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QUANTITATIVE ANALYSIS FOR PERTURBED ABSTRACT
INEQUALITY SYSTEMS IN BANACH SPACES∗

CHONG LI† AND K. F. NG‡

Abstract. Using the error bound results established in the present paper for approximate
solutions, we study the stability issues when perturbed by possibly nonaffine smooth maps E for the
abstract inequality system F ≥K 0 defined by a (possible nonclosed) convex cone K and a Fréchet
differentiable function F satisfying the (extended) weak γ-condition. We provide some sufficient
conditions, in terms of the information at a solution x0, for ensuring the lower semicontinuity and/or
the Lipschitz-like continuity at x0 of the solution mapping for the perturbed system F + E ≥K 0
with smooth perturbation E. Explicit upper bounds of the Lipschitz-like moduli are also provided.
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1. Introduction. Given a suitable vector-valued mapping F between Banach
spaces X and Y , and a convex “cone” K in Y (not necessarily closed and we allow
the case in which 0 /∈ K) in the sense that K is convex and λz ∈ K for any z ∈ K
and λ > 0, we consider the abstract inequality

(1.1) F (x) ≥K 0,

and the associated perturbed one

(1.2) F (x) + E(x) ≥K 0,

where E is a suitable mapping, representing a perturbation, and not restricted to be
an affine one. Let S(E) denote the solution set of (1.2) which, by definition, consists
of all x satisfying (1.2), and let S(= S(0)) denote the solution set of (1.1), namely
that of (1.2) with zero E. Our interests in the present paper are mainly focused
on how the presence of E would affect S(E), such as some possible properties of
error bounds, and the lower semicontinuity and Lipschitz-like continuity of the map
S(·) : E 7→ S(E) (see section 4 for the definitions of these notions). Special cases
of (1.1) include the following classical finite/infinite inequality system (1.3) and the
inequality/strict-inequality system (1.4):

(1.3) fi(x) ≥ 0, i ∈ I,
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(by taking K = l+(I) := {(ti) : ti ≥ 0}) and

(1.4)
fi(x) > 0, i ∈ IP ,
fi(x) ≥ 0, i ∈ IN ,
fi(x) = 0, i ∈ IE

(by taking K := {(ti) : ti > 0 ∀i ∈ IP , ti ≥ 0 ∀i ∈ IN , ti = 0 ∀i ∈ IE}), where
I := IN ∪ IP ∪ IE is an index set, and the fi’s are suitable scalar-valued functions.
The above two problems have many applications in several important problems, such
as optimization, mathematical programming, and knowledge-based data classification;
see, e.g., [13, 17, 25, 28, 40, 41, 47, 48] and references therein.

The notion of Lipschitz-like continuity was originally introduced by Aubin [1] un-
der the name of the pseudo-Lipschitz property (though other names have been used
such as the Aubin continuity property [15] and the sub-Lipschitzian property [51])
to quantify the stability of the solution set of a convex optimization problem. This
notion, together with some other closely related notions including lower semicontinu-
ity and calmness (two weaker properties than Lipschitz-like continuity) of the map
S(·), has been used in many optimization problems such as the semi-infinite/infinite
linear inequality system, the linear complementarity problem, and constrained linear
programming, among others (see [4, 5, 6, 7, 8, 9, 10, 12, 17, 18, 19, 23, 33]), and has
also been studied extensively by using various variational tools such as metric regular-
ity, generalized derivatives and coderivatives, etc., for more general (not necessarily
affine) parametric optimization problems; see, for example, [2, 10, 16, 21, 23, 29, 30,
31, 32, 43, 53] and the references therein. The characterization issue of this notion
and related ones has been studied mainly for the semi-infinite/infinite linear inequality
system (1.3) with constant/affine perturbations, namely the perturbed system (1.2)
with

Y := l∞(I), K := l+(I), F ∈ A(X,Y ), E ∈ Y or E ∈ A(X,Y ),

where A(X,Y ) is the space consisting of all continuous affine maps A(·) + y from X
to Y endowed with the norm ‖A(·) + y‖ := max{‖y‖, ‖A‖} for each bounded linear
operator A and y ∈ Y (each y ∈ Y may be viewed as an element of A(X,Y )). Of
particular relevance to our considerations, we mention the following aspects of the
semi-infinite linear inequality system (1.3) for the map S(·) on X := Rn.

• Lower semicontinuity. Several characterizations for the lower semicontinuity
of S(·) were provided in [18, Theorem 3.1] and [5, Theorem 3.1] with affine
perturbations, mainly in terms of the Slater condition, Robinson regularity,
Robinson stability, and other well-known stability concepts in the literature.

• Calmness. A characterization for the calmness property of S(·) with constant
perturbations was derived in [6, Theorem 3] in terms of the ACQ and the
uniform dual boundedness condition, and an operative expression for the
calmness modulus was provided in [6, Theorem 2] for the case in which I is
finite.

• Lipschitz-like property. Characterizations of the Lipschitz-like continuity of
S(·) with constant perturbations were studied in [17], while a formula for
the Lipschitz-like modulus for S(·) with affine perturbations was given in [11,
Theorem 1].

Further extensions regarding the Lipschitz-like property are reported in [4, 26].
• System (1.3) on Banach space X with constant perturbations. Several char-

acterizations for the Lipschitz-like property of S(·) were given in [4, Theo-
rem 4.1] in terms of the Slater/coderivative condition, and a precise formula
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for computing the exact bounds of the Lipschitz-like modulus was derived in
[4, Theorem 4.6 and Corollary 4.7] in terms of the coderivative norm.

• Abstract linear inequality system (1.1) on X = Rn with affine perturbations.
In the case in which K is closed, Huyen and Yen provided some equivalent
conditions in [26, Theorem 3.9] for the local Lipschitz-like property of S(·) in
terms of the Robinson metric regularity property of S(·), and as applications
they also provided verifiable sufficient conditions for the Lipschitz-like prop-
erty for the classical linear inequality system (1.3), the linear complementarity
problem, and a class of affine variational inequalities under a linear pertur-
bation by virtue of the coderivatives of implicit multifunctions.

We observe that all results mentioned above are obtained under the assumption
that K is closed, and F and the perturbations E are affine. For classical problems
such as (1.4), it is clear that the closeness assumption is too stringent. Our main
purpose in the present paper is to deal with the more general case in which K is not
necessarily closed, and F , E are given C2-maps; we provide some sufficient conditions
for ensuring the lower semicontinuity and/or the Lipschitz-like continuity of S(·) for
the perturbed system (1.2) at a solution x0 of (1.1). These results are presented in
section 4 and, to the best of our knowledge, almost all of them are new.

The approach used in the present paper is quite different from previous ones
on this topic in the literature. To furnish the tools to establish our main results, we
study first in section 3 the issues on the quantitative estimate of the error bound for an
“approximate solution” x0 of (1.1) in the sense that F (x0)+y0 ≥K 0 for some y0 ∈ Y
with “small” norm. The study of this issue is of independent interest and is in the
spirit of the work of Dedieu [14] on the estimate of the error bound for an “approximate
solution” of (1.1). The notion of the error bound for an “approximate solution” of
(1.1) adopted by us here was introduced by Dedieu [14] and is not the same as (but is a
modification of) the more famous notion of the error bound for (1.1) originating from
Hoffman’s error bound (see [20, 24]) for the inequality system (1.3) with each fi being
an affine function on the Euclidean space Rm. Extensions of Hoffman’s error bound
results to the nonlinear inequality system (1.3) or to the abstract inequality system
(1.1) when K is a closed convex cone have been well investigated in the literature;
see, for example, [35, 38, 39, 48] and references therein. Recently, Li and Ng [35]
extended the results of error bounds in [14] for an “approximate solution” of system
(1.4) to the more general system (1.1) with K is not necessarily closed, which in
particular improved the corresponding ones for system (1.4) in [14]. The results
on the quantity estimate of the error bound for an “approximate solution” of (1.1)
obtained in the present paper not only provide crucial tools for the study of the issue
on the lower semicontinuity and the Lipschitz-like continuity of the solution mapping
but also improve the main results in [35, Theorem 2.1] (and so improves further the
corresponding ones in [14]); see Remark 3.2.

2. Preliminaries. We always assume that X, Y, Z are Banach spaces. Fix x
in one of these spaces, and let D be a subset. We use d(x,D) to denote the distance
from x to D. Let B(x, r) stand for the open ball with center x and radius r, and the
corresponding closed ball is denoted by B(x, r). In particular, we write B := B(0, 1)
and B := B(0, 1). As usual, the space of bounded linear operators from X to Y is
denoted by L(X,Y ). It is convenient to use the notation ‖D‖ to denote its distance
to the origin, that is,

‖D‖ := d(0, D) = inf{‖a‖ : a ∈ D},(2.1)
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with the convention that ‖∅‖ = +∞. We also make the convention that D + ∅ = ∅
for each set D. The projection on D is denoted by PD, that is

PD(x) := {z ∈ D : ‖x− z‖ = d(x,D)} for any x ∈ X.

The concept of a convex process (which was introduced by Rockafeller [49, 50] for
convexity problems) plays a key role in the study of this paper.

Definition 2.1. A set-valued map T : X → 2Y is called a convex process from
X to Y if it satisfies 0 ∈ T0, T (λx) = λTx, and T (x+ y) ⊇ Tx+Ty for all x, y ∈ X
and λ > 0.

Thus T : X → 2Y is a convex process if and only if its graph Gr(T ) := {(x, y) ∈
X × Y : y ∈ Tx} is a convex cone in X × Y . By definition, a convex process
T : X → 2Y is closed if its graph Gr(T ) is closed. As usual, the domain, range and
inverse of a convex process T are respectively denoted by D(T ), R(T ), and T−1, i.e.,

D(T ) := {x ∈ X : Tx 6= ∅}, R(T ) :=
⋃
{Tx : x ∈ D(T )},

and
T−1y := {x ∈ X : y ∈ Tx} for each y ∈ Y.

Obviously T−1 is a convex process from Y to X. By definition, the following inequality
holds for a convex process T :

(2.2) ‖T (x+ y)‖ ≤ ‖Tx‖+ ‖Ty‖ for any x, y ∈ X.

Definition 2.2. Suppose that T is a convex process. The norm of T is defined
by

‖T‖d := sup{‖Tx‖ : x ∈ D(T ), ‖x‖ ≤ 1}.
If ‖T‖d < +∞, we say that the convex process T is normed.

Let T, T1, T2 : X → 2Y and Q : Y → 2Z be convex processes. Recall that
T1 ⊆ T2 means that Gr(T1) ⊆ Gr(T2), that is, T1x ⊆ T2x for each x ∈ D(T1). By
definition, one can verify easily that ‖T1‖d ≥ ‖T2‖d if T1 ⊆ T2 and D(T1) = D(T2).
Moreover, T1 ⊆ T2 if and only if T−1

1 ⊆ T−1
2 . The sum T1 + T2, multiple λT (with

λ ∈ R), and composite QT are processes defined respectively by

(T1 + T2)(x) := T1x+ T2x, (λT )(x) := λ(Tx) for each x ∈ X,

and
QT (x) = Q(T (x)) :=

⋃
y∈T (x)

Q(y) for each x ∈ X.

It is well known (and easy to verify) that T1 + T2, λT , and QT are also convex
processes and the following assertions hold:
(2.3)
‖T1+T2‖d ≤ ‖T1‖d+‖T2‖d, ‖QT‖d ≤ ‖Q‖d ‖T‖d, and ‖λT‖d = |λ|‖T‖d.

For notational convenience, we introduce a larger norm ‖T‖ for a convex process T :

‖T‖ := sup{‖Tx‖ : x ∈ B}.

