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In this paper, we introduce and consider the concept of the prox-regularity of a
multifunction.Wemainly study themetric subregularity of a generalized equation defined
by a proximal closed multifunction between two Hilbert spaces. Using proximal analysis
techniques, we provide sufficient and/or necessary conditions for such a generalized
equation to have the metric subregularity in Hilbert spaces. We also establish the results
of Robinson–Ursescu theorem type for prox-regular multifunctions.
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1. Introduction

As an extension of the convexity, the prox-regularity expresses a variational behavior of ‘‘order two’’ and plays an
important role in optimization and variational analysis (see [1–10] and references therein). In this paper we first discuss
the prox-regularity of a multifunction, and we observe that the class of prox-regular multifunctions is much larger than the
class of convex multifunctions. The main aim of this paper is to study the metric subregularity for a generalized equation
defined by a prox-regular multifunction between two Hilbert spaces.

Recall that a closed multifunction F (between two Banach spaces) is metrically regular at (a, b) ∈ Gr(F) := {(x, y) : y ∈

F(x)} if there exist τ , δ ∈ (0, +∞) such that
d(x, F−1(y)) ≤ τd(y, F(x)) ∀(x, y) ∈ B(a, δ) × B(b, δ),

where B(a, δ) denotes the open ball with center a and radius δ. As it iswell recognized that the notion of themetric regularity
plays an important role in nonlinear analysis and variational analysis, and it has been well studied by many authors with a
lot of valuable results (for details see [11–18]). In particular, the following Robinson–Ursescu theorem is a cornerstone in
this field.

Theorem RU. Let F be a closed convexmultifunction between Banach spaces X and Y . Let a ∈ X and b ∈ F(a). Then the following
statements are equivalent:
(i) b ∈ int(F(X)).
(ii) There exists η > 0 such that B(b, η) ⊂ F(B(a, 1)).
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(iii) There exist η, r ∈ (0, +∞) such that

B(y, tη) ⊂ F(B(x, t)) ∀(x, y) ∈ Gr(F) ∩ (B(a, r) × B(b, r)) and t ∈ (0, 1).

(iv) F is metrically regular at (a, b).

In this paper, in the Hilbert space setting, we address the corresponding issue in Section 4 for a large class of (possibly
nonconvex) prox-regular multifunctions.

A weaker property (than the metric regularity of F ) is that of the metric subregularity concerning generalized equations
of the form

b ∈ F(x), (GE)

where and throughout we assume that b ∈ Y is a given point. Recall (cf. [12]) that (GE) ismetrically subregular at a ∈ F−1(b)
if there exists τ ∈ [0, +∞) such that

d(x, F−1(b)) ≤ τd(b, F(x)) for all x close to a. (1.1)

This property provides an estimate of how far a candidate x (in a neighborhood of a) can be from the solution set F−1(b) of
generalized equation (GE). A multifunctionM : Y ⇒ X is said to be calm at (b, a) ∈ Gr(M) if there exists L ∈ (0, +∞) such
that

d(x,M(b)) ≤ L‖y − b‖ for all (y, x) ∈ Gr(M) close to (b, a).

It is known and is easy to verify that (GE) is metrically subregular at a ∈ F−1(b) if and only ifM = F−1 is calm at (b, a). The
metric subregularity and calmness have been already studied by many authors under various names (see [19–23,16,24–28]
and therein references).

A special case of interest is the following one:

Y = R, b = λ and F(x) := [f (x), +∞) ∀x ∈ X (1.2)

where f : X → R ∪ {+∞} is a proper lower semicontinuous bounded below function and λ := infx∈X f (x). In this case,
generalized equation (GE) reduces to optimization problem

min
x∈X

f (x)

while metric subregularity (1.1) reduces to

d(x, S) ≤ τ(f (x) − λ) for all x close to a, (1.3)

where S := {x ∈ X : f (x) = λ}. Usually a is said to be a weak sharp minimum of f if there exists τ ∈ (0, +∞) such
that (1.3) holds. Weak sharp minima have important applications in sensitivity analysis and convergence analysis of
mathematical programming. In recent years, weak sharp minima have been extensively studied (cf. [29,23–25] and
references therein). In terms of the subdifferentials of f outside the solution set S, Ioffe [30] first studied weak sharpminima
(under a different name) when f is locally Lipschitz and proved the following result: if f is locally Lipschitz at a ∈ S and there
exist η, δ ∈ (0, +∞) such that

d(0, ∂ f (x)) ≥ η ∀x ∈ B(a, δ) \ S

then a is a weak sharp minimum of f . His work has been followed by many others, and it is nowwell known that Ioffe’s result
is still true when f is a general proper semicontinuous function on X . In this line, in terms of the coderivatives, the authors [28]
further extended the Ioffe’s result to the case when F is a general closed multifunction and established the following result.

Result I. Let F be a closedmultifunction between Banach spaces X and Y . Suppose that there exist η, δ ∈ (0, +∞) and ε ∈ (0, 1)
such that

d(0,D∗

c F(x, y)(Jε(y − b))) ≥ η ∀x ∈ B(a, δ) \ F−1(b) and y ∈ Pε
F(x)(b) ∩ B(b, δ), (1.4)

where Jε(y− b) := {y∗
∈ ∂‖ · ‖(y− b)+ εBY∗ : ‖y∗

‖ = 1} and Pε
F(x)(b) := {y ∈ F(x) : ‖b− y‖ < d(b, F(x))+ ε}. Then (GE) is

metrically subregular at a.

In general, the converse of Ioffe’s result and that of Result I are not necessarily true. But, under the convexity assumption,
the converse of each of these results does hold. Indeed, the authors [28] proved the following characterization: if F is a
closed convex multifunction between Banach spaces X and Y then (GE) is metrically subregular at a ∈ F−1(b) if and only if there
exist η, δ ∈ (0, +∞) and ε ∈ (0, 1) such that (1.4) holds. It is a natural problem to ask whether the above characterization
can been extended to a larger class of possibly nonconvex functions. In Theorem 5.1, we provide an answer to this problem
for the class of prox-regular multifunctions. Moreover, under the prox-regularity assumption and in terms of the normal
cone of the solution set as well as some properties of the concerned multifunction on the solution set, we provide several
characterizations for the metric subregularity in Theorem 5.2. In particular, we extend some existing results on weak sharp
minima to the prox-regularity case from the convex one.
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2. Preliminaries

Let X be a Banach space and BX (resp. ΣX ) denote the closed unit ball (resp. the unit sphere) of X . For x ∈ X and r > 0,
we denote by B(x, r) the open ball with center x and radius r . For a closed subset A of X and a point a in A, let Tc(A, a) and
T (A, a) denote respectively the Clarke tangent cone and the contingent (Bouligand) cone of A at a (cf. [31,18,32]); they are
defined by

Tc(A, a) := lim inf
x

A
→a,t→0+

(A − x)/t and T (A, a) := lim sup
t→0+

(A − a)/t,

where x
A

→ ameans that x → awith x ∈ A. Thus, v ∈ Tc(A, a) if and only if, for each sequence {an} in A converging to a and
each sequence {tn} in (0, ∞) decreasing to 0, there exists a sequence {vn} in X converging to v such that an + tnvn ∈ A for
all n, while v ∈ T (A, a) if and only if there exist a sequence {vn} converging to v and a sequence {tn} in (0, ∞) decreasing to
0 such that a + tnvn ∈ A for all n. We denote by Nc(A, a) the Clarke normal cone of A at a, that is,

Nc(A, a) := {x∗
∈ X∗

|⟨x∗, h⟩ ≤ 0 for all h ∈ Tc(A, a)}.

