, z − u〉 ≤ ε‖z − u‖

and

〈y∗
i , x − u〉 ≤ φyi (x)− φyi (u)+ ε‖x − u‖ (1 ≤ i ≤ m)

for any x ∈ B(u, δ) and z ∈ A ∩ B(u, δ). This implies that (5.12) holds and so does
(iii).

(iii)⇒ (iv) Let u ∈ Sx̄ ∩ B(x̄, r). Since

[0, 1]co
⋃

y∈Y0(u)

∂φy(u) =
{ {0} if Y0(u) = ∅

[0, 1]∂Φ(u) if Y0(u) �= ∅

and ∂Φ(u) is weak∗-compact (by (4.11)), [0, 1]co
⋃

y∈Y0(u) ∂φy(u) is weak∗-
compact. Noting that ∂ f (u) is a weak∗-closed convex set and N (A, u) ∩ BX∗ is
a weak∗-compact convex set, it follows that ∂ f (u) + [0, 1]co

⋃
y∈Y0(u) ∂φy(u) +

N (A, u) ∩ BX∗ is weak∗-closed and convex. Since (iii) means

NM (Sx̄ , u) ∩ ηBX∗ ⊂ ∂ f (u)+ [0, 1]co
⋃

y∈Y0(u)

∂φy(u)+ N (A, u) ∩ BX∗ ,

it follows that

cow
∗
(NM (Sx̄ , u) ∩ ηBX∗) ⊂ ∂ f (u)+ [0, 1]co

⋃
y∈Y0(u)

∂φy(u)+ N (A, u) ∩ BX∗ .

Since every finite dimensional space is an Asplund space, (2.1) implies that

N (Sx̄ , u) ∩ ηBX∗ = cow
∗
(NM (Sx̄ , u) ∩ ηBX∗) .
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Hence

N (Sx̄ , u) ∩ ηBX∗ ⊂ ∂ f (u)+ [0, 1]co
⋃

y∈Y0(u)

∂φy(u)+ N (A, u) ∩ BX∗ .

By the Carathéodory theorem, one can see that (iv) holds. The proof is completed.

Next we provide primal characterizations for x̄ to be a local weak sharp minimum
of (GSOP). In what follows, for u ∈ Sx̄ and h ∈ X , let us adopt the convention that

sup
y∈Y0(u)

[d+φy(u, h)]+ := 0 if Y0(u) = ∅.

For a closed subset Ω of X and x ∈ X , let PΩ(x) denote the set of all projections of
x to Ω , that is,

PΩ(x) := {ω ∈ Ω : ‖x − ω‖ = d(x,Ω)}.

To establish primal characterization, we need the following lemma, which should be
known. Since we cannot find a reference on this lemma, we provide its proof for
completeness.

Lemma 5.3 Let K be a closed convex cone of a Banach space X and x ∈ X\K . Then

d(x, K ) = max{〈x∗, x〉 : x∗ ∈ N (K , 0) ∩ BX∗}.

Proof Let r := d(x, K ). Then, B(x, r) ∩ K = ∅ and it follows from the separation
theorem that there exists x∗ ∈ X∗ with ‖x∗‖ = 1 such that

〈x∗, x〉 − r = inf{〈x∗, u〉 : u ∈ B(x, r)} ≥ sup{〈x∗, u〉 : u ∈ K }.

Since K is a cone, this implies that sup{〈x∗, u〉 : u ∈ K } = 0. Hence 〈x∗, x〉 ≥ r
and x∗ ∈ N (K , 0) ∩ BX∗ . We need only show that

max{〈x∗, x〉 : x∗ ∈ N (K , 0) ∩ BX∗} ≤ d(x, K ). (5.13)

Let x∗ ∈ N (K , 0) ∩ BX∗ and u ∈ K . Then 〈x∗, x〉 ≤ 〈x∗, x − u〉 ≤ ‖x − u‖. It
follows that (5.13) holds. The proof is completed.

Theorem 5.4 Let f, {φy : y ∈ Y } and A be as in Theorem 5.3 and further suppose
that f is locally Lipschitz at x̄ . Then the following statements are equivalent.

(i) x̄ is a local weak sharp minimum of (GSOP).
(ii) There exist η, γ ∈ (0, +∞) such that

ηd(h, Tc(Sx̄ , u)) ≤ d+ f (u, h)+ sup
y∈Y0(u)

[d+φy(u, h)]+ + d(h, T (A, u))

(5.14)

for all u ∈ Sx̄ ∩ B(x̄, γ ) and h ∈ X.
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(iii) Same as (ii) but Tc(Sx̄ , u) is replaced by T (Sx̄ , u).
(iv) There exist η, γ ∈ (0, +∞) such that

η‖x−u‖≤d+ f (u, x−u)+ sup
y∈Y0(u)

[d+φy(u, x − u)]+ + d(x−u, T (A, u))

(5.15)

for any x ∈ B(x̄, γ ) and u ∈ PSx̄ (x).