Clearly, one has the following implications:
(2.4)
[‖T‖ < +∞]⇒ [D(T ) = X]⇒ [‖T‖d = ‖T‖] and [‖QT‖ < +∞]⇒ R(T ) ⊆ D(Q).
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The first assertion in the following proposition is a direct consequence of [46, Corollary,
Page 131] and [45, Theorem 5] (see also [37, Proposition 2.2]), and the second one is
known in [37, Proposition 2.1].

Proposition 2.3. Let T : X → 2Y be a closed convex process. Then we have the
following assertions:

(i) If R(T ) is a closed linear subspace, then T−1 is normed.
(ii) If X is reflexive and T−1 is a closed normed convex process, then R(T ) is

closed.

Letting Ω be a subset of X with nonempty interior denoted by intΩ and k ∈ N, the
set of all natural numbers, we use Ck(Ω, Y ) to denote the set of all kth-order smooth
operators, so F ∈ Ck(Ω, Y ) means that F : Ω → Y and its kth Fréchet derivative is
continuous. Associated with any pair (C,F ) of a nonempty closed convex cone C in
Y and F ∈ C1(Ω, Y ), let Tx : X → 2Y denote the process at x ∈ intΩ defined by

(2.5) Txd := F ′(x)d− C for each d ∈ X,

and let its inverse process T−1
x : Y → 2X be defined by

(2.6) T−1
x y := {d ∈ X : F ′(x)d ∈ y + C} for each y ∈ Y.

Since F ′(x) is continuous and C is closed, it is easy to verify that Tx and T−1
x are

closed. In the following lemma, we list some useful properties for convex processes:
(2.7) is a straightforward use of the fact that C + C = C; (2.8) holds by definition,
while the proof for (2.9) is standard (see [36, Proposition 2.3], for example).

Lemma 2.4. Let x0 ∈ X, A ∈ L(X,Y ), and let Tx0 be defined by (2.5). Then one
has that

(2.7) (Tx0 +A)−1F ′(x0)T−1
x0
⊆ (Tx0

+A)−1.

Furthermore, if C = K then, for any −y ∈ R(Tx0
),

(2.8) ‖T−1
x0

(−y)‖ = ‖T−1
x0

(K− y)‖ = ‖T−1
x0

(C− y)‖ ≤ ‖T−1
x0
‖dd(y, C ∩ (y+ R(Tx0

))),

where we adopt the convention that +∞·0 = 0. Moreover, if it is additionally assumed
that ‖T−1

x0
A‖ < 1, then

(2.9) R(Tx0
) = R(Tx0

+A) and ‖(Tx0
+A)−1F ′(x0)‖ ≤ 1

1− ‖T−1
x0 A‖

.

For higher-order consideration, we introduce more notation. Let k ∈ N and
consider a k-multilinear bounded operator Ξ : (X)k → Y . We define the norm ‖Ξ‖
by

‖Ξ‖ := sup{‖Ξ(x1, . . . , xk)‖ : (x1, . . . , xk) ∈ (X)k, ‖xi‖ ≤ 1 for each i};

also, let R(Ξ) denote the image of Ξ:

R(Ξ) := {Ξ(x1, . . . , xk) : (x1, . . . , xk) ∈ (X)k}.

Assume that F ∈ Ck(Ω, Y ) and so the kth derivative F (k)(x) at x ∈ intΩ is a k-
multilinear bounded operator from (X)k to Y . It follows that, for any x0, x ∈ intΩ,
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and for any (z1, z2, . . . , zk−1) ∈ Xk−1, T−1
x0

(F (k)(x)(z1, z2, . . . , zk−1)) is a convex pro-
cess from X to Y . Define

(2.10) ‖T−1
x0
F (k)(x)‖ := sup{‖T−1

x0
(F (k)(x)(z1, z2, . . . , zk−1))‖ : {zi}k−1

i=1 ⊂ B}.

Note in particular that, for each j ≤ k,

(2.11) ‖T−1
x0
F (k)(x)zj‖ ≤ ‖T−1

x0
F (k)(x)‖‖z‖j for each z ∈ X,

where the zj denotes, as usual, (z, . . . , z) ∈ (X)j for each z ∈ X; moreover, if
(z1, . . . , zl) ∈ (X)l, then (zj , z1, . . . , zl) denotes the corresponding element in (X)j+l.
Thus, in terms of the notation R(·), it is routine to verify that, for all x, z ∈ intΩ,
the following equivalences and implication hold:

(2.12)
[‖T−1

z F ′(x)‖ < +∞]⇒ [R(F ′(x)) ⊆ R(Tz)]⇔ [R(Tx) ⊆ R(Tz)]

⇔ [D(T−1
z F ′(x)) = X].

In his study of problem (1.1) with K = C, a closed convex cone, Robinson [45]
required an important assumption that Tx0 is surjective (henceforth to be referred to
as the Robinson condition, as in [34]). We say that (cf. [36]) (Tx0 , F ) satisfies the
weak-Robinson condition on B(x0, r) if −F (x0) ∈ R(Tx0

) and

(2.13) R(F ′(x)) ⊆ R(Tx0
) for each x ∈ B(x0, r).

For the case in which F ∈ C2(Ω, Y ) the notion of the γ-condition for F was first
introduced by Wang [55] to study Smale’s point estimate theory for operators which
are not required to be analytic. This notion was also used in [22] to improve the
corresponding results in [54]. An extended version of this notion given below will be
useful in the presence of convex processes.

Definition 2.5. Given

(2.14) x0 ∈ X, γ ∈ [0,+∞), r ∈ (0,+∞) with γr ≤ 1,

let T : X → 2Y be a closed convex process. We say that (T, F ) satisfies the weak
γ-condition on B(x0, r) if F ∈ C2(B(x0, r), Y ) and

(2.15) ‖T−1F ′′(x)‖ ≤ 2γ

(1− γ‖x− x0‖)3
for each x ∈ B(x0, r).

Note that (2.15) implies the inclusion

(2.16) R(F ′′(x)) ⊆ R(T ) for each x ∈ B(x0, r).

The proof for Lemma 2.6 below is similar to that for [37, Proposition 3.1], and so is
omitted here.

Lemma 2.6. Given (2.14), suppose that X is reflexive and R(F ′(x0)) ⊆ R(T ).
Suppose that (T, F ) satisfies the weak γ-condition on B(x0, r). Then the following
assertions hold.

(i) (T, F ) satisfies (2.13) with T in place of Tx0
:

(2.17) R(F ′(x)) ⊆ R(T ) for each x ∈ B(x0, r).
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(ii) If also r ∈ (0, 2−
√

2
2γ ] and x ∈ B(x0, r), then

(2.18) T−1

∫∫
[0,1]2

[±sF ′′(x0 + ts(x− x0))](x− x0)2 dsdt 6= ∅,

and

(2.19) ‖T−1(F ′(x)− F ′(x0))‖ ≤ −1 +
1

(1− γ‖x− x0‖)2
.

3. Error bounds for approximate solutions. This section is devoted to the
study on the quantitative estimate of the error bound for an “approximate solution”
of (1.1). The main tool for our study in the present paper is [37, Theorem 1.1], which
provides the convergence criterion and the error estimate for the sequence generated
by the extended Newton method of solving the abstract inequality (3.6) below on
reflexive Banach spaces defined by functions satisfying some basic assumptions (i.e.,
(3.1) and (3.2) below with Λ = r∗). Thus, for simplicity, we always assume, for the
remainder of this paper, the following blanket assumption (collectively denoted by
(3.1)):

(3.1)



X is a reflexive Banach space,

K is a convex “cone” (not necessarily closed) and C := K,

γ ∈ [0,+∞) and Λ ∈ (0,∞) with γΛ ≤ 1,

x0 ∈ X and F ∈ C2(B(x0,Λ), Y ) such that (Tx0
, F )

satisfies the weak γ-condition on B(x0,Λ),

‖T−1
x0
‖d <∞ and ξ := ‖T−1

x0
(−F (x0))‖ < +∞ (namely, −F (x0) ∈ R(Tx0)).

Assuming

(3.2) γξ ≤ 3− 2
√

2,

the majorizing function h : [0, 1
γ ) → R defined by h(t) := ξ − t + γt2

1−γt for each
[0, 1

γ ) has a nonpositive minimum value and so has two zeroes in [0, 1
γ ) (counting the

multiplicity); see [37, 55]. Let r0 and r∗ denote the minimum point and the smaller
zero of the function h, respectively, namely

r0 :=
2−
√

2

2γ
and r∗ :=

2ξ

1 + γξ +
√

(1 + γξ)2 − 8γξ
,(3.3)

where, as usual, we adopt the convention that a
0 := +∞ for any a > 0. Note that

(3.4) r∗ ≤ r0, r∗ <
1

γ
, and r∗ < r0 if γξ < 3− 2

√
2.

Indeed, by (3.2) and (3.3), one has that

(3.5) r∗ ≤ 1 + γξ

4γ
≤ 1 + (3− 2

√
2)

4γ
=

2−
√

2

2γ
= r0.

Since 2−
√

2
2 < 1, this implies that r∗ < 1

γ . Also the second inequality in (3.5) is strict
if γξ < 3− 2

√
2, and so (3.4) is shown.
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Our main aim in this section is to consider the abstract inequality problem (1.1),

F (x) ≥K 0,

together with the following one with C = K:

(3.6) F (x) ≥C 0.

Let S and Scl respectively denote the solution sets of (1.1) and (3.6), namely

S := {x ∈ X : F (x) ∈ K} and Scl := {x ∈ X : F (x) ∈ K}.

The following theorem is known in [37, Theorem 1.1] and will be useful in our study.

Theorem 3.1. We assume that (3.1) and (3.2) hold, and suppose Λ = r∗, where
r∗ is defined as in (3.3). Let {xk} be a sequence defined by

(3.7) xk+1 := xk + dk for each k = 0, 1, 2, . . . ,

where each dk ∈ D(xk) := {d ∈ X : F (xk) + F ′(xk)d ∈ C} is such that ‖dk‖ =
‖D(xk)‖. Then {xk} is well defined and converges to a point x∗ ∈ Scl satisfying
‖x0 − x∗‖ ≤ r∗.

For the following theorem and subsequent discussion, it will be convenient to let
η denote the elementary function defined by

(3.8) η(t) :=
2

1 + t+
√

(1 + t)2 − 8t
for any t ∈ [0, 3− 2

√
2].

By differential calculus, one can verify that it is a (strictly) increasing function on
[0, 3− 2

√
2], and its inverse function η−1 : [1, 2+

√
2

2 ]→ [0, 3− 2
√

2] is given by

(3.9) η−1(τ) =
τ − 1

τ(2τ − 1)
for any τ ∈

[
1,

2 +
√

2

2

]
.

Theorem 3.2. Suppose that there exists τ satisfying

(3.10) 1 < τ ≤ 2 +
√

2

2
and γξ ≤ τ − 1

τ(2τ − 1)

(so (3.2) holds). We assume that (3.1) holds, and suppose Λ = r∗, where r∗ is defined
as in (3.3). Then Scl 6= ∅ and

(3.11) d(x0, Scl) ≤ τ‖T−1
x0

(−F (x0))‖ ≤ τ‖T−1
x0
‖d d(F (x0), C ∩ (F (x0) + R(Tx0

))).