Let N̂(A, a) denote the Fréchet normal cone of A at a; thus x∗
∈ N̂(A, a) if and only if for any ε > 0 there exists δ > 0 such

that

⟨x∗, x − a⟩ ≤ ε‖x − a‖ ∀x ∈ A ∩ B(a, δ). (2.1)

A relate but distinct notion of normal cone is that of proximal normal cone NP(A, a). This later notion is particularly relevant
for the investigation regarding variational behavior of ‘‘order two’’ (cf. [6–8,32]). We recall that x∗

∈ NP(A, a) if and only if
there exist σ , δ ∈ (0, +∞) such that

⟨x∗, x − a⟩ ≤ σ‖x − a‖2
∀x ∈ A ∩ B(a, δ). (2.2)

It is known that

NP(A, a) ⊂ N̂(A, a) ⊂ Nc(A, a).

The Mordukhovich (limiting) normal cone is denoted by N(A, a) and is defined by

N(A, a) := lim sup
x

A
→a

NP(A, x).

Thus, x∗
∈ N(A, a) if and only if there exist sequences {xn} and {x∗

n} with each x∗
n ∈ NP(A, xn) such that xn

A
→ a and

{x∗
n}weak∗-converges to x∗. It is known (cf. [7, Ch. 2, Theorem 6.1]) that if X is a Hilbert space then

Nc(A, a) = coN(A, a), (2.3)

where co(·) denotes the closed convex hull. If A is convex, then Tc(A, a) = T (A, a) and Nc(A, a) = NP(A, a) are respectively
the tangent cone and the normal cone in the sense of convex analysis; in this case,

Nc(A, a) = NP(A, a) = {x∗
∈ X∗

| ⟨x∗, x⟩ ≤ ⟨x∗, a⟩ for all x ∈ A}.

Let φ : X → R ∪ {+∞} be a proper lower semicontinuous function,

dom(φ) := {x ∈ X | φ(x) < +∞} and epi(φ) := {(x, t) ∈ X × R | φ(x) ≤ t}.

For a ∈ dom(φ), let ∂Pφ(a) denote the proximal subdifferential of φ at a, that is, ∂Pφ(a) is the set of all x∗
∈ X∗ satisfying

the property that there exist σ , δ ∈ (0, +∞) such that

⟨x∗, x − a⟩ ≤ φ(x) − φ(a) + σ‖x − a‖2
∀x ∈ B(a, δ). (2.4)

For a ∈ dom(φ) and h ∈ X , let φ↑(a, h) denote the generalized directional derivative introduced by Rockafellar, that is,

φ↑(a, h) := lim
ε↓0

lim sup
z

φ
→a,t↓0

inf
w∈h+εBX

(φ(z + tw) − φ(z))/t,

where the expression z
φ
→ ameans that z → a and φ(z) → φ(a). Let ∂cφ(a) denote the Clarke–Rockafellar subdifferential

of φ at a, that is,

∂cφ(a) := {x∗
∈ X∗

|⟨x∗, h⟩ ≤ φ↑(a, h) ∀h ∈ X}.

For a closed subset A of X , let δA denote the indicator function of A, that is, δA(x) = 0 if x ∈ A and δA(x) = +∞ otherwise. It
is known that

NP(A, a) = ∂PδA(a) and Nc(A, a) = ∂cδA(a).

For a closedmultifunction F between Banach spacesX and Y and (x, y) ∈ Gr(F), letDF(x, y) denote the tangent derivative
of F at (x, y), that is, DF(x, y) : X ⇒ Y is a multifunction from X into Y defined by

DF(x, y)(u) = {v ∈ Y : (u, v) ∈ T (Gr(F), (x, y))} ∀u ∈ X .
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We also need the coderivative D∗

PF(x, y) of F at (x, y), which is a multifunction from Y ∗ to X∗ and defined by
D∗

PF(x, y)(y∗) := {x∗
∈ X∗

: (x∗, −y∗) ∈ NP(Gr(F), (x, y))} ∀y∗
∈ Y ∗.

The following two lemmas (cf. [7, Ch. 1, Proposition 2.11 and Theorem 6.1]) are useful for us.

Lemma 2.1. Let X be a Hilbert space and f , g : X → R ∪ {+∞} be proper lower semicontinuous and suppose that g is twice
continuously differentiable at x0 ∈ dom(f ). Then

∂P(f + g)(x0) = ∂P f (x0) + g ′(x0),

where g ′(x0) denotes the derivative of g at x0.

Lemma 2.2. Let A be a nonempty closed subset of a Hilbert space X and let x ∈ X \ A be such that ∂Pd(·, A)(x) ≠ ∅. Then there
exists a ∈ A satisfying the following properties:
(i) The set PS(x) of closest points in A to x is the singleton {a}.
(ii) d(·, A) is Fréchet differentiable at x, and

∂Pd(·, A)(x) = {d′(·, A)(x)} = {(x − a)/‖x − a‖}.
(iii) x − a ∈ NP(A, a).

We also need the following Hilbert space version of the famous Borwein–Preiss smooth variational principle.

Lemma 2.3. Let X be a Hilbert space and f : X → R ∪ {+∞} be a proper lower semicontinuous function. Let x0 ∈ X and
ε ∈ (0, +∞) be such that f (x0) < infx∈X f (x) + ε. Then for any λ > 0 there exist y, z ∈ X such that

‖z − x0‖ < λ, ‖y − z‖ < λ, f (y) ≤ f (x0)

and

f (y) +
ε

λ2
‖y − z‖2

≤ f (x) +
ε

λ2
‖x − z‖2

∀x ∈ X .

In contrast with the approximate projection theorem established in [33] in terms of the Clarke normal cone, we use
Lemma 2.3 to establish the following approximate projection result in a Hilbert space in terms of the proximal normal cone.

Proposition 2.1. Let A be a closed nonempty subset of a Hilbert space X and γ ∈ (0, 1). Then for any x ∈ X \A there exist a ∈ A
and a∗

∈ NP(A, a) with ‖a∗
‖ = 1 such that

γ ‖x − a‖ ≤ min{⟨a∗, x − a⟩, d(x, A)}.

Proof. Define f : X → R ∪ {+∞} by

f (u) = δA(u) + ‖u − x‖ ∀u ∈ X .

For each n ∈ N, take an ∈ A such that

‖an − x‖ < d(x, A) + 1/n3. (2.5)

Then d(x, A) = infu∈X f (u) and f (an) < infu∈X f (u) + 1/n3. By Lemma 2.3, there exist un ∈ X and ān ∈ A (so ān ≠ x) such
that

‖un − an‖ < 1/n, ‖ān − un‖ < 1/n (2.6)

and ān is a minimizer of the function u → f (u)+‖u−un‖
2/n. Noting that the function u → ‖u− x‖+‖u−un‖

2/n is twice
continuously differentiable at ān, it follows from the optimality condition and Lemma 2.1 that

0 ∈ ∂PδA(ān) + (ān − x)/‖ān − x‖ + 2(ān − un)/n
= NP(A, ān) + (ān − x)/‖ān − x‖ + 2(ān − un)/n.