Proof Take L , r ∈ (0, +∞) satisfying (4.10) and (5.4) such that f, {φy : y ∈ Y } and
A are subsmooth at each u ∈ Sx̄ ∩ B(x̄, r). Hence A is regular at each u ∈ Sx̄ ∩ B(x̄, r)
in the Clarke sense, namely

T (A, u) = Tc(A, u) ∀u ∈ Sx̄ ∩ B(x̄, r). (5.16)

(i) ⇒ (i i). Suppose that (i) holds. Then, by Theorem 5.3 there exist η > 0 and
γ ∈ (0, r) such that (iv) of Theorem 5.3 holds. Let u ∈ Sx̄ ∩ B(x̄, γ ) and h ∈ X .
By Lemma 5.2, one sees that (5.14) holds if h ∈ Tc(Sx̄ , u). Now we assume that
h �∈ Tc(Sx̄ , u). Since Tc(Sx̄ , u) is a closed and convex cone, the projection theorem
implies that there exists

h0 ∈ PTc(Sx̄ ,u)(h) and 〈h − h0, z − h0〉 ≤ 0 ∀z ∈ Tc(Sx̄ , u).

It follows that

〈h − h0, h0〉 = 0 and 〈h − h0, z〉 ≤ 0 ∀z ∈ Tc(Sx̄ , u),

and so η(h−h0)
‖h−h0‖ ∈ N (Sx̄ , u)∩ηBX∗ . Thus, by (iv) of Theorem 5.3, there exist λi ∈ R+

and yi ∈ Y0(u) (1 ≤ i ≤ m) such that

η(h − h0)

‖h − h0‖ ∈ ∂ f (u)+
m∑

i=1

λi∂φyi (u)+ N (A, u) ∩ BX∗ and
m∑

i=1

λi ≤ 1.

Noting that

f ◦(u, h) = max
x∗∈∂ f (u)

〈x∗, h〉, φ◦
yi
(u, h) = max

x∗∈∂φyi (u)
〈x∗, h〉,

d(h, T (A, u)) = d(h, Tc(A, u)) (by(5.16)) and N (A, u) = N (Tc(A, u), 0),
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it follows from Lemmas 5.1 and 5.3 that

ηd(h, Tc(Sx̄ , u)) =
〈
η(h − h0)

‖h − h0‖ , h − h0

〉

=
〈
η(h − h0)

‖h − h0‖ , h

〉

≤ d+ f (u, h)+
m∑

i=1

λi d
+φyi (u, h)+ d(h, T (A, u))

≤ d+ f (u, h)+ sup
y∈Y0(u)

[d+φy(u, h)]+ + d(h, T (A, u)).

This shows that (i i) holds.
Since Tc(Sx̄ , u) ⊂ T (Sx̄ , u) for any u ∈ Sx̄ , the implication (i i) ⇒ (i i i) is trivial.

Let x ∈ B(x̄, γ2 )\Sx̄ and take u ∈ PSx̄ (x). Then u ∈ Sx̄ ∩ B(x̄, γ ) and x−u
‖x−u‖ ∈

N̂ (Sx̄ , u) (cf. [29, Example 6.16]). This and [29, Proposition 6.5] imply that

〈
x − u

‖x − u‖ , z

〉
≤ 0 ∀z ∈ T (Sx̄ , u).

It follows that

‖x − u‖ ≤
〈

x − u

‖x − u‖ , x − u − z

〉
≤ ‖x − u − z‖ ∀z ∈ T (Sx̄ , u).

Hence ‖x − u‖ = d(x − u, T (Sx̄ , u)). By (iii) (applied to h = x − u), one has that
(5.15) holds. This shows that (i i i) ⇒ (iv) holds.

Suppose that (iv) holds with η > 0 and γ ∈ (0, r). Let ε ∈ (0, η
3 ). By the sub-

smoothness, it is easy from Lemmas 5.1 and 3.1 to verify that there exists δ ∈ (0, γ )
such that

d+ f (u, x − u) = max
x∗∈∂ f (u)

〈x∗, x − u〉 ≤ f (x)− f (x̄)+ ε‖x − u‖,
d+φy(u, x − u) ≤ φy(x)+ ε‖x − u‖

and

d(x − u, T (A, u)) = d(x − u, Tc(A, u))

= max
x∗∈N (A,u)∩BX∗

〈x∗, x − u〉 ≤ d(x, A)+ ε‖x − u‖

for all x ∈ B(x̄, δ), u ∈ Sx̄ ∩ B(x̄, δ) and y ∈ Y0(u). Let x ∈ B(x̄, δ2 )\Sx̄ and take
u ∈ PSx̄ (x). Then u ∈ B(x̄, δ). Hence (5.15) holds for such x and u. It follows from
the earlier estimates that

η‖x − u‖ ≤ f (x)− f (x̄)+ sup
y∈Y

[φy(x)]+ + d(x, A)+ 3ε‖x − u‖,
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that is,

(η − 3ε)d(x, Sx̄ ) = (η − 3ε)‖x − u‖ ≤ f (x)− f (x̄)+ sup
y∈Y

[φy(x)]+ + d(x, A).

This shows that (i) holds. The proof is completed.

Acknowledgments We thank the referees for their helpful comments and for [13,21].
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