Moreover, if (Tx0
, F ) additionally satisfies

(3.12) (F (x0) + R(Tx0)) ∩ PC(F (x0)) 6= ∅,

then

(3.13) d(x0, Scl) ≤ τ‖T−1
x0
‖d d(F (x0),K) < +∞.
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Proof. In terms of the monotonic function η and its inverse η−1 defined in (3.8)
and (3.9), one has from (3.10) that γξ ≤ η−1(τ) ≤ η−1( 2+

√
2

2 ) = 3 − 2
√

2, and, by
definition of r∗ given in (3.3), r∗ = η(γξ)ξ ≤ τξ < +∞. Thus (3.2) holds, and
one concludes by Theorem 3.1 that the sequence {xn} defined there converges to a
solution x∗ ∈ Scl such that ‖x0 − x∗‖ ≤ r∗ ≤ τξ, and so the first inequality in (3.11)
is shown. Hence, thanks to the last assumption in (3.1) and by (2.8), we have that

‖T−1
x0

(−F (x0))‖ ≤ ‖T−1
x0
‖d d(F (x0), C ∩ (F (x0) + R(Tx0))),

and so (3.11) is shown. Moreover, (F (x0) + R(Tx0
)) ∩ C ⊇ (F (x0) + R(Tx0

)) ∩
PC(F (x0)) 6= ∅ by (3.12). Therefore we have that

d(F (x0), C ∩ (F (x0) + R(Tx0
))) ≤ d(F (x0), (F (x0) + R(Tx0

)) ∩ PC(F (x0)))

= d(F (x0), C) < +∞.

Making use of (3.11), we arrive at (3.13), and the proof is complete.

Our next concern regards the corresponding result for the solutions of (1.1) rather
than (3.6). Given a convex set D of X, recall that (cf. [56, Page 6]) the recession cone
of D is the set recD defined as

recD := {x ∈ X : x+D ⊆ D};

a smaller one is the strong recession cone srecD of D which is defined as

srecD := {x ∈ X : x+D ⊆ D}.

Clearly srecD ⊂ recD (and the equality holds when D is closed), and 0 ∈ srecD if
and only if D is closed (hence (3.14) below holds automatically in the case in which
K is closed). Note also that riD ⊆ srecD ⊆ D if D is a convex cone, where riD
denotes the relative interior of D.

Theorem 3.3. Assume that (3.1) holds and suppose that γξ < 3 − 2
√

2 and
Λ > r∗. Suppose that there exists τ satisfying (3.10) and suppose that

(3.14) srecK ∩ R(Tx0) 6= ∅.

Then the following assertion holds for the solution set S of (1.1): S 6= ∅ and

(3.15) d(x0, S) ≤ τ‖T−1
x0

(−F (x0))‖ ≤ τ‖T−1
x0
‖dd(F (x0), C ∩ (F (x0) + R(Tx0

))).

Moreover, if (Tx0 , F ) is additionally assumed to satisfy (3.12), then

(3.16) d(x0, S) ≤ τ‖T−1
x0
‖d d(F (x0),K).

Proof. The second inequality in (3.15) follows from (2.8) (noting that −F (x0) ∈
R(Tx0

) by the last line of (3.1)). Below we show the first inequality. By (3.14), pick a
sequence {cn} from the cone srecK∩R(Tx0

) such that cn → 0; then ‖T−1
x0
‖d‖cn‖ → 0.

For each n ∈ N, let Fn : X → Y be defined by Fn(·) := F (·) − cn, and we consider
problem (3.6) along with

(3.17) Fn(x) ≥C 0.

Since F ′n = F ′, the convex process Tx0 defined in (2.5) is unchanged when F is replaced
by Fn, and we have that
(3.18)
ξn := ‖T−1

x0
(−Fn(x0))‖ ≤ ‖T−1

x0
(−F (x0))‖+ ‖T−1

x0
‖d‖cn‖ = ξ + ‖T−1

x0
‖d‖cn‖ → ξ,
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where the inequality holds because

T−1
x0

(−Fn(x0)) = T−1
x0

(cn − F (x0)) ⊇ T−1
x0

(−F (x0)) + T−1
x0

(cn)

(noting that cn, −F (x0) ∈ R(Tx0)). Let r∗n be defined similarly to r∗ but correspond-
ing to (3.17) (i.e., defined in (3.3) with ξn in place of ξ), so

(3.19) r∗n =
2ξn

1 + γξn +
√

(1 + γξn)2 − 8γξn
→ r∗.

Since Λ > r∗, there exists N0 such that Λ > r∗n for all n > N0. It follows from (3.1)
that (Tx0 , Fn) satisfies the weak γ-condition on B(x0, r

∗
n) for all n > N0. Below we

consider two cases (Case I and Case II) separately.

Case I: γξ < τ−1
τ(2τ−1) . In this case, we have from (3.18) that there exists N > N0

such that γξn <
τ−1

τ(2τ−1) for all n > N . For all such n, we apply Theorem 3.2 to Fn

in place of F , and get that d(x0, Sn) ≤ τ‖T−1
x0

(−Fn(x0))‖, where Sn := {x ∈ X :
Fn(x) ∈ C} 6= ∅. Noting Sn ⊆ S (because F (x) ∈ cn + C ⊆ K as cn ∈ srecK and
C = K whenever x ∈ Sn), it follows that S 6= ∅ and

d(x0, S) ≤ τ‖T−1
x0

(−Fn(x0))‖ = τξn → τξ = τ‖T−1
x0

(−F (x0))‖,

verifying the first inequality in (3.15) for Case I.

Case II: γξ 6< τ−1
τ(2τ−1) (i.e., γξ = τ−1

τ(2τ−1) by (3.10)). Since γξ < 3 − 2
√

2 and

τ satisfies (3.10), we have that τ ∈ (1, 2+
√

2
2 ) (because τ−1

τ(2τ−1) = 3 − 2
√

2 when
τ = 2+

√
2

2 ). Consider ε > 0 sufficiently small such that τε := τ + ε < 2+
√

2
2 . Noting

γξ < τε−1
τε(2τε−1) (by the monotonicity of the function η−1 in (3.9)), one applies the result

established for Case I and gets that d(x0, S) ≤ τε‖T−1
x0

(−F (x0))‖. Letting ε→ 0, the
first inequality in (3.15) is seen to hold for this case too.

Finally, if one assumes that (3.12) holds, then (3.16) follows directly from (3.15),
as in the proof of Theorem 3.2. The proof is complete.

Remark 3.1. Assume the following condition:

(3.20) K − F (x0) ⊆ R(Tx0
).

Then it holds that

(3.21) C − F (x0) ⊆ R(Tx0
)

(noting that R(Tx0
) is closed by Proposition 2.3(ii) applied to Tx0

) and

(3.22) srecK ⊆ K ⊆ C ⊆ R(Tx0)

(so if srecK 6= ∅ then (3.14) of Theorem 3.3 is satisfied), because when c ∈ C, one
has, for any n ∈ N, that nc − F (x0) ∈ R(Tx0

) and so c − 1
nF (x0) ∈ R(Tx0

), and
passing to the limit gives c ∈ R(Tx0

); thus the last inclusion of (3.22) holds, while the
first two inclusions are trivial.

Corollary 3.4. Assume that (3.1) holds, and suppose that there exists τ satisfy-
ing (3.10), Λ ≥ r∗, and that (Tx0

, F ) satisfies (3.20). Then the solution set S of (1.1)
is nonempty and satisfies (3.16) provided that either K is closed, or that srecK 6= ∅,
Λ > r∗, and γξ < 3− 2

√
2.
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Proof. Since (Tx0
, F ) satisfies (3.20), it follows from Remark 3.1 that (3.21) holds;

this trivially implies that d(F (x0), C∩(F (x0)+R(Tx0
))) = d(0, (C−F (x0))∩R(Tx0

)) =
d(F (x0),K). Thus the conclusion follows from Theorems 3.2 and 3.3.

Let X be a Hilbert space and A : X → Y be a bounded linear operator such that
its image R(A) is complemented in Y (in the sense that there exists a bounded linear
projection operator Q : Y → R(A)). Then, by [44], there exists a bounded linear
operator, called a generalized inverse of A and denoted by A+ (associated with Q),
from Y into X such that

(3.23) AA+A = A, A+AA+ = A+, A+A = I−ΠkerA, and AA+ = Q,

where ΠD denotes the orthogonal projection on subset D of X and I is the identify
operator on X. In particular, in the case in which Y is also a Hilbert space and R(A)
is closed, A+ is just the unique Moore–Penrose generalized inverse A†. Recall that
Tx0

is defined by (2.5) with C := K and K is a convex cone in Y .

Lemma 3.5. Let X be a Hilbert space and x0 ∈ X be such that R(F ′(x0)) is
complemented in Y and

(3.24) K ∪ {−F (x0)} ⊆ R(F ′(x0)).

Then the following assertions hold:

(3.25) R(Tx0) = R(F ′(x0))− C = R(F ′(x0)), ‖T−1
x0
‖d ≤ ‖F ′(x0)+‖ < +∞,

and

(3.26)
‖T−1

x0
(−F (x0))‖ = ‖F ′(x0)+(C − F (x0))‖ = ‖F ′(x0)+(K − F (x0))‖

≤ ‖F ′(x0)+‖d(F (x0),K).

Proof. Since C = K and R(F ′(x0)) is a closed linear subspace by assumption, it
is easy to verify
(3.27)
C − F (x0) ⊆ R(F ′(x0)) and ‖F ′(x0)+(K − F (x0))‖ = ‖F ′(x0)+(C − F (x0))‖.

Also, the inequality in (3.26) follows from definition. Moreover, noting that the graph
of Tx0 contains that of F ′(x0), one has that

(3.28) F ′(x0)+v ∈ T−1
x0
v for any v ∈ R(F ′(x0)),

because if v ∈ R(F ′(x0)) then F ′(x0)(F ′(x0)+v) = v by (3.23), and so we have
F ′(x0)(F ′(x0)+v) ∈ v+C, that is, F ′(x0)+v ∈ T−1

x0
v. Observe that (3.24) implies the

equalities in (3.25) and that (3.28) implies the inequality in (3.25) and the inequality

(3.29) ‖T−1
x0

(−F (x0))‖ ≤ ‖F ′(x0)+(C − F (x0))‖

because

‖T−1
x0
v‖ ≤ ‖F ′(x0)+v‖ ≤ ‖F ′(x0)+‖‖v‖ for all v ∈ D(T−1

x0
),

T−1
x0

(C−F (x0)) = T−1
x0

(−F (x0)) by (2.8), and F ′(x0)+(C−F (x0)) ⊆ T−1
x0

(C−F (x0))
by (3.27). To complete the proof, it remains to verify the first equality in (3.26),
that is, the converse inequality of (3.29). To do this, let u ∈ T−1

x0
(−F (x0)). By

definition, there exists c ∈ C such that F ′(x0)u = c − F (x0). This implies that
‖F ′(x0)+(c−F (x0))‖ ≤ ‖u‖ thanks to (3.23); consequently, ‖F ′(x0)+(C−F (x0))‖ ≤
‖T−1

x0
(−F (x0))‖, and the proof is complete.
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The following corollary improves and extends the main theorem [35, Theorem 2.1]
([35] needs the inclusion assumption R(F ′′(x)) ⊆ R(F ′(x0)) for all x ∈ B(x0, r̄), and
the Hilbert space assumption of Y , in addition to that of X; moreover, in the case in
which K is not closed, [35] additionally needs the nonempty assumption riK 6= ∅ for
the second conclusion there).

Corollary 3.6. Let X, x0 ∈ X, and F be as in Lemma 3.5. Assume further
that (3.1) holds, and suppose that there exists τ satisfying (3.10) and Λ ≥ r∗. Then
the assertion

(3.30) S 6= ∅ and d(x0, S) ≤ τ‖F ′(x0)+‖ d(F (x0),K)

holds, provided that either K is closed, or srecK 6= ∅, Λ > r∗, and γξ < 3− 2
√

2.

Proof. By (3.24), one checks from Lemma 3.5 that (3.20) holds and ‖T−1
x0
‖d ≤

‖F ′(x0)+‖ < +∞. Thus the conclusion follows from Corollary 3.4 and the proof is
complete.