Thus z∗
n ∈ NP(A, ān), where z∗

n := (x − ān)/‖x − ān‖ + 2(un − ān)/n. Moreover, by (2.5) and (2.6), one can verify easily that
‖x− ān‖ → d(x, A) and ⟨z∗

n , x− ān⟩ → d(x, A). Since γ ∈ (0, 1), noting ‖z∗
n‖ → 1 and letting a∗

n := z∗
n/‖z

∗
n‖, it follows that

γ ‖x − ān‖ < min{⟨a∗

n, x − ān⟩, d(x, A)}

for all sufficiently large n. The proof is completed. �

3. Prox-regularity of a multifunction

For theoretical interest as well as for applications, many generalization notions have been introduced in the literature to
replace the convexity. Among them, prox-regularity is a useful and important one. Following [9], we say that a closed subset
A of a Banach space X is prox-regular at a ∈ A if there exist σ , δ > 0 such that

⟨x∗
− u∗, x − u⟩ ≥ −σ‖x − u‖2
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whenever x, u ∈ B(a, δ) ∩ A, x∗
∈ Nc(A, x) ∩ BX∗ and u∗

∈ Nc(A, u) ∩ BX∗ . Readers can find some interesting properties of
the prox-regularity in [1–5,7–9,32]. Since 0 ∈ Nc(A, x) ∩ Nc(A, u), it is easy to verify that A is prox-regular at a if and only if
there exist σ , δ ∈ (0, +∞) such that

⟨u∗, x − u⟩ ≤ σ‖x − u‖2 (3.1)
whenever x, u ∈ A ∩ B(a, δ) and u∗

∈ Nc(A, u) ∩ BX∗ .
In this paper, we adopt the following notions which are motivated by (3.1).

Definition 3.1. Let A be a closed subset of a Banach space X and F be a closed multifunction between Banach spaces X and
Y . We say that
(a) A is sub-prox-regular at a ∈ A if there exist σ , δ ∈ (0, +∞) such that

⟨x∗, x − a⟩ ≤ σ‖x − a‖2
∀x ∈ A ∩ B(a, δ) and x∗

∈ Nc(A, a) ∩ BX∗ .

(b) F is prox-regular at (a, b) ∈ Gr(F) if there exist σ , δ ∈ (0, +∞) such that

⟨x∗

1, x2 − x1⟩ ≤ ⟨y∗

1, y2 − y1⟩ + σ(‖x2 − x1‖2
+ ‖y2 − y1‖2)

whenever (xi, yi) ∈ Gr(F) ∩ (B(a, δ) × B(b, δ)) (i = 1, 2), y∗

1 ∈ BY∗ and x∗

1 ∈ D∗
c F(x1, y1)(y∗

1) ∩ BX∗ .
(c) Generalized equation (GE) is prox-regular at a ∈ F−1(b) if there exist σ , δ ∈ (0, +∞) such that

⟨u∗, x − u⟩ ≤ ⟨v∗, y − b⟩ + σ(‖x − u‖2
+ ‖y − b‖2)

whenever x ∈ B(a, δ), u ∈ F−1(b) ∩ B(a, δ), y ∈ F(x) ∩ B(b, δ), v∗
∈ BY∗ and u∗

∈ D∗
c F(u, b)(v∗) ∩ BX∗ .

The following properties are immediate from the related definitions:
(i) If A is sub-prox-regular at a ∈ A then

NP(A, a) = Nc(A, a) and T (A, a) = Tc(A, a).
(ii) If F is prox-regular at (a, b) then (GE) is prox-regular at a ∈ F−1(b).
(iii) If (GE) is prox-regular at a ∈ F−1(b) then Gr(F) is sub-prox-regular at (u, b) for all u ∈ F−1(b) close to a.

We will show that the class of prox-regular multifunctions is larger than that of convex multifunctions. To do this, we
need the primal-lower-nice property for proper lower semicontinuous functions. Let f : X → R ∪ {+∞} be a proper
lower semicontinuous function and recall (cf. [34]) that f is primal-lower-nice at x̄ ∈ dom(f ) (with respect to the Clarke
subdifferential) if there exist δ, c, T ∈ (0, +∞) such that

⟨u∗, x − u⟩ ≤ f (x) − f (u) +
ct
2

‖x − u‖2

whenever x, u ∈ B(x̄, δ), t ∈ [T , +∞) and u∗
∈ ∂c f (u)∩ tBX∗ . It is clear that A is prox-regular at a if and only if the indicator

δA is primal lower nice at a. The primal-lower-nice property has been found to have important applications in variational
analysis and optimization. Several authors proved that some important kinds of proper lower semicontinuous functions
have the primal-lower-nice property (cf. [34,35,32]). In particular, Combari et al. [34] proved the following interesting result
which will help us to prove that many composite-convex multifunctions are prox-regular.

Proposition 3.1. Let Y be a Banach space, g : X → Y be a continuously differentiable mapping with g ′ being locally Lipschitz
at x̄ ∈ X and φ : Y → R ∪ {+∞} be a proper lower semicontinuous convex function with g(x̄) ∈ dom(φ). Suppose that the
following Robinson qualification holds:

R+(dom(φ) − g(x̄)) − g ′(x̄)(X) = Y .

Then the composite function φ ◦ g is primal-lower-nice at x̄.

The following proposition can be found in [9] and shows that the Clarke normal cone in (3.1) can be replaced by the
proximal normal cone in the Hilbert space setting. Here and throughout a Hilbert space and its dual space are identified as
usual.

Proposition 3.2. Let X be a Hilbert space and A be a closed subset of X. Then A is prox-regular at a ∈ A if and only if there exist
σ , δ ∈ (0, +∞) such that (3.1) holds whenever x, u ∈ A∩B(a, δ) and u∗

∈ NP(A, u)∩BX . Consequently, a closed multifunction
F between two Hilbert spaces X and Y is prox-regular at (x̄, ȳ) ∈ Gr(F) if and only if there exist σ , δ ∈ (0, +∞) such that

⟨x∗

1, x2 − x1⟩ ≤ ⟨y∗

1, y2 − y1⟩ + σ(‖x2 − x1‖2
+ ‖y2 − y1‖2)

whenever (xi, yi) ∈ Gr(F) ∩ (B(x̄, δ) × B(ȳ, δ)) (i = 1, 2), y∗

1 ∈ BY∗ and x∗

1 ∈ D∗

PF(x1, y1)(y∗

1) ∩ BX∗ .

The following proposition provides a characterization of the prox-regularity.