Remark 3.2.
(a) Note that assumption (3.24) is stronger than assumption (3.20). In particular,

in the case in which spanK = Y , (3.24) implies that F ′(x0) is of full range.
(b) Noting by the last line of (3.1) that −F (x0) ∈ R(Tx0

), one sees that (3.20)
holds if R(Tx0

) is a closed linear space. In particular, if R(Tx0
) is closed and

R(F ′(x0)) ∩ qriK 6= ∅, then R(Tx0) is a closed linear space and so (3.20)
holds, where qriK denotes the quasi relative interior of K that is defined as
the set of all x̄ ∈ K such that cone (K − x̄) is a linear subspace (see [3] for
this notion and related topics).

(c) The assumption srecK 6= ∅ is strictly weaker than the assumption riK 6= ∅.
For example, let Y := l2 be the (infinite-dimensional) Hilbert sequence space,
and K := {(xi) ∈ l2 : xi > 0} be the positive cone. Then srecK = K 6= ∅
but riK = ∅.

(d) There are many examples for which Theorem 3.3 is applicable, but Corollary
3.6 and the results in [35] are not applicable (even in the case in which Y is
a Hilbert space).

4. Perturbations and stability. Recall the blanket assumption in (3.1), and
recall also that S(E) is the solution set of (1.2) for perturbation E. In this section, we
will study the stability issue for the perturbed abstract inequality system (1.2) when
the perturbation E is allowed from C2(B(x0,Λ), Y ), including the lower semicontinuity
and the Lipschitz-like property of the map S : C2(B(x0,Λ), Y ) → X. We begin with
the following definition on the notions of lower semicontinuity and the Lipschitz-like
property for set-valued mappings.

Definition 4.1. Let Φ : Z ⇒ X be a set-valued mapping between metric space Z
and Banach space X and let x̄ ∈ Φ(z̄). We say that Φ is

(a) lower semicontinuous at (z̄, x̄) if for any neighborhood V of x̄, there exists a
neighborhood U of z̄ such that Φ(z) ∩ V 6= ∅ for any z ∈ U ;

(b) Lipschitz-like around (z̄, x̄) with modulus ` ≥ 0 if there are neighborhoods U
of z̄ and V of x̄ such that

(4.1) Φ(z1) ∩ V ⊆ Φ(z2) + `‖z1 − z2‖B for any z1, z2 ∈ U.

We define the exact Lipschitzian bound of Φ around (z̄, x̄) by

lipZΦ(z̄, x̄) := inf{` ≥ 0 : (4.1) holds for some {U, V }};
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equivalently, in terms of the distance function,

(4.2) lipZΦ(z̄, x̄) = lim sup
(z,x)→(z̄,ȳ)

d(x,Φ(z))

d(z,Φ−1(x))
,

where, as usual, we adopt the convention that 0
0 := 0. Thus we have that lipZΦ(z̄, x̄) =

+∞ if Φ is not Lipschitz-like around (z̄, x̄); see [4, 27, 42, 52] for more details.
Let r ∈ (0,Λ], and respectively define the “seminorms” |‖ · |‖r and ‖ · ‖r on

C2(B(x0,Λ), Y ) by

|‖E|‖r := sup {‖E(x)‖ : x ∈ B(x0, r)} ≤ +∞

and

(4.3) ‖E‖r := max

{
‖E(x0)‖, ‖E′(x0)‖, sup

x∈B(x0,r)

‖E′′(x)‖

}

for any E ∈ C2(B(x0,Λ), Y ). Note that

(4.4) |‖E|‖r ≤ (1 + r + r2)‖E‖r for any E ∈ C2(B(x0,Λ), Y )

because, for each x ∈ B(x0, r),

‖E(x)‖ ≤ ‖E(x0)‖+ ‖E′(x0)‖‖x− x0‖+ |‖E′′|‖r‖x− x0‖2 ≤ (1 + r + r2)‖E‖r.

The space C2(B(x0,Λ), Y ) endowed with the seminorm ‖·‖r is denoted C2
r (B(x0,Λ), Y ).

Moreover, introduce the subspace H2(x0; r) and the cone H2
0(x0; r) of C2(B(x0,Λ), Y )

as follows:

H2(x0; r) := {E ∈ C2
r (B(x0,Λ), Y ) : R(E′(x0)) ∪ R(E′′(B(x0, r))) ⊆ R(Tx0

)}

and
H2

0(x0; r) := {E ∈ H2(x0; r) : −E(x0) ∈ R(Tx0
)}.

4.1. Lower semicontinuity. For notational simplicity, we define

(4.5) FE(·) := F (·) + E(·) for any E ∈ C2(B(x0,Λ), Y ).

Recall that r0 = 2−
√

2
2γ , as defined by (3.3).

Lemma 4.2. Assume that (3.1) holds and Λ = r0. Let ε ∈ [0,+∞) and E ∈
C2(B(x0, r0), Y ) be such that

(4.6) (Tx0
, E) satisfies the weak ε-condition on B

(
x0,

2−
√

2
2(γ+ε)

)
.

Then

(4.7) (Tx0
, FE) satisfies the weak (γ + ε)-condition on B

(
x0,

2−
√

2
2(γ+ε)

)
.

Moreover, if additionally it is assumed that A ∈ L(X,Y ) satisfies ‖T−1
x0
A‖ < 1

2 , then
(4.8)

(Tx0
+A,FE) satisfies the weak γ̃-condition on B(x̃0, r̃0) for any x̃0 ∈ B(x0,

3−2
√

2
γ+ε ),
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where

(4.9) γ̃ :=
2(γ + ε)

(1− (γ + ε)‖x̃0 − x0‖)3
and r̃0 :=

2−
√

2

2γ̃
;

in particular,

(4.10) (Tx0 +A,FE) satisfies the weak 2(γ + ε)-condition on B
(
x0,

2−
√

2
4(γ+ε)

)
.

Proof. Let x ∈ B(x0,
2−
√

2
2(γ+ε) ). By the fourth line in assumption (3.1) and (4.6), we

note by (2.16) that the domains of T−1
x0
F ′′(x) and T−1

x0
E′′(x) are the whole of X×X.

This, together with the triangle inequality in (2.3) (noting (2.4)), implies that
(4.11)

‖T−1
x0
F ′′E(x)‖ ≤ 2γ

(1− γ‖x− x0‖)3
+

2ε

(1− ε‖x− x0‖)3
≤ 2(γ + ε)

(1− (γ + ε)‖x− x0‖)3
,

where FE is defined by (4.5). Thus (4.7) is checked.
Now assume A ∈ L(X,Y ) satisfies ‖T−1

x0
A‖ < 1

2 . To show (4.8), let x̃0 ∈
B(x0,

3−2
√

2
γ+ε ) and note the following elementary equivalence:[

2−
√

2

2
· 1− t

2
≤ 2−

√
2

2
− t

]
⇐⇒ [t ≤ 3− 2

√
2] for any t ≥ 0.

Applying this to (γ+ε)‖x0−x̃0‖ in place of t (noting that (γ+ε)‖x0−x̃0‖ < 3−2
√

2),
one gets that

2−
√

2

2
· 1− (γ + ε)‖x0 − x̃0‖

2(γ + ε)
≤ 2−

√
2

2(γ + ε)
− ‖x0 − x̃0‖.

Recalling the definitions of γ̃, r̃0, and r0 (see (4.9)), we have then that r̃0 ≤ 2−
√

2
2(γ+ε) −

‖x0 − x̃0‖. It follows that B(x̃0, r̃0) ⊆ B(x0,
2−
√

2
2(γ+ε) ). Let x ∈ B(x̃0, r̃0). Then 1 −

γ̃‖x− x̃0‖ > 0 by (4.9), and so

1− (γ + ε)‖x− x0‖ ≥ 1− (γ + ε)(‖x̃0 − x0‖+ ‖x− x̃0‖)

= (1− (γ + ε)‖x̃− x0‖)(1−
(γ + ε)

1− (γ + ε)‖x̃− x0‖
‖x− x̃0‖)

≥ (1− (γ + ε)‖x̃− x0‖)(1− γ̃‖x− x̃0‖) > 0,

where we have used the fact that

(γ + ε)

(1− (γ + ε)‖x̃− x0‖)
≤ 2(γ + ε)

(1− (γ + ε)‖x̃− x0‖)3
= γ̃.

Since (Tx0
+A)−1F ′(x0)T−1

x0
F ′′E(x) ⊆ (Tx0

+A)−1F ′′E(x) and ‖(Tx0
+A)−1F ′(x0)‖ < 2

by (2.7) and (2.9) in Lemma 2.4, and making use of (4.7) and (4.9), together with
the second inequality in (2.3), it follows that

(4.12)

‖(Tx0
+A)−1F ′′E(x)‖ ≤ ‖(Tx0

+A)−1F ′(x0)‖‖T−1
x0
F ′′E(x)‖

≤ 2 · 2(γ + ε)

(1− (γ + ε)‖x− x0‖)3

≤ 2 · 2(γ + ε)

(1− (γ + ε)‖x̃− x0‖)3 · (1− γ̃‖x− x̃0‖)3

=
2γ̃

(1− γ̃‖x− x̃0‖)3
.

The proof is complete.
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Theorem 4.3. Assume that (3.1), (3.14) hold and Λ = r0. Let ε ∈ [0,+∞) and
E ∈ C2(B(x0, r0), Y ) be such that (4.6) holds and ‖T−1

x0
E′(x0)‖ < 1

2 . Suppose that
there exists τ ∈ (1, 2+

√
2

2 ] such that

(4.13) ‖T−1
x0

(−(F + E)(x0))‖ < τ − 1

4τ(γ + ε)(2τ − 1)
.

Then, the perturbed inequality (1.2) is solvable, and its solution set S(E) satisfies

(4.14)

d(x0,S(E)) ≤
τ ‖T−1

x0
(−(F + E)(x0))‖

1− ‖T−1
x0 E

′(x0)‖

≤
τ ‖T−1

x0
‖d
[
d((F + E)(x0), C ∩ (F (x0) + E(x0) + R(Tx0)))

]
1− ‖T−1

x0 E
′(x0)‖

.

If, further, −E(x0) ∈ R(Tx0) and (Tx0 , F ) satisfies (3.12), then

(4.15) d(x0,S(E)) ≤
τ‖T−1

x0
‖d

1− ‖T−1
x0 E

′(x0)‖
(d(F (x0),K) + ‖E(x0)‖).

Proof. Let FE be defined by (4.5), i.e., FE = F + E. Then

(Tx0
+ E′(x0))(u) = F ′(x0)u− C + E′(x0)(u) = F ′E(x0)− C.

Thus Tx0
+E′(x0) is the convex process at x0 as defined in (2.5) associated with the

pair (C,FE) in place of (C,F ). Moreover, thanks to the assumption ‖T−1
x0
E′(x0)‖ < 1

2 ,
we have, by (2.9) of Lemma 2.4, that
(4.16)

R(Tx0) ⊆ R(Tx0 + E′(x0)), ‖(Tx0 + E′(x0))−1F ′(x0)‖ ≤ 1

1− ‖T−1
x0 E

′(x0)‖
< 2,

and, by (4.10) of Lemma 4.2, that (Tx0
+E′(x0), FE) satisfies the weak γE-condition

on B(x0, rE), where γE := 2(γ+ ε) and rE := (2−
√

2)/2γE (that is, rE is the number
r0 given by (3.3) with γE in place of γ). Let

ξE := ‖(Tx0
+ E′(x0))−1(−FE(x0))‖

and

r∗E :=
2ξE

1 + γEξE +
√

(1 + γEξE)2 − 8γEξE

(that is, ξE is the number ξ given in (3.1) but with FE in place of F , and r∗E is the
number r∗ given by (3.3) but with ξE , γE in place of ξ, γ). We next show that

(4.17) ξE <
τ − 1

γEτ(2τ − 1)
and r∗E < rE .