Proposition 3.3. Let A be a closed subset of X and a ∈ A. Then A is prox-regular at a if and only if there exist σ , δ ∈ (0, +∞)
such that

⟨u∗, x − u⟩ ≤ d(x, A) + σ‖x − u‖2
∀x ∈ B(a, δ)

whenever u ∈ A ∩ B(a, δ) and u∗
∈ Nc(A, u) ∩ BX∗ .
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Proof. The sufficiency part is trivial. To prove the necessity part, suppose that there exist σ , δ ∈ (0, +∞) such that

⟨u∗, z − u⟩ ≤
σ

4
‖z − u‖2 (3.2)

whenever z, u ∈ A ∩ B(a, 2δ) and u∗
∈ Nc(A, u) ∩ BX∗ . Let x ∈ B(a, δ), u ∈ A ∩ B(a, δ) and u∗

∈ Nc(A, u) ∩ BX∗ . Then there
exists a sequence {un} in A ∩ B(a, 2δ) such that ‖x − un‖ → d(x, A). It follows from (3.2) that

⟨u∗, x − u⟩ = ⟨u∗, x − un⟩ + ⟨u∗, un − u⟩

≤ ‖x − un‖ +
σ

4
‖un − u‖2

≤ ‖x − un‖ +
σ

2
(‖un − x‖2

+ ‖x − u‖2).

Letting n → ∞, one has

⟨u∗, x − u⟩ ≤ d(x, A) +
σ

2
(d(x, A)2 + ‖x − u‖2) ≤ d(x, A) + σ‖x − u‖2.

This completes the proof. �

Remark. The referee pointed out that Proposition 3.3 has been obtained in the paper ‘‘Prox-regular sets and applications’’
by Colombo and Thibault. However as we cannot locate the paper (which, we guess, has not yet appeared in print). For the
sake of completeness, the proof and the proposition are kept here.

The following propositions show that the class of prox-regular multifunctions is much larger than the class of convex
multifunctions.

Proposition 3.4. Let X, Y , Z be Banach spaces. Let G : Z ⇒ Y be a closed convex multifunction and g : X → Z be a continuously
differentiable function such that g ′ is locally Lipschitz at a and the following qualification holds:

R+(dom(G) − g(a)) − g ′(a)(X) = Z . (3.3)

Then, for any b ∈ G(g(a)), the composite G ◦ g is prox-regular at (a, b).

Proof. Let T : X × Y → Z × Y be such that

T (x, y) := (g(x), y) ∀(x, y) ∈ X × Y .

Then T is continuously differentiable and

T ′(u, v)(x, y) = (g ′(u)(x), y) ∀(u, v), (x, y) ∈ X × Y .

Hence T ′ is locally Lipschitz at (a, b) and

T ′(a, b)(X × Y ) = g ′(a)(X) × Y . (3.4)

It is easy to verify that Gr(G ◦ g) = T−1(Gr(G)), that is, δGr(G ◦ g) = δ(Gr(G)) ◦ T . It follows from (3.3) and (3.4) that

R+(dom(δGr) − T (a, b)) − T ′(a, b)(X × Y ) = Z × Y .

This and Proposition 3.1 imply that the composite function δ(Gr(G)) ◦ T is primal-lower-nice at (a, b), and so the indica-
tor δGr(G ◦ g) is primal-lower nice at (a, b). This means that the composite G ◦ g is prox-regular at (a, b). The proof is
completed. �

Let f : X → R ∪ {+∞} be a proper lower semicontinuous function and recall that f is weakly convex at x̄ ∈ dom(f ) if
there exist σ , δ ∈ (0, +∞) such that

tf (x1) + (1 − t)f (x2) ≤ f (tx1 + (1 − t)x2) + σ t(1 − t)‖x1 − x2‖2

for all (t, x1, x2) ∈ [0, 1] × B(x̄, δ) × B(x̄, δ) (cf. [36,37]). In the case when X is a Hilbert space, it is known (cf. [37, Theorem
4.1]) that f is weakly convex at x̄ ∈ dom(f ) if and only if there exist σ0, δ0 ∈ (0, +∞) such that

⟨x∗, x2 − x1⟩ ≤ f (x2) − f (x1) + σ0‖x2 − x1‖2
∀x1, x2 ∈ B(x̄, δ0) and x∗

∈ ∂ f (x1).

This motivates us to introduce the following concepts.
For a closed multifunction F between Banach spaces X and Y , we say that F is weakly convex at (x̄, ȳ) ∈ Gr(F) if there

exist σ , δ ∈ (0, +∞) and a neighborhood V of ȳ such that for all (t, x, u) ∈ [0, 1] × B(x̄, δ) × B(x̄, δ),

t(F(x) ∩ V ) + (1 − t)(F(u) ∩ V ) ⊂ F(tx + (1 − t)u) + σ t(1 − t)‖x − u‖2BY . (3.5)

The weak convexity is closely related the paraconvexity introduced by Rolewicz (cf. [38,39]).
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Proposition 3.5. Let F be a closedmultifunction between Hilbert spaces X and Y . Let x̄ ∈ X and ȳ ∈ F(x̄) be such that F is weakly
convex at (x̄, ȳ); more precisely, suppose that there exist σ , δ ∈ (0, +∞) and a neighborhood V of ȳ such that (3.5) holds for all
(t, x, u) ∈ [0, 1] × B(x̄, δ) × B(x̄, δ). Let δ0 ∈ (0, δ] be such that B(ȳ, δ0) ⊂ V . Then,

⟨x∗

1, x2 − x1⟩ ≤ ⟨y∗

1, y2 − y1⟩ + σ‖x2 − x1‖2 (3.6)

whenever (xi, yi) ∈ Gr(F) ∩ (B(x̄, δ0) × B(ȳ, δ0)) (i = 1, 2), y∗

1 ∈ BY∗ and x∗

1 ∈ D∗

P(x1, y1)(y
∗

1) ∩ BX∗ . Consequently, F is
prox-regular at (x̄, ȳ).

Proof. Let x1 ∈ B(x̄, δ0), y1 ∈ F(x1) ∩ B(ȳ, δ0), y∗

1 ∈ BY∗ and x∗

1 ∈ D∗

PF(x1, y1)(y∗

1) ∩ BX∗ . Then there exist σ1, δ1 ∈ (0, +∞)
such that

⟨x∗

1, x − x1⟩ ≤ ⟨y∗

1, y − y1⟩ + σ1(‖x − x1‖2
+ ‖y − y1‖2) (3.7)

for any (x, y) ∈ Gr(F) ∩ (B(x1, δ1) × B(y1, δ1)). Let (x2, y2) ∈ Gr(F) ∩ (B(x̄, δ0) × B(ȳ, δ0)) and t ∈ (0, 1) sufficiently close
to 1 be such that

max{(1 − t)‖x2 − x1‖, (1 − t)(‖y2 − y1‖ + σ t‖x2 − x1‖2)} < δ1.

Then, by (3.5), there exists et ∈ BY such that

ty1 + (1 − t)y2 + σ t(1 − t)‖x2 − x1‖2et ∈ F(tx1 + (1 − t)x2)

and it follows from (3.7) (applied to x = tx1 + (1 − t)x2 and y = ty1 + (1 − t)y2 + σ t(1 − t)‖x2 − x1‖2et ) that

⟨x∗

1, x2 − x1⟩ ≤ ⟨y∗

1, y2 − y1 + σ t‖x2 − x1‖2et⟩ + σ1(1 − t)(‖x2 − x1‖2
+ ‖y2 − y1 + σ t‖x2 − x1 ‖

2 et‖2).

Letting t → 1−, one sees that (3.6) holds. This and Proposition 3.1 imply that F is prox-regular at (x̄, ȳ). �

4. Metric regularity for a prox-regular multifunction

Ursescu [40] and Robinson [10] proved independently that if F is a closed convex multifunction between Banach spaces
Z and Y and (a, b) ∈ Gr(F) then b ∈ int(F(X)) if and only if

B(b, η) ⊂ F(a + BZ ) (4.1)

for some η > 0. This equivalence can be regarded as an extension of the classical open mapping theorem on a bounded
linear operator between Banach spaces. In an earlier paper than [10,40], in the topological linear space case, Ng [41] had
established an open mapping theorem for a multifunction whose graph is a closed convex cone. In [10], Robinson further
proved the metric regularity result in the Robinson–Ursescu theorem (namely Theorem RUmentioned in Section 1). In this
section, we will address the corresponding issue for a possibly nonconvex prox-regular multifunction between two Hilbert
spaces.

Under the convexity assumption on F , it is clear that

(4.1) ⇐⇒ [B(b, tη) ⊂ F(a + tBX ) ∀t ∈ (0, 1]].

Thus, the following theorem can be regarded as a result of the Robinson–Ursescu theorem type in the prox-regularity setting.

Theorem 4.1. Let F be a closedmultifunction betweenHilbert spaces X andY and suppose that F is prox-regular at (a, b) ∈ Gr(F)
with the corresponding constants σ , δ ∈ (0, +∞), namely

⟨x∗, u − x⟩ ≤ ⟨y∗, v − y⟩ + σ(‖u − x‖2
+ ‖v − y‖2) (4.2)

for all (u, v), (x, y) ∈ Gr(F) ∩ (B(a, δ) × B(b, δ)), y∗
∈ BY and x∗

∈ D∗
c F(x, y)(y∗) ∩ BX . Then, the following statements are

equivalent:

(i) There exist η, r ∈ (0, +∞) such that

B(y, tη) ⊂ F(B(x, t)) ∀x ∈ B(a, r), y ∈ F(x) ∩ B(b, r) and t ∈ (0, 1).

(ii) There exist γ ∈ (0, δ
3 ) and β ∈ (0, δ) with β > σ(4γ 2

+ β2) such that

B(b, β) ⊂ F(B(a, γ )). (4.3)

(iii) There exist τ , λ ∈ (0, +∞) such that

d(x, F−1(y)) ≤ τd(y, F(x)) ∀(x, y) ∈ B(a, λ) × B(b, λ).

Proof. (i) ⇒ (ii). Suppose that (i) holds. Then B(b, tη) ⊂ F(B(a, t)) for all t ∈ (0, 1). Let t0 ∈ (0, 1) be sufficiently small
such that η > σ(4t0 + t0η2). Thus, one can see that (ii) holds with β := t0η and γ = t0.
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(ii) ⇒ (iii). Suppose to the contrary that for any n ∈ N there exist (xn, yn) ∈ X × Y such that

‖xn − a‖ < min{γ , 1/n}, ‖yn − b‖ < min{β, 1/n} (4.4)

and d(xn, F−1(yn)) > nd(yn, F(xn)). Then, by Zheng and Ng [28, Lemma 3.1] there exist x̄n ∈ X and ȳn ∈ F(x̄n) such that

‖x̄n − xn‖ < d(xn, F−1(yn)), 0 < ‖ȳn − yn‖ < d(xn, F−1(yn))/n (4.5)

and

(0, 0) ∈ {(0, (ȳn − yn)/‖ȳn − yn‖)} + (BX × BY )/n + Nc(Gr(F), (x̄n, ȳn)).

Hence there exists (x∗
n, −y∗

n) ∈ Nc(Gr(F), (x̄n, ȳn)) such that

‖x∗

n‖ ≤ 1/n, y∗

n ∈ (ȳn − yn)/‖ȳn − yn‖ + BY/n, (4.6)

and so

(x∗

n, −y∗

n)/(1 + 1/n) ∈ Nc(Gr(F), (x̄n, ȳn)) ∩ (BX × BY ). (4.7)

By (4.3) and (4.4), for each n ∈ N there exists zn ∈ F−1(yn) ∩ B(a, γ ). Then

d(xn, F−1(yn)) ≤ ‖xn − zn‖ ≤ ‖xn − a‖ + ‖a − zn‖ < 1/n + γ

and it follows from (4.5) that

‖x̄n − a‖ < 2/n + γ and ‖ȳn − b‖ < (2 + γ )/n. (4.8)

Consider all large n such that (2 + γ )/n < β and 3γ + 2/n < δ. Let vn := (β − (2 + γ )/n) ȳn−yn
‖ȳn−yn‖

. Then, by (4.8), one has

B(a, γ ) ⊂ B(x̄n, 2γ + 2/n) ⊂ B(a, δ) and ȳn − vn ∈ B(b, β).

It follows from (4.3) that there exists wn ∈ B(x̄n, 2γ + 2/n) such that ȳn − vn ∈ F(wn). Hence, by (4.7) and β ∈ (0, δ), one
can apply (4.2) to (wn, ȳn − vn), (x̄n, ȳn) and 1

1+ 1
n
(x∗

n, y
∗
n) in place of (u, v), (x, y) and (x∗, y∗) respectively, and we get

⟨x∗

n, wn − x̄n⟩ ≤ ⟨y∗

n, −vn⟩ + (1 + 1/n)σ (‖wn − x̄n‖2
+ ‖vn‖

2). (4.9)

By (4.6) and our choice of vn and wn, we have

−1/n(2γ + 2/n) ≤ ⟨x∗

n, wn − x̄n⟩ and ⟨y∗

n, −vn⟩ ≤ −β + (2 + γ )/n + 1/n(β − (2 + γ )/n).

It follows from (4.9) that

−1/n(2γ + 2/n) ≤ −β + (2 + γ )/n + 1/n(β − (2 + γ )/n) + (1 + 1/n)σ ((2γ + 2/n)2 + (β − (2 + γ )/n)2).

Letting n → ∞, one has β ≤ σ(4γ 2
+ β2), contradicting the given in (ii). This shows that (ii) ⇒ (iii) holds. Since (iii) ⇒ (i)

is immediate from [13, Proposition 2], the proof is completed. �

5. Metric subregularity for generalized equations

In extending several known results in the literature, this section is devoted to provide two characterizations for themetric
subregularity of generalized equation (GE): one is in terms of the points of the solution set F−1(b) while the other in terms
of the points not belonging to F−1(b). A major novelty here for our consideration is that the usual convexity assumption
regarding F is replaced by considerably weaker assumption that F is prox-regular. As in the preceding section, we assume
throughout that X, Y are Hilbert spaces; F denotes a closed multifunction from X to Y , b ∈ Y and a ∈ F−1(b). In this
Hilbert space framework, the implication (ii) H⇒ (i) in the following theorem is a strengthened version of Result I (as
D∗

PF(x, y)(y∗) ⊂ D∗
c F(x, y)(y∗) for any y∗).