Indeed, applying (2.7) (to Tx0
+ E′(x0) in place of T ) and (4.16), one has that

(4.18)

‖(Tx0 + E′(x0))−1(−FE(x0))‖ ≤ ‖(Tx0 + E′(x0))−1F ′(x0)‖‖T−1
x0

(−FE(x0))‖

≤
‖T−1

x0
(−FE(x0))‖

1− ‖T−1
x0 E

′(x0)‖
≤ 2‖T−1

x0
(−FE(x0))‖;
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hence, thanks to (4.13),

ξE ≤ 2‖T−1
x0

(−FE(x0))‖ < τ − 1

2τ(γ + ε)(2τ − 1)
=

τ − 1

γE τ(2τ − 1)
,

showing the first inequality in (4.17), and that γEξE < 3− 2
√

2 as τ−1
τ(2τ−1) ≤ 3− 2

√
2

(see (3.9)). It follows from (3.4) that r∗E < rE ≤ r0 = Λ and so (4.17) is shown. By
Theorem 3.3 (applied to FE , γE , ξE , rE in place of F, γ, ξ, Λ), we conclude that
the perturbed inequality (1.2) is solvable with the solution set S(E) satisfying

(4.19) d(x0,S(E)) ≤ τ‖(Tx0
+ E′(x0))−1(−FE(x0))‖ ≤

τ ‖T−1
x0

(−FE(x0))‖
1− ‖T−1

x0 E
′(x0)‖

,

where the last inequality is due to (4.18). Moreover, by inequality (4.13), we know
that −FE(x0) ∈ R(Tx0), and so by (2.8) (applied −FE(x0) in place of y),

(4.20) ‖T−1
x0

(−FE(x0))‖ ≤ ‖T−1
x0
‖d
[
d(FE(x0), C ∩ (FE(x0) + R(Tx0

)))
]
.

Therefore (4.14) is shown by (4.19) and (4.20).
For (4.15), assume that −E(x0) ∈ R(Tx0

) and that (Tx0
, F ) satisfies (3.12). The

former implies that F (x0) + R(Tx0) ⊆ FE(x0) + R(Tx0), and so

d(FE(x0), C ∩ (FE(x0) + R(Tx0
))) ≤ d(FE(x0), C ∩ (F (x0) + R(Tx0

)))

≤ ‖E(x0)‖+ d(F (x0), C ∩ (F (x0) + R(Tx0
)))

= d(F (x0), C) + ‖E(x0)‖,

where the last equality is due to (3.12). This, together with (4.14), implies (4.15).
The proof is complete.

Corollary 4.4. In addition to the assumptions made in Theorem 4.3, suppose
further that x0 ∈ Scl and that −E(x0) ∈ R(Tx0

). Then

(4.21) B
(
x0,

τ ‖T−1
x0
‖d‖E(x0)‖

1− ‖T−1
x0 E

′(x0)‖

)
∩ S(E) 6= ∅.

Proof. Thanks to the assumption −E(x0) ∈ R(Tx0
) and the assumption that

(3.14) holds, we have that ‖T−1
x0

(−E(x0))‖ ≤ ‖T−1
x0
‖d‖E(x0)‖ < +∞. For (4.21), we

assume, without loss of generality, that x0 /∈ S(E), so ‖T−1
x0

(−E(x0))‖ > 0. By the
assumed (4.13), we take τ ′ ∈ (1, τ) sufficiently near τ such that

‖T−1
x0

(−(F + E)(x0))‖ < τ ′ − 1

4τ ′(γ + ε)(2τ ′ − 1)
<

τ − 1

4τ(γ + ε)(2τ − 1)
.

By (4.14) of Theorem 4.3 but applied to τ ′ in place of τ , one has

d(x0,S(E)) ≤
τ ′ ‖T−1

x0
(−(F + E)(x0))‖

1− ‖T−1
x0 E

′(x0)‖
≤
τ ′ ‖T−1

x0
(−E(x0))‖

1− ‖T−1
x0 E

′(x0)‖
<
τ ‖T−1

x0
(−E(x0))‖

1− ‖T−1
x0 E

′(x0)‖
,

where the second inequality holds because x0 ∈ Scl. Hence, there exists x∗ ∈ S(E)
such that

‖x∗ − x0‖ <
τ ‖T−1

x0
(−E(x0))‖

1− ‖T−1
x0 E

′(x0)‖
≤
τ ‖T−1

x0
‖d‖E(x0)‖

1− ‖T−1
x0 E

′(x0)‖
.

Therefore, (4.21) is shown.
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For Corollary 4.6 below, we need to recall the following lemma, which is known
in [57, Theorem 3.1] for the Hilbert space setting but the proof presented there can
be modified to suit the general Banach space setting.

Lemma 4.5. Let D and Z be two closed convex subsets of Y with 0 ∈ D ∩ Z and
let ρ > 0 be such that ρB ⊆ Z. Then, for any r > 0, one has that

(4.22) d(y,D ∩ Z) ≤
(

1 +
4r

ρ

)
max{d(y,D),d(y, Z)} for any y ∈ rB.

The following corollary is a consequence of Theorem 4.3 and will be useful.

Corollary 4.6. Assume that (3.1), (3.14) hold and Λ = r0. Let ε ∈ (0,+∞),
τ = (2 +

√
2)/2, and suppose further that −F (x0) ∈ int(R(Tx0

)). Then there exist
δ ∈ (0,+∞) and µ ∈ [1,+∞) such that

(4.23) ‖T−1
x0

(−(F + E)(x0))‖ ≤ µ‖T−1
x0
‖d(d(F (x0),K) + ‖E(x0)‖)

and

(4.24) d(x0,S(E)) ≤
τµ‖T−1

x0
‖d

1− ‖T−1
x0 E

′(x0)‖
(d(F (x0),K) + ‖E(x0)‖)

whenever E ∈ C2(B(x0, r0), Y ) with ‖E(x0)‖ < δ satisfies (4.6), (4.13) and that
‖T−1

x0
E′(x0)‖ < 1

2 .

Proof. By the assumption −F (x0) ∈ int(R(Tx0)), we take δ > 0 such that 2δB ⊆
F (x0)+R(Tx0), and set µ := 1+4(‖F (x0)‖+δ)/δ. Below we show that δ and µ are as
desired. Indeed, let E ∈ C2(B(x0, r0), Y ) with ‖E(x0)‖ < δ satisfy (4.6), (4.13), and
that ‖T−1

x0
E′(x0)‖ < 1

2 , and let FE be defined by (4.5). Then ‖FE(x0)‖ ≤ ‖F (x0)‖+
δ and B(−FE(x0), δ) ⊆ B(−F (x0), 2δ) ⊆ R(Tx0

); hence δB ⊆ FE(x0) + R(Tx0
).

Applying Lemma 4.5 to C, FE(x0) + R(Tx0
) in place of D, Z, we conclude that

d(FE(x0), C ∩ (FE(x0) + R(Tx0
))) ≤ µd(FE(x0), C) ≤ µ(d(F (x0),K) + ‖E(x0)‖),

and it follows from (2.8) (applied to FE(x0) in place of y) that (4.23) holds. Hence
(4.24) holds by Theorem 4.3, since E is assumed to satisfy (4.6) and (4.13). The proof
is complete.

Theorem 4.7. Assume that (3.1), (3.14) hold and Λ = r0. Suppose that x0 ∈ S
and let R ∈ (0, r0]. Then

(i) the solution map S(·) : H2
0(x0;R) ⇒ X is lower semicontinuous at (0, x0),

(ii) the solution map S(·) : H2(x0;R) ⇒ X is lower semicontinuous at (0, x0)
provided that −F (x0) ∈ int(R(Tx0

)).

Proof. Let ε ∈ (0, 1) be arbitrary. Let δ := 1 and µ := 1 if −F (x0) /∈ int(R(Tx0)),
and otherwise, let δ ∈ (0, 1) and µ ∈ [1,+∞) be the numbers determined by Corollary
4.6: if E ∈ C2(B(x0, r0), Y ) with ‖E(x0)‖ < δ satisfies (4.6), (4.13) (with τ := 2+

√
2

2 )
and that ‖T−1

x0
E′(x0)‖ < 1

2 , then (4.23) and (4.24) hold. Now choose δε ∈ (0, δ) such

that ‖T−1
x0
‖d δε < min{ ε4µ ,

3−2
√

2
4µ(γ+ε)}. By the definitions of ‖E‖R (as in (4.3)) and δε

(noting that µ ≥ 1), one has that if

(4.25) E ∈ H2(x0;R) with ‖E‖R < δε,
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then

‖E(x0)‖ < δ, ‖T−1
x0
‖d‖E(x0)‖ ≤ ‖T−1

x0
‖dδε < min

{
ε

4µ
,

3− 2
√

2

4µ(γ + ε)

}
,(4.26)

‖T−1
x0
E′(x0)‖ ≤ ‖T−1

x0
‖d‖E′(x0)‖ ≤ ‖T−1

x0
‖dδε <

ε

4µ
<

1

2
,(4.27)

and, if R = r0 = 2−
√

2
2γ (and so R > 2−

√
2

2(γ+ε) ),

(4.28) ‖T−1
x0
E′′(x)‖ ≤ ‖T−1

x0
‖d‖E′′(x)‖ < ε

4µ
<

2ε

(1− ε‖x− x0‖)3

for each x ∈ B

(
x0,

2−
√

2

2(γ + ε)

)
.

For the rest of our proof, we suppose that (4.25) holds. To complete the proof, we
will verify that

(4.29) B(x0, ε) ∩ S(E) 6= ∅

for each of the following cases: (i) E ∈ H2
0(x0;R) and (ii) −F (x0) ∈ int(R(Tx0

)).
Recalling the assumption that R ∈ (0, r0], let us first consider the special case in
which R = r0.

For case (i), the present E satisfies −E(x0) ∈ R(Tx0), and observe that, with
τ := (2 +

√
2)/2 (so τ−1

τ(2τ−1) = 3 − 2
√

2), all the assumptions in Theorem 4.3 are

met. Indeed, (4.6) holds by (4.28), and ‖T−1
x0
E′(x0)‖ < 1

2 by (4.27). To check (4.13),
note first that, by the assumption x0 ∈ S, one has 0 ∈ −F (x0) +K and so, by (2.6),
0 ∈ T−1

x0
(−F (x0)) and ‖T−1

x0
(−F (x0))‖ = 0. This implies that

(4.30)
‖T−1

x0
(−(F + E)(x0))‖ ≤ ‖T−1

x0
(−F (x0))‖+ ‖T−1

x0
(−E(x0))‖ ≤ ‖T−1

x0
‖d‖E(x0)‖.

Thus, noting that µ ≥ 1, one has by (4.26) that

(4.31) ‖T−1
x0

(−(F + E)(x0))‖ ≤ µ‖T−1
x0
‖d‖E(x0)‖ < τ − 1

4(γ + ε)τ(2τ − 1)
.

Therefore we can apply (4.14) of Theorem 4.3 to conclude that S(E) 6= ∅ and

(4.32) d(x0,S(E)) ≤
τµ‖T−1

x0
‖d‖E(x0)‖

1− ‖T−1
x0 E

′(x0)‖
≤ 4µ‖T−1

x0
‖d‖E(x0)‖ < ε

thanks to (4.26), (4.27) and noting that τ ≤ 2. Thus (4.29) is proved for case (i). For
case (ii), the proof is much the same but we use Corollary 4.6 in place of Theorem 4.3.
In particular, noting d(F (x0),K) = 0 as F (x0) ∈ K, we see that (4.31) and (4.32)
continue to hold by (4.23) and (4.24), respectively. Therefore, we have completed the
proof for the case in which R = r0.

It remains to prove the same for the case in which R 6= r0 (and so R < r0 as
R ∈ (0, r0] by assumption). In this case, set

γ′ :=
2−
√

2

2R
and r′0 :=

2−
√

2

2γ′
.
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Then γ′ > γ, and so r′0 ≤ r0 and r′0 = R < 1
γ′ . Hence (Tx0

, F ) satisfies the weak

γ′-condition on B(x0, r
′
0). Thus one applies the result just established (with γ′ in

place of γ), and we conclude that (4.29) also holds for the case in which R 6= r0. The
proof is complete.

Recalling that (3.14) holds automatically in the case in which K is closed, we
have the following corollary.

Corollary 4.8. Assume (3.1) and Λ = r0. Suppose that x0 ∈ S, and let R ∈
(0, r0]. If K is closed, then conclusions (i) and (ii) in Theorem 4.7 hold.

4.2. Lipschitz-like continuity. To prepare the main theorem in this subsec-
tion, it is convenient to note the following simple lemma.

Lemma 4.9. Let γ̄ ∈ [0,+∞), and F1, F2 ∈ C2(B(x0,
2−
√

2
2γ̄ ), Y ) be such that each

(Tx0
, Fi) satisfies the weak γ̄-condition on B(x0,

2−
√

2
2γ̄ ) and that

(4.33) R(F ′i (x0)) ⊆ R(Tx0
) for each i = 1, 2.

Then, for any x̃0 ∈ B(x0,
2−
√

2
2γ̄ ), the following equivalence holds:

(4.34) F1(x̃0)− F2(x̃0) ∈ R(Tx0)⇐⇒ F1(x0)− F2(x0) ∈ R(Tx0).

Proof. Fix x̃0 ∈ B(x0,
2−
√

2
2γ̄ ) and consider i = 1, 2. Then, by assumption, and

using (2.18) of Lemma 2.6 (applied to 2−
√

2
2γ̄ , x̃0, γ̄ in place of r, x, γ), we hence get

that

(4.35) ±
∫∫

[0,1]2
[sF ′′i (x0 + ts(x̃0 − x0))](x̃0 − x0)2 dsdt ∈ R(Tx0).

By Taylor’s formula, we also have that

Fi(x̃0) = Fi(x0) + F ′i (x0)(x̃0 − x0) +

∫∫
[0,1]2

[sF ′′i (x0 + ts(x̃0 − x0))](x̃0 − x0)2 dsdt,

and so

F1(x̃0)− F2(x̃0) = F1(x0)− F2(x0) + (F ′1(x0)− F ′2(x0))(x̃0 − x0)

+

∫∫
[0,1]2

[sF ′′1 (x0 + ts(x̃0 − x0))](x̃0 − x0)2 dsdt

−
∫∫

[0,1]2
[sF ′′2 (x0 + ts(x̃0 − x0))](x̃0 − x0)2 dsdt,

which, together with (4.33) and (4.35), implies (4.34), as R(Tx0) is a cone. The proof
is complete.

Theorem 4.10. Assume that (3.1), (3.14) hold and Λ = r0 := 2−
√

2
2γ . Let ε ∈

[0,+∞), r ∈ (0, 2−
√

3
2(γ+ε) ), and x0 ∈ Scl (that is F (x0) ∈ K = C).

(i) Suppose that −F (x0) ∈ int(R(Tx0
)). Then there exists a pair (δ, µ) of positive

numbers with δ ≤ r such that

(4.36) B(x0, δ) ∩ S(E1) ⊆ S(E2) +
µ ‖T−1

x0
‖d|‖E1 − E2|‖r

2− ‖T−1
x0 E

′
2(x0)‖ − 1/(1− (γ + ε)r)2

B,
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whenever E1, E2 ∈ C2(B(x0, r0), Y ) with |‖E1|‖r, |‖E2|‖r < δ have the following prop-
erties:
(4.37)

‖T−1
x0
E′i(x0)‖ < 1

6
, (Tx0

, Ei) satisfies the weak ε-condition on B
(
x0,

2−
√

2
2(γ+ε)

)
.

(ii) Let τ ∈ (1, 2+
√

2
2 ]. Then (4.36) holds with δ = r and µ = τ whenever E1, E2 ∈

C2(B(x0, r0), Y ) are such that E1(x0)−E2(x0) ∈ R(Tx0) and have the properties (4.37)
and the following (4.38):

(4.38) ‖T−1
x0
‖d|‖Ei|‖r <

τ − 1

8
√

3(γ + ε)τ(2τ − 1)
.

Proof. Let E1, E2 ∈ C2(B(x0, r0), Y ) satisfy (4.37), and FEi
:= F + Ei be given

by (4.5) with Ei in place of E for i = 1, 2. By the assumed γ-condition in (3.1) and
the ε-conditions in (4.37), we see from (4.7) of Lemma 4.2 (applied to Ei in place of
E) that
(4.39)

(Tx0
, FEi

) satisfies the weak (γ + ε)-condition on B
(
x0,

2−
√

2
2(γ+ε)

)
for each i = 1, 2.

Further, (4.37) implies in particular that R(E′i(x0)) ⊆ R(Tx0
), and so R(F ′Ei

(x0)) ⊆
R(Tx0) (noting by definition that R(F ′(x0)) ⊆ R(Tx0)). It follows from (2.19) of

Lemma 2.6 (applied to (Tx0 , FEi) and 2−
√

2
2(γ+ε) in place of (Tx0 , F ) and r) that

(4.40) ‖T−1
x0

(F ′Ei
(x)− F ′Ei

(x0))‖ ≤ −1 +
1

(1− (γ + ε)‖x− x0‖)2

for each x ∈ B

(
x0,

2−
√

2

2(γ + ε)

)
.

To prove (4.36) in (i) and (ii) we consider an arbitrary

(4.41) x̃0 ∈ B(x0, r) ∩ S(E1),

and correspondingly set

(4.42) A := E′2(x̃0) + F ′(x̃0)− F ′(x0), ξ̃ := ‖(Tx0
+A)−1(−FE2

(x̃0))‖,

and γ̃, r̃0 as in (4.9). Then γ ≤ γ̃ and r̃0 ≤ r0. It is routine to check that F ′E2
= F ′+E′2

and that (Tx0
+ A)(·) = F ′E2

(x̃0)(·) − C and so Tx0
+ A is the convex process at

x̃0 as defined in (2.5) associated with the pair (C,FE2
) in place of (C,F ). Since

r ≤ 2−
√

3
2(γ+ε) ≤

3−2
√

2
γ+ε ≤

2−
√

2
2(γ+ε) , we have by (4.41) that

(4.43) x̃0 ∈ B(x0, r) ⊆ B

(
x0,

3− 2
√

2

γ + ε

)
,

and it follows from (4.40) that

‖T−1
x0

(F ′E2
(x̃0)−F ′E2

(x0))‖ ≤ −1+
1

(1− (γ + ε)‖x̃0 − x0‖)2
< −1+

1

(1− 2−
√

3
2 )2

=
1

3
.
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Since T−1
x0

is convex process and noting the definition of A in (4.42), it follows from
(4.37) and the triangle inequality that

(4.44)

‖T−1
x0
A‖ ≤ ‖T−1

x0
E′2(x0)‖+ ‖T−1

x0
(F ′E2

(x̃0)− F ′E2
(x0))‖

< ‖T−1
x0
E′2(x0)‖ − 1 +

1

(1− (γ + ε)r)2

<
1

6
+

1

3
=

1

2
.

Hence, by (2.9) of Lemma 2.4, we have that
(4.45)

‖(Tx0
+A)−1F ′(x0)‖ ≤ 1

1− ‖T−1
x0 A‖

≤ 1

2− ‖T−1
x0 E

′
2(x0)‖ − 1/(1− (γ + ε)r)2

< 2.

Noting x̃0 ∈ B(x0,
3−2
√

2
γ+ε ) and ‖T−1

x0
A‖ < 1

2 by (4.43) and (4.44), respectively, one

can apply (4.8) to see that

(4.46) (Tx0
+A,FE2

) satisfies the weak γ̃-condition on B

(
x̃0,

2−
√

2

2γ̃

)
.

Recalling the definition of ξ̃ given in (4.42), one has from (2.7) and (4.45) that

(4.47) ξ̃ ≤ ‖(Tx0
+A)−1F ′(x0)‖ · ‖T−1

x0
(−FE2

(x̃0))‖ ≤ 2‖T−1
x0

(−FE2
(x̃0))‖ ≤ +∞;

similarly, (2.7) and (4.45) imply that

(4.48) ‖(Tx0
+A)−1‖d ≤

‖T−1
x0
‖d

2− ‖T−1
x0 E

′
2(x0)‖ − 1/(1− (γ + ε)r)2

≤ 2‖T−1
x0
‖d < +∞,

where the last inequality holds by the last line of (3.1). Moreover, R(Tx0
) = R(Tx0

+A)
(by (2.9) and (4.44)), and so (3.14) implies that

(4.49) srecK ∩ R(Tx0
+A) 6= ∅.

Assuming

(4.50) γ̃ξ̃ <
τ − 1

τ(2τ − 1)
,

with γ̃, ξ̃ being defined as in (4.9) and (4.42), and τ ∈ (1, 2+
√

2
2 ], we will verify that

(4.51) d(x̃0,S(E2)) ≤
τ ‖T−1

x0
‖d
[
d(FE2(x̃0), C ∩ (FE2(x̃0) + R(Tx0)))

]
2− ‖T−1

x0 E
′
2(x0)‖ − 1/(1− (γ + ε)r)2

< +∞.

Indeed, by (4.50) and (3.4) (applied to γ̃, ξ̃ in place of γ, ξ), one has r̃∗ < 2−
√

2
2γ̃ ,

where

r̃∗ :=
2ξ̃

1 + γ̃ξ̃ +
√

(1 + γ̃ξ̃)2 − 8γ̃ξ̃

is the number defined in (3.3) with γ̃, ξ̃ in place of γ, ξ. Noting that Tx0
+A is just

the convex process at x̃0 as defined in (2.5) associated with the pair (C,FE2
) in place
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of (C,F ), it follows that (3.15) of Theorem 3.3 is applicable to x̃0, FE2
, γ̃, 2−

√
2

2γ̃ , r̃∗,

S(E) in place of x0, F, γ, Λ, r∗, S (thanks to (4.46), (4.48), (4.49), and (4.50)), and
so

(4.52) d(x̃0,S(E2)) ≤ τ‖(Tx0 +A)−1‖dd(FE2(x̃0), C ∩ (FE2(x̃0) + R(Tx0 +A))).

Thus (4.51) holds (assuming (4.50)) by inequality (4.48) and the fact that R(Tx0
) =

R(Tx0
+ A). The rest of our proof is divided into two parts dealing with (i) and (ii),

respectively. For this purpose, we first note from (4.9) that

(4.53) γ̃ =
2(γ + ε)

(1− (γ + ε)‖x̃0 − x0‖)3
≤ 2(γ + ε)

(1− 2−
√

3
2 )3

=
2(γ + ε)

(
√

3/2)3
< 2
√

3(γ + ε),

because ‖x̃0 − x0‖ < r ≤ 2−
√

3
2(γ+ε) (see (4.43)).

(i) Since −F (x0) ∈ int(R(Tx0
)), we take δ0 such that 0 < δ0 ≤ r and

(4.54) (2 + L)δ0B ⊆ F (x0) + R(Tx0
),

where L ≥ 0 is a Lipschitz constant of F on B(x0, r0). Let constants µ0, µ, δ be
defined by

(4.55)

µ0 := 1 + 4(1 + L) +
4‖F (x0)‖

δ0
, µ :=

(2 +
√

2)µ0

2
,

δ := min

{
δ0,

3− 2
√

2

16
√

3µ0‖T−1
x0 ‖d(γ + ε)

}
.