Theorem 5.1. Consider the following statements for the data F , a, b specified above:
(i) (GE) is metrically subregular at a.
(ii) There exist η, δ ∈ (0, +∞) and ε ∈ (0, 1) such that

d(0,D∗

PF(x, y)(Jε(y − b))) ≥ η (5.1)

for all x ∈ B(a, δ) \ F−1(b) and all y ∈ Pε
F(x)(b) ∩ B(b, δ).

(iii) There exist η, δ ∈ (0, +∞) and ε ∈ (0, 1) such that

d(0,D∗

PF(x, y)((y − b)/‖y − b‖ + εBY )) ≥ η (5.2)

for all x ∈ B(a, δ) \ F−1(b) and y ∈ F(x) ∩ B(b, δ).
Then (iii) ⇒ (ii) ⇒ (i). Moreover (i) ⇔ (ii) ⇔ (iii) if F is assumed to be prox-regular at (a, b).
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Proof. For any y ∈ Y \ {b}, noting that J(y − b) = {(y − b)/‖y − b‖}, one has Jε(y − b) ⊂ (y − b)/‖y − b‖ + εBY . Hence
(iii) ⇒ (ii) is evident. To prove (ii) ⇒ (i), suppose to the contrary that (GE) is not metrically subregular at a. Then, for each
n ∈ N there exists xn ∈ B(a, 1/n) \ F−1(b) such that d(xn, F−1(b)) > nd(b, F(xn)). Thus

d(xn, F−1(b)) ≤ ‖xn − a‖ < 1/n (5.3)

and

‖yn − b‖ < d(xn, F−1(b))/n with some yn ∈ F(xn). (5.4)

Define φ : X × Y → R ∪ {+∞} by

φ(x, y) := ‖y − b‖ + δGr(F)(x, y) ∀(x, y) ∈ X × Y .

Then φ is lower semicontinuous and

φ(xn, yn) < inf
(x,y)∈X×Y

φ(x, y) + d(xn, F−1(b))/n.

By Lemma 2.3 (applied to ε = d(xn, F−1(b))/n and λ = d(xn, F−1(b))/2), there exist (x̄n, ȳn), (un, vn) ∈ X × Y such that

‖(un, vn) − (xn, yn)‖ < d(xn, F−1(b))/2, ‖(x̄n, ȳn) − (un, vn)‖ < d(xn, F−1(b))/2 (5.5)

and (x̄n, ȳn) is a minimizer of the function φ +
4

nd(xn,F−1(b))
‖(·, ·) − (un, vn)‖

2. By the optimality condition and Lemma 2.1,
we have

(0, 0) ∈ ∂Pφ(x̄n, ȳn) + 8(x̄n − un, ȳn − vn)/nd(xn, F−1(b)). (5.6)

This and the definition ofφ imply that ȳn ∈ F(x̄n). Noting that x̄n ∉ F−1(b) (by the second inequality of (5.5)), one has ȳn ≠ b.
Hence the function (x, y) → ‖y − b‖ is twice continuously differentiable at (x̄n, ȳn), and so one can apply Lemma 2.1 to
rewrite (5.6) as

(0, 0) ∈ ∂PδGr(F)(x̄n, ȳn) + (0, (ȳn − b)/‖ȳn − b‖) + (x∗

n, y
∗

n),

where (x∗
n, y

∗
n) := 8(x̄n − un, ȳn − vn)/nd(xn, F−1(b)) (which is of the norm less than 4/n (by the second inequality of (5.5)).

Thus (−x∗
n, −y∗

n − (ȳn − b)/‖ȳn − b‖) ∈ NP(Gr(F), (x̄n, ȳn)) and so

d(0,D∗

PF(x̄n, ȳn)(y∗

n + (yn − b)/‖yn − b‖)) ≤ ‖−x∗

n‖ < 4/n,

which contradicts (ii) when n is large enough because (x̄n, ȳn) → (a, b) by (5.3)–(5.5). Therefore (ii) ⇒ (i).
It remains to show that if F is prox-regular at (a, b) then (i) ⇒ (iii) holds. To do this, suppose by (i) that there exist

τ , r ∈ (0, +∞) such that

d(x, F−1(b)) ≤ τd(b, F(x)) ∀x ∈ B(a, r). (5.7)

By the prox-regularity of F at (a, b), there exist σ ∈ (0, +∞) and r1 ∈ (0, r) such that

⟨x∗, u − x⟩ ≤ ⟨y∗, b − y⟩ + σ(‖u − x‖2
+ ‖b − y‖2) (5.8)

whenever x ∈ B(a, r1), u ∈ F−1(b) ∩ B(a, r1), y ∈ F(x) ∩ B(b, r1), y∗
∈ BY and x∗

∈ D∗
c F(x, y)(y∗) ∩ BX . Let ε ∈ (0, 1),

ε′
∈ (ε, 1) and take δ ∈ (0, r1/2) such that

(1 − ε − σδ)/τ − σδ > (1 − ε′)/τ .

We will prove that (5.2) holds for η := min{(1 − ε′)/τ , 1}. To do this, let x ∈ B(a, δ) \ F−1(b), y ∈ F(x) ∩ B(b, δ),
y∗

∈ (y − b)/‖y − b‖ + εBY and x∗
∈ D∗

PF(x, y)(y∗). We have to show that ‖x∗
‖ ≥ η. Since η ≤ 1, we can assume

that ‖x∗
‖ ≤ 1. Noting that

0 < d(x, F−1(b)) ≤ ‖x − a‖ < δ,

there exists a sequence {un} in (F−1(b)) such that

‖x − un‖ < min{(1 + 1/n)d(x, F−1(b)), δ} ∀n ∈ N.

Our choice of y∗ clearly implies that

⟨y∗, b − y⟩ = ⟨(y − b)/‖y − b‖, b − y⟩ + ⟨y∗
− (y − b)/‖y − b‖, b − y⟩

≤ −(1 − ε)‖y − b‖.
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Noting that ‖un − a‖ ≤ ‖un − x‖ + ‖x − a‖ < 2δ < r1, it follows from (5.8) that

⟨x∗, un − x⟩ ≤ −(1 − ε)‖y − b‖ + σ(‖x − un‖
2
+ ‖y − b‖2)

≤ −(1 − ε)‖y − b‖ + σ(δ‖x − un‖ + δ‖y − b‖)
≤ −(1 − ε − σδ)‖y − b‖ + σδ‖x − un‖

≤ −(1 − ε − σδ)d(b, F(x)) + σδ‖x − un‖

(because −1 + ε + σδ < 0 and y ∈ F(x)). Since x ∈ B(a, r), it follows from (5.7) that

⟨x∗, x − un⟩ ≥ (1 − ε − σδ)/τd(x, F−1(b)) − σδ‖x − un‖

≥ n(1 − ε − σδ)/(n + 1)τ‖x − un‖ − σδ‖x − un‖

(by our choice of un). This implies that ‖x∗
‖ ≥ n(1 − ε − σδ)/(n + 1)τ − σδ and so, in limits,

‖x∗
‖ ≥ (1 − ε − σδ)/τ − σδ ≥ (1 − ε′)/τ

as wished to show. The proof is completed. �

Remark. Let Y , λ and F be as in (1.2) with a proper lower semicontinuous function f . Then D∗

PF(x, f (x))(1) = ∂P f (x) and
dom(D∗

PF(x, y)) = {0} for any x ∈ dom(f ) and y ∈ (f (x), +∞); thus Theorem 5.1 implies that a ∈ S is a weak sharp
minimum of f if and only if there exist η, δ ∈ (0, +∞) such that

d(0, ∂P f (x)) ≥ η ∀x ∈ B(a, δ) \ S with |f (x) − λ| < δ.