Below we show that the pair (δ, µ) is as desired. To do this, let |‖Ei|‖r < δ satisfy
(4.37). To show (4.36), assuming x̃0 ∈ B(x0, δ) ∩ S(E1), we have to show that

(4.56) d(x̃0,S(E2)) ≤
(2 +

√
2)µ0‖T−1

x0
‖d|‖E1 − E2|‖r

2(2− ‖T−1
x0 E

′
2(x0)‖ − 1/(1− (γ + ε)r)2)

.

To this end, note first that

(4.57) ‖FE2
(x̃0)− F (x0)‖ ≤ L‖x̃0 − x0‖+ |‖E2|‖r ≤ (1 + L)δ,

and it follows from (4.54) that δ0B ⊆ FE2(x̃0)+R(Tx0) (noting that δ ≤ δ0), and this,
in particular, implies −FE2

(x̃0) ∈ R(Tx0
). Thus by (4.22) of Lemma 4.5 (applied to

FE2
(x̃0), C, FE2

(x̃0) + R(Tx0
) in place of y, D, Z), and noting FE2

(x̃0) ∈ FE2
(x̃0) +

R(Tx0
), we have that

d(FE2(x̃0), C ∩ (FE2(x̃0) + R(Tx0))) ≤
(

1 +
4‖FE2(x̃0)‖

δ0

)
d(FE2(x̃0), C)

≤ µ0|‖E1 − E2|‖r,(4.58)

where the last inequality holds because, by FE1
(x̃0) ∈ C (as x̃0 ∈ S(E1)) and x̃0 ∈

B(x0, r),

d(FE2
(x̃0), C) ≤ ‖FE2

(x̃0)− FE1
(x̃0)‖ ≤ ‖E1(x̃0)− E2(x̃0)‖ ≤ |‖E1 − E2|‖r,

and, by (4.57) and (4.55),

1 +
4‖FE2(x̃0)‖

δ0
≤ 1 + 4(1 + L) +

4‖F (x0)‖
δ0

= µ0.
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Thus, as noted earlier, −FE2
(x̃0) ∈ R(Tx0

), and so we can apply (2.8) (to FE2
(x̃0) in

place of y), and so

‖T−1
x0

(−FE2(x̃0))‖ ≤ ‖T−1
x0
‖dd(FE2(x̃0), C ∩ (FE2(x̃0) + R(Tx0)))

≤ µ0‖T−1
x0
‖d|‖E1 − E2|‖r.(4.59)

Hence, by (4.47), we have that

(4.60) ξ̃ ≤ 2µ0‖T−1
x0
‖d|‖E1 − E2|‖r ≤ 4δµ0‖T−1

x0
‖d,

and it follows from (4.53) and (4.55) that

γ̃ξ̃ ≤ 4µ0γ̃‖T−1
x0
‖dδ ≤

γ̃(3− 2
√

2)

4
√

3(γ + ε)
< 3− 2

√
2.

Therefore (4.50) holds (and so does (4.51)) with τ replaced by 2+
√

2
2 (so the right-hand

side of (4.50) is 3− 2
√

2; see (3.9)). It follows from (4.51) and (4.58) that

d(x̃0,S(E2)) ≤ 2 +
√

2

2
· ‖T−1

x0
‖d ·

µ0|‖E1 − E2|‖r
2− ‖T−1

x0 E
′
2(x0)‖ − 1/(1− (γ + ε)r)2

,

verifying (4.56).
(ii) Assume that (4.37), (4.38) hold and E1(x0) − E2(x0) ∈ R(Tx0

). Clearly,
FE1

(x0)−FE2
(x0) = E1(x0)−E2(x0) ∈ R(Tx0

) and R(F ′Ei
(x0)) ⊆ R(Tx0

) (see (4.37)
and note that R(F ′(x0)) ⊆ R(Tx0) ). Hence, making use of (4.39) and (4.43), we can
apply Lemma 4.9 to FE1 , FE2 , γ + ε, x̃0 in place of F1, F2, γ̄, x, and so (4.34) tells
us that FE1

(x̃0)−FE2
(x̃0) ∈ R(Tx0

), that is FE1
(x̃0) ∈ FE2

(x̃0) + R(Tx0
). Also, since

FE1
(x̃0) ∈ K ⊆ C as x̃0 ∈ S(E1) by (4.41), it follows that

(4.61) d(FE2(x̃0), C ∩ (FE2(x̃0) + R(Tx0)) ≤ ‖FE1(x̃0)− FE2(x̃0))‖ ≤ |‖E1 − E2|‖r.

Furthermore, the first inequality of (4.59) in the above proof of (i) is still valid for
the present case (since, as noted earlier, −FE2

(x̃0) ∈ −FE1
(x̃0) + R(Tx0

) ⊆ R(Tx0
),

and thus (2.8) is applicable). Therefore, it follows from (4.47), (4.61), and the first
inequality of (4.59) that
(4.62)

γ̃ξ̃ ≤ 2γ̃‖T−1
x0
‖d|‖E1 − E2|‖r ≤ 2γ̃‖T−1

x0
‖d(|‖E1|‖r + |‖E2|‖r) <

γ̃(τ − 1)

2
√

3(γ + ε)τ(2τ − 1)
,

where the last inequality holds by the assumed (4.38), and therefore (4.50) holds by
(4.53) for the present case. Consequently, (4.51) is applicable and, together with
(4.61), one has that

d(x̃0,S(E2)) ≤
τ‖T−1

x0
‖d|‖E1 − E2|‖r

2− ‖T−1
x0 E

′
2(x0)‖ − 1/(1− (γ + ε)r)2

,

and so (4.36) is shown with δ = r and µ = τ as X is reflexive and x̃0 ∈ B(x0, r)∩S(E1)
is arbitrary. The proof is complete.

Corollary 4.11. Assume that (3.1), (3.14), Λ = r0 := 2−
√

2
2γ hold and suppose

that x0 ∈ Scl is such that (Tx0 , F ) satisfies (3.20). Let ε ∈ [0,+∞), r ∈ (0, 2−
√

3
2(γ+ε) ),

τ ∈ (1, 2+
√

2
2 ], and E1, E2 ∈ H2

0(x0; r) be such that (4.37) and (4.38) hold for each
i = 1, 2. Then (4.36) holds with δ = r and µ = τ , and

(4.63) B
(
x0,

τ ‖T−1
x0
‖d‖Ei(x0)‖

1− ‖T−1
x0 E

′
i(x0)‖

)
∩ S(Ei) 6= ∅ for each i = 1, 2.
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Proof. To verify (4.63), it suffices to show that Corollary 4.4 is applicable to each
Ei (i = 1, 2) in place of E. Indeed, thanks to the assumptions Ei ∈ H2

0(x0; r) and
x0 ∈ Scl, we know that −Ei(x0) ∈ R(Tx0

) and ‖T−1
x0

(−F (x0))‖ = 0. This and the
triangle inequality, together with (4.38), imply that

‖T−1
x0

(−(F + Ei)(x0))‖ ≤ ‖T−1
x0

(Ei(x0))‖ < τ − 1

8
√

3τ(γ + ε)(2τ − 1)

and so Ei satisfies (4.13) stated for E. It also satisfies (4.6) by (4.37). Therefore
(4.63) holds by Corollary 4.4.

To show (4.36) (with µ = τ), we only need to justify applying Theorem 4.10(ii)
to the present pair E1, E2, namely to show E1(x0) − E2(x0) ∈ R(Tx0

). To do this,
take x̃0 ∈ B(x0, r) ∩ S(E1). Note that FE1(x̃0) ∈ K ⊆ R(Tx0) by (3.22) (thanks to

(3.20)), and x̃0 ∈ B(x0,
2−
√

3
2(γ+ε) ) since r < 2−

√
3

2(γ+ε) by assumption. Thus, one applies

(4.34) of Lemma 4.9 (to FE1 , 0 in place of F1, F2) to check that FE1(x0) ∈ R(Tx0).
Since −F (x0) ∈ −C ⊆ R(Tx0) (as x0 ∈ Scl) and −E2(x0) ∈ R(Tx0), it follows
that −FE2

(x0) = −F (x0) − E2(x0) ∈ R(Tx0
). Hence E1(x0) − E2(x0) = FE1

(x0) −
FE2

(x0) ∈ R(Tx0
) as desired. The proof is complete.

Recall that we introduced in Definition 4.1 the exact Lipschitzian bounds for
set-valued mappings.

Theorem 4.12. Assume that (3.1), (3.14) hold and Λ = r0. Let x0 ∈ S and
R ∈ (0, r0].

(i) Suppose −F (x0) ∈ int(R(Tx0)). Then the solution map S : H2(x0;R) ⇒ X
is Lipschitz-like around (0, x0).

(ii) Suppose that (3.20) holds. Then the solution map S : H2
0(x0;R) ⇒ X

is Lipschitz-like around (0, x0) and the exact Lipschitzian bound satisfies
lipH2

0
S(0, x0) ≤ ‖T−1

x0
‖d

Proof. Similar to the discussion in the proof for Theorem 4.7, we assume, without
loss of generality, that R = r0 = 2−

√
2

2γ . Let 0 < ε ≤ 1
6 , 1 < τ ≤ 2+

√
2

2 , and
0 < r ≤ min{ 1

2 ,
2−
√

3
2(γ+ε)}. We select a pair (δτ , µτ ) of two positive numbers according

to the following rules:
(a) If −F (x0) ∈ int(R(Tx0

)) but F (x0) /∈ R(Tx0
), then we take our (δτ , µτ ) to be

the pair (δ, µ) as in (i) of Theorem 4.10.
(b) If F (x0) ∈ R(Tx0

), then we take (δτ , µτ ) := (δ, τ) with δ ∈ (0, r).

Since r ≤ 1
2 and r ≤ 2−

√
3

2(γ+ε) < R, it follows from (4.4) that

(4.64) |‖E|‖r ≤ (1 + r + r2)‖E‖r ≤ (1 + 2r)‖E‖R for each E ∈ C2(B(x0, R), Y ).

Now set

(4.65) θ := min

{
δτ
2
,

ε

‖T−1
x0 ‖d

,
τ − 1

8
√

3(1 + 2r)‖T−1
x0 ‖d(γ + ε)τ(2τ − 1)

}

and let E1, E2 ∈ V := {E ∈ H2(x0;R) : ‖E‖R < θ}. Fix i = 1, 2, and note that

(4.66) ‖T−1
x0
E′i(x0)‖ ≤ ‖T−1

x0
‖d‖E′i(x0)‖ ≤ ‖T−1

x0
‖d‖Ei‖R < ε ≤ 1

6
,
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and that, similarly,

‖T−1
x0
E′′i (x)‖ ≤ ‖T−1

x0
‖d‖Ei‖R < ε <

2ε

(1− ε‖x− x0‖)3

for each x ∈ B

(
x0,

2−
√

2

2(γ + ε)

)
,

and

‖T−1
x0
‖d|‖Ei|‖r ≤ (1 + 2r)‖T−1

x0
‖d‖Ei‖R <

τ − 1

8
√

3(γ + ε)τ(2τ − 1)
.

Thus, (4.37) and (4.38) of Theorem 4.10 are checked. Write rτ := min{δτ , r}. Below
we will show that

(4.67) B(x0, rτ ) ∩ S(E1) ⊆ S(E2) +
µτ ‖T−1

x0
‖d|‖E1 − E2|‖r

2− ε− 1/(1− (γ + ε)r)2
B

for each of the cases in (i) and (ii). Granting this and making use of the fact from
(4.64) that |‖(E1 − E2)|‖r ≤ (1 + 2r)‖(E1 − E2)‖R, we have that

(4.68) B(x0, rτ ) ∩ S(E1) ⊆ S(E2) +
(1 + 2r)µτ ‖T−1

x0
‖d‖E1 − E2‖R

2− ε− 1/(1− (γ + ε)r)2
B.