The following example shows that if the prox-regularity assumption is dropped then Theorem 5.1 and the above
characterization are not true even if f is assumed to be Lipschitz.

Example. For any n ∈ N, let φn : [2−2n, 2−2(n−1)) → R be such that

φn(x) =


3x
2

− 2−2n+1, x ∈ [2−2n+1, 2−2(n−1))

2−2n, x ∈ [2−2n, 2−2n+1).

Let X = R and f : X → R be defined as follows.

f (x) =

x, x ∈ [1, +∞)

φn(x), x ∈ [2−2n, 2−2(n−1)) and n ∈ N
0, x ∈ (−∞, 0].

Then,

f ′(x) =


0, x ∈ (1, +∞)

3
2
, x ∈ (2−2n+1, 2−2(n−1)) and n ∈ N

0, x ∈ (2−2n, 2−2n+1) and n ∈ N
0, x ∈ (−∞, 0).

Hence f is a Lipschitz function and infx∈X f (x) = 0. Note that S = {x ∈ X : f (x) = 0} = (−∞, 0] and f (x) ≥
1
2x =

1
2d(x, S)

for all x ∈ [0, +∞). Thus 0 is a weak sharp minimum of f . But, ∂P f (x) = {0} for any x ∈ (2−2n, 2−2n+1) and n ∈ N.

Theorem 5.1 are motivated by Ioffe’s work [30] and Result I in which the sufficient conditions and characterizations are
expressed in terms of the subdifferentials and coderivatives of the concerned function outside the solution set. In a different
line, in terms of some properties of the concerned function inside the solution set, many authors [29,20,23–27] studied the
weak sharpminima or themetric regularity. In this line and in the Euclidean space case, Burke and Ferris [42] used technique
of conjugate functions to studyweak sharpminimaof a convex function and established several interesting characterizations
for weak sharp minima. Using the same technique as [42], Burke and Deng [29] extended Burke and Ferris’ results to the
Hilbert space case. In particular, they proved the following result.

Result II. Let X be a Hilbert space and f : X → R ∪ {+∞} be a proper lower semicontinuous convex function. The following
statements are equivalent.
(i) a ∈ S is a weak sharp minimum of f :
(ii) There exist τ , δ ∈ (0, +∞) such that

N(S, x) ∩ BX∗ ⊂ [0, τ ]∂ f (x) ∀x ∈ S ∩ B(a, δ).
(iii) There exist τ , δ ∈ (0, +∞) such that

x∈S∩B(a,δ)

N(S, x) ∩ BX∗ ⊂


x∈S∩B(a,δ)

[0, τ ]∂ f (x).
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(iv) There exist τ , δ ∈ (0, +∞) such that

d(h, T (S, u)) ≤ τ [d+f (u)(h)]+ ∀u ∈ S ∩ B(a, δ) and h ∈ X .

(v) There exist τ , δ ∈ (0, +∞) such that

[d+f (u)(h)]+ ≥ τ‖h‖ ∀u ∈ S ∩ B(a, δ) and h ∈ N(S, u).

(vi) There exist τ , δ ∈ (0, +∞) such that

[d+f (u)(x − u)]+ ≥ d(x, S) ∀x ∈ B(a, δ) and u ∈ PS(x),

where PS(x) := {u ∈ S : ‖x − u‖ = d(x, S)}.

The authors [26,27] extended (i) ⇔ (ii) ⇔ (iv) to convex generalized equations and (i) ⇔ (ii) to subsmooth (not
necessarily convex) generalized equations in Banach spaces.

Next, in terms of some properties of the concerned multifunction inside the solution set, we consider sufficient and/or
necessary conditions for the metric subregularity of generalized equation (GE) in the prox-regularity case. In particular,
relaxing the convexity assumption, we generalize Result II to more general generalized equations in Hilbert spaces. To do
this, we need the following inclusions which are immediate from the related definitions.

T (F−1(b), u) ⊂ DF(u, b)−1(0) ∀u ∈ F−1(b) (5.9)

and

D∗

PF(u, b)(Y ) ⊂ NP(F−1(b), u) ∀u ∈ F−1(b). (5.10)

Theorem 5.2. Let (GE) be prox-regular at (a, b) and consider the following statements.
(i) (GE) is metrically subregular at a.
(ii) There exist τ , δ ∈ (0, +∞) such that

NP(F−1(b), u) ∩ BX ⊂ τD∗

PF(u, b)(BY ) ∀u ∈ F−1(b) ∩ B(a, δ). (5.11)

(iii) There exist τ , δ ∈ (0, +∞) such that
u∈F−1(b)∩B(a,δ)

NP(F−1(b), u) ∩ BX ⊂


u∈F−1(b)∩B(a,δ)

D∗

PF(u, b)(τBY ). (5.12)

(iv) There exist τ , δ ∈ (0, +∞) such that

d(x, T (F−1(b), u)) ≤ τd(0,DF(u, b)(x)) ∀u ∈ F−1(b) ∩ B(a, δ) and x ∈ X . (5.13)

(v) There exist τ , δ ∈ (0, +∞) such that

d(0,DF(u, b)(h)) ≥ τ‖h‖ ∀u ∈ F−1(b) ∩ B(a, δ) and h ∈ NP(F−1(b), u). (5.14)

(vi) There exist τ , δ ∈ (0, +∞) such that for all x ∈ B(a, δ) and u ∈ PF−1(b)(x),

d(0,DF(u, b)(x − u)) ≥ τd(x, F−1(b)). (5.15)

Then (i) ⇔ (ii) ⇔ (iv), (ii) ⇒ (iii) and (iv) ⇒ (v) ⇒ (vi).

Proof. Since (GE) is prox-regular at a, there exist σ , r ∈ (0, +∞) such that

⟨u∗, x − u⟩ ≤ ⟨v∗, y − b⟩ + σ(‖x − u‖2
+ ‖y − b‖2) (5.16)

whenever x ∈ B(a, r), u ∈ F−1(b) ∩ B(a, r), y ∈ F(x) ∩ B(b, r), v∗
∈ BY and u∗

∈ D∗
c F(u, b)(v∗) ∩ BX . Hence NP(Gr(F),

(u, b)) = Nc(Gr(F), (u, b)) and so

T (Gr(F), (u, b)) = Tc(Gr(F), (u, b)) ∀u ∈ F−1(b) ∩ B(a, r).