(i) −F (x0) ∈ int(R(Tx0
)). Without loss of generality, we may assume that

F (x0) /∈ R(Tx0) (otherwise, 0 ∈ int(R(Tx0)); hence R(Tx0) = Y and (3.20) holds).
Then, noting rτ ≤ δτ = δ and ‖T−1

x0
E′i(x0)‖ < ε (by (4.66)), we have by Theorem

4.10(i) that (4.67) and (4.68) hold for all E1, E2 ∈ V ; consequently, S : H2(x0;R) ⇒ X
is Lipschitz-like around (0, x0).

(ii) E1, E2 ∈ H2
0(x0;R) and (3.20) holds. Then, thanks to the assumption x0 ∈ S,

F (x0) ∈ C ⊆ R(Tx0) (noting (3.22)), and so µτ = τ by our selection in (b). Therefore,
as noted earlier, we can apply Corollary 4.11 to see that (4.67) and (4.68) hold with
µτ = τ because rτ ≤ δτ = δ and ‖T−1

x0
E′i(x0)‖ < ε (see (4.66)). Thus the proof can

be completed as in (i).

As noted earlier, (3.14) holds if K is closed. Thus we have the following corollary.

Corollary 4.13. Assume that (3.1) holds and Λ = r0. Suppose that x0 ∈ S and
let R ∈ (0, r0]. If K is closed, then conclusions (i) and (ii) in Theorem 4.12 hold.

Under the Robinson condition made in [34], Tx0 is surjective and we have the
following Lipschitz-like property for the solution map, which is a direct consequence
of Theorem 4.12.

Corollary 4.14. Assume that (3.1) holds and Λ = r0. Let γ ∈ (0,+∞) and
x0 ∈ S be such that Tx0 is surjective. Suppose further that srecK 6= ∅. Then, for any
R ∈ (0, r0], the solution map S : C2

R(B(x0, r0), Y ) ⇒ X is Lipschitz-like around (0, x0)
and the exact Lipschitzian bound satisfies lipC2RS(0, x0) ≤ ‖T−1

x0
‖d < +∞.

Remark 4.1. Considering the special case in which F and the perturbation are
affine, the results of Theorems 4.7 and 4.12 are new for the abstract inequality system
(1.1) in the case in which either K is not closed (such as for the inequality/strict-
inequality system (1.4) with nonempty IP ) or X is of infinite dimension. Even when
K is closed (such as for the inequality/strict-inequality system (1.4) with empty IP )
and X = Rn, part (ii) of Theorem 4.12 is new, while part (i) is essentially known as it
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can be deduced from the corresponding results in [26]. Moreover, for the finite/infinite
inequality system (1.3), part (ii) of Theorems 4.7 and 4.12 is new while part (i) is
essentially known as it can be deduced from the corresponding results in [5, 11, 18].

We end our paper with two examples illustrating the use of Theorem 4.12 and
Corollary 4.14 for showing the lower semicontinuity and/or the Lipschitz-like property
of the concerned solution map.

Example 4.1. Let X = R2, Y = R3, and let the “cone” K ⊆ R3 be given by

K := {(t1, t2, t3) : t21 + (t3 − t2)2 ≤ t22 and t2 < 0},

that is, C = K is the closed cone generated by the origin and the plane disk
{(t1,−1, t3) : t21 + (t3 + 1)2 ≤ 1} while K = C \ {0}. Let (λ1, λ2, λ3) ∈ K, and
define F by

F (x) :=

 t21 + t2 + λ1

t1 +
t22

1−t2 + λ2

+λ3

 for each x = (t1, t2) ∈ R× (−∞, 1).

Then

F ′(x) =

 2t1 1

1 −1 + 1
(1−t2)2

0 0

 for each x = (t1, t2) ∈ R× (−∞, 1).

Let x0 := 0. Then F (x0) ∈ K ⊆ C (so x0 ∈ S and ξ = 0), and also

F ′(x0) =

 0 1
1 0
0 0

 .

Hence
Tx0

u = (u2, u1, 0)T − C for each u = (u1, u2) ∈ R2.

This implies that R(Tx0) = R2 × R+. Hence, (3.14) holds (as (0,−1, 0) ∈ srecK ∩
R(Tx0)). Moreover, for any z = (z1, z2, z3) ∈ R2 × R+, one sees that

T−1
x0
z = {(u1, u2) : (u2 − z1)2 + (z3 + (u1 − z2))2 ≤ (u1 − z2)2 and u1 ≤ z2};

hence (z2 − z3, z1) ∈ T−1
x0

(z1, z2, z3). Thus we have that

(4.69) ‖T−1
x0
z‖ ≤

√
z2

1 + (z2 − z3)2 ≤
√

2‖z‖ for each z = (z1, z2, z3) ∈ R2 × R+.

This immediately yields that ‖T−1
x0
‖ ≤
√

2. Now let x = (t1, t2) ∈ R × (−∞, 1), and
u = (u1, u2), v = (v1, v2) ∈ B. One checks by definition that

F ′′(x)(u, v) =


u

(
2 0
0 0

)
vT

u

(
0 0
0 2

(1−t2)3

)
vT

0

 =

 2u1v1
2u2v2

(1−t2)3

0

 .
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Therefore, R(F ′′(x)) ⊆ R(Tx0
), and, thanks to (4.69),

‖T−1
x0
F ′′(x)(u, v)‖ ≤

√
2

√
(2u1v1)2 +

(2u2v2)2

(1− t2)6
≤ 2
√

2(|u1v1|+ |u2v2|)
(1− t2)3

≤ 2
√

2

(1− t2)3

(noting that |u1v1|+ |u2v2| ≤ 1
2 (u2

1 + v2
1 + u2

2 + v2
2) ≤ 1); hence we have in particular

that

‖T−1
x0
F ′′(x)‖ ≤ 2

√
2

(1− t2)3
≤ 2

√
2

(1−
√

2‖x‖)3
for each x ∈ B

(
0, 1√

2

)
.

Therefore, assumption (3.1) holds with γ =
√

2 and Λ = r0 = (2 −
√

2)/2
√

2 (see
(3.3)). Let R ∈ (0, (2 −

√
2)/2
√

2]. Thus Theorem 4.7 is applicable and the solution
map S(·) : H2

0(x0;R) ⇒ X is lower semicontinuous at (0, 0). Furthermore, if it is
assumed that λ3 < 0 then −F (x0) ∈ intR(Tx0), Theorem 4.12 is applicable to getting
that the solution map S : H2(x0;R) ⇒ X is Lipschitz-like around (0, 0).

For the following example, let {fi : i ∈ N} be a pointwise bounded family {fi :
i ∈ N} in C2(B,R), and we need some general observations on the family {fi : i ∈ N}.
Let l∞ denote the classical Banach space consisting of all bounded sequences of real
numbers endowed with the supremum norm given by

‖y‖ := sup
i∈N
|ti| for each y := (ti) ∈ l∞.

Define F : B→ l∞ by

(4.70) F (x) := (fi(x)) for each x ∈ B.

Fixing x̄ ∈ B and assuming that {f ′′i : i ∈ N} is equicontinuous around x̄, one can
verify by definition that F is twice differentiable at x̄, and the first and the second
derivatives are given by

(4.71) F ′(x̄)u = (f ′i(x̄)u) for each u ∈ X

and
F ′′(x̄)(u, v) = (f ′′i (x̄)(u, v)) for each (u, v) ∈ X ×X,

respectively. In particular, if {f ′′i : i ∈ N} is equicontinuous on any closed subset of
B, then F ∈ C2(B, l∞). Furthermore, we have that

‖F ′′(x̄)‖ ≤ sup
i∈N
‖f ′′i (x̄)‖.

In Example 4.2 below, we tailor (1.4) to the case in which I := N, IP := N1 consists
of all odd natural numbers, IN := N2 consists of all even natural numbers, and IE is
the empty set, namely the following infinite inequality/strict-inequality system:

(4.72)
fn(x) > 0, n ∈ N1,
fn(x) ≥ 0, n ∈ N2.

We pick and fix a sequence {An : n ∈ N} of symmetric matrices and (λn) ∈ l∞ such
that

(4.73) An ∈ Rn×n, ‖An‖ ≤ 1 for each n ∈ N,
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and

(4.74) λn ≥ 0 for each n ∈ N1 and λn > 0 for each n ∈ N2.

Let X denote the Hilbert space l2 consisting of all square-summable sequences of real
numbers. For each x := (tn) ∈ X and k ∈ N, we write x|k for (t1, . . . , tk) ∈ Rk.

Example 4.2. For each n ∈ N, let fn : X → R be defined by

fn(x) := λn + t1 + tn +
1

2
〈Anx|n, x|n〉+

n+1∑
k=1

tk+1
n+1

2(k + 1)
for each x = (tn) ∈ X.

Then, fixing x = (tn) ∈ X, one checks by definition that

(4.75) f ′n(x)u = u1 + un + 〈Anx|n, u|n〉+

n+1∑
k=1

tkn+1

2
un+1 for each u = (un) ∈ X,

and

f ′′n (x)(u, v) = 〈Anu|n, v|n〉+
n+1∑
k=1

k

2
tk−1
n+1 un+1vn+1 for each (u, v) = ((un), (vn)) ∈ X2.

Then it is trivial to check by elementary calculus that {f ′′i : i ∈ N} is equicontinuous
on any closed subset of B and, for each x ∈ B,

‖f ′′n (x)‖ ≤ ‖An‖+

∞∑
k=1

k

2
|tn+1|k−1 ≤ 1 +

1

(1− |tn+1|)3
≤ 2

(1− ‖x‖)3
.

Thus the function F defined by (4.70) is in C2(B, l∞), and

‖F ′′(x)‖ ≤ sup
i∈I
‖f ′′i (x)‖ ≤ 2

(1− ‖x‖)3
for each x ∈ B.

Let K ⊆ l∞ be the “cone” consisting of all sequences (sn) ∈ l∞ such that sn ≥ 0 if
n ∈ N1 and sn > 0 otherwise. Then srecK 6= ∅, and the infinite inequality/strict-
inequality (4.72) coincides with (1.1). Let x0 := 0. Then x0 ∈ S, the solution set of
(4.72) (noting that F (x0) = (λn) ∈ K), and ξ = 0. Since by (4.71) and (4.75)

F ′(x0)u := (f ′n(x0)u) = (u1 + un) for each u = (un) ∈ X,

it follows that Tx0
is surjective and ‖T−1

x0
‖ = 1. Indeed, for any z := (zn) ∈ l∞ with

‖z‖ = 1, one has that

T−1
x0
z =

{
(un) ∈ X : u1 ≥

z1

2
, un ≥ zn − u1 ∀n ≥ 2

}
;

hence (1, 0, . . .) ∈ T−1
x0
z and ‖T−1

x0
‖ ≤ 1. On the other hand, for z̄ := (1), we have

that
T−1
x0
z̄ = {(u1, 0, . . .) : u1 ≥ 1}

and so ‖T−1
x0
‖ ≥ ‖T−1

x0
z̄‖ = 1. Therefore, assumption (3.1) holds with γ = 1 and

Λ = r0 = 2−
√

2
2 . Thus, Corollary 4.14 is applicable, and, for any R ∈ (0, 2−

√
2

2 ), the

solution map S : C2
R(B(x0,

2−
√

2
2 ), l∞) ⇒ X is Lipschitz-like around (0, 0) and the

exact Lipschitzian bound satisfies lipC2RS(0, x0) ≤ 1.
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[18] M. A. Goberna, M. A. López, and M. Todorov, Stability theory for linear inequality systems,
SIAM J. Matrix Anal. Appl., 17 (1996), pp. 730–743.

[19] M. S. Gowda and J.-S. Pang, On the boundedness and stability of solutions to the affine
variational inequality problem, SIAM J. Control Optim., 32 (1994), pp. 421–441.
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