This means that

D∗

PF(u, b) = D∗

c F(u, b) and DF(u, b) = DcF(u, b) ∀u ∈ F−1(b) ∩ B(a, r). (5.17)

Hence DF(u, b) is convex and

D∗(DF(u, b))(0, 0) = D∗

PF(u, b) ∀u ∈ F−1(b) ∩ B(a, r). (5.18)

(i) ⇒ (ii). By Zheng and Ng [27, Theorem 4.2], (i) implies that there exist τ , δ ∈ (0, +∞) such that

N̂(F−1(b), u) ∩ BX ⊂ τD∗

c F(u, b)(BY ) ∀u ∈ F−1(b) ∩ B(a, δ)

and so (5.11) holds because Np(F−1(b), u) ⊂ N̂(F−1(b), u) for all u ∈ F−1(b). Thus (ii) holds.
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The proof of (ii) ⇒ (i) is similar to that of [27, Theorem 4.4] (but with Proposition 2.1 replacing [33, Theorem 3.1]).
(i) ⇒ (iv). By (i) there exist τ ∈ (0, +∞) and δ ∈ (0, r) such that

d(x, F−1(b)) ≤ τd(b, F(x)) ∀x ∈ B(a, δ).

By the already established implication (i)⇒(ii), wemay assume that (5.11) holds (take a smaller δ and a larger τ if necessary).
This together with (5.10) and (5.17) implies that

NP(F−1(b), u) = D∗

PF(u, b)(Y ) = D∗

c F(u, b)(Y ) ∀u ∈ F−1(b) ∩ B(a, δ). (5.19)

By (5.18), we can also rewrite (5.11) as

NP(F−1(b), u) ∩ BX ⊂ τD∗(DF(u, b))(0, 0)(BY ) ∀u ∈ F−1(b) ∩ B(a, δ). (5.20)

Let u ∈ F−1(b) ∩ B(a, δ). We claim that

T (F−1(b), u) = DF(u, b)−1(0) (5.21)

and

N(T (F−1(b), u), 0) ⊂ NP(F−1(b), u). (5.22)

To show (5.21), let h ∈ DF(u, b)−1(0); we need only show that h ∈ DF(u, b)−1(0) (thanks to (5.9)). Noting that (h, 0) ∈

T (Gr(F), (u, b)), there exists a sequence {(tn, hn, yn)} in R × X × Y such that

tn → 0+, (hn, yn) → (h, 0), b + tnyn ∈ F(u + tnhn) and u + tnhn ∈ B(a, δ).

Then, by our choice of τ and δ,

d(u + tnhn, F−1(b)) ≤ τd(b, F(u + tnhn)) ≤ τ tn‖yn‖.

It follows that there exists un ∈ F−1(b) such that ‖u + tnhn − un‖ ≤ 2τ tn‖yn‖ and so un = u + tn(hn + αn) for some
αn ∈ 2τ‖yn‖BX . Noting that hn + αn → h, this implies that h ∈ T (F−1(b), u), as wished to show. To prove (5.22), suppose
to the contrary that there exists

v ∈ N(T (F−1(b), u), 0) \ NP(F−1(b), u). (5.23)

We claim that NP(F−1(b), u) is closed. Let {x∗
n} ⊂ NP(F−1(b), u) converge to x∗. By (5.11) there exists a sequence {y∗

n} in τBY

such that x∗n
M ∈ D∗

PF(u, b)(y∗
n) for all n ∈ N, where M := 1 + supn∈N ‖x∗

n‖. It follows from (5.16) that

⟨x∗

n/M, x − u⟩ ≤ (1 + τ)σ‖x − u‖2
∀x ∈ F−1(b) ∩ B(a, r).

Letting n → ∞, one has

⟨x∗, x − u⟩ ≤ M(1 + τ)σ‖x − u‖2
∀x ∈ F−1(b) ∩ B(a, r)

and so x∗
∈ NP(F−1(b), u). This shows thatNP(F−1(b), u) is closed. Since a proximal normal cone is always convex, it follows

from (5.23) and the separation theorem that there exists h ∈ X such that

⟨x∗, h⟩ ≤ 0 < ⟨v, h⟩ ∀x∗
∈ NP(F−1(b), u). (5.24)

This and (5.19) imply that

⟨(x∗, y∗), (h, 0)⟩ ≤ 0 ∀(x∗, y∗) ∈ Nc(Gr(F), (u, b)).

This means that h ∈ DcF(u, b)−1(0), and so h ∈ T (F−1(b), u) (by (5.17) and (5.21)). It follows from (5.23) that ⟨v, h⟩ ≤ 0,
contradicting (5.24). This shows that (5.22) holds. By (5.20)–(5.22), one has

N(DF(u, b)−1(0), 0) ∩ BX ⊂ D∗(DF(u, b))(0, 0)(τBY ).

It follows from [26, Theorem 3.1] that

d(x,DF(u, b)−1(0)) ≤ τd(0,DF(u, b)(x)) ∀x ∈ X .

This and (5.21) imply that (5.13) holds because u is arbitrary in F−1(b) ∩ B(a, δ). This completes the proof of (i) ⇒ (iv).
(iv) ⇒ (ii). Suppose that there exist τ > 0 and δ ∈ (0, r) such that (5.13) holds. Since a contingent cone is always closed,
this implies that

DF(u, b)−1(0) ⊂ T (F−1(b), u) ∀u ∈ F−1(b) ∩ B(a, δ).

It follows from (5.9) that (5.21) holds for all u ∈ F−1(b)∩ B(a, δ). Therefore, (5.13) means that for each u ∈ F−1(b)∩ B(a, δ),
the sublinear generalized equation

0 ∈ DF(u, b)(x)
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is metrically subregular at 0 with the modulus τ . This and [26, Theorem 3.1] imply that

N(DF(u, b)−1(0), 0) ∩ BX ⊂ D∗(DF(u, b))(0, 0)(τBY ) ∀u ∈ F−1(b) ∩ B(a, δ).

Thus, by (5.17), (5.18) and (5.21), to prove (ii) it suffices to show that

NP(F−1(b), u) ⊂ N(T (F−1(b), u), 0) ∀u ∈ F−1(b) ∩ B(a, δ). (5.25)

Let u ∈ F−1(b) ∩ B(a, δ) and u∗
∈ NP(F−1(b), u). Then there exist η, δ0 ∈ (0, +∞) such that

⟨u∗, x − u⟩ ≤ η‖x − u‖2
∀x ∈ F−1(b) ∩ B(u, δ0).

For any h ∈ T (F−1(b), u), there exists a sequence {(tn, hn)} in R × X such that

tn → 0+, hn → h and u + tnhn ∈ F−1(b) ∀n ∈ N.

Hence ⟨u∗, tnhn⟩ ≤ η‖tnhn‖
2 for all sufficiently large n. This implies that ⟨u∗, h⟩ ≤ 0 for all h ∈ T (F−1(b), u). Noting (by

(5.17) and (5.21)) that T (F−1(b), u) is a closed convex cone, it follows that u∗
∈ N(T (F−1(b), u), 0). Therefore (5.25) holds,

and (iv) ⇒ (ii) is shown.
(ii) ⇒ (iii) is trivially true.
To prove (iv) ⇒ (v), suppose that there exist τ , δ ∈ (0, +∞) such that (5.13) holds. Let u ∈ F−1(b) ∩ B(a, δ) and

h ∈ NP(F−1(b), u). Then, there exist σ , r ∈ (0, +∞) such that ⟨h, x − a⟩ ≤ σ 2
‖x − a‖ for all x ∈ F−1(b) ∩ B(a, r).

From the definition of the contingent cone, it is easy to verify that ⟨h, v⟩ ≤ 0 for all v ∈ T (F−1(b), u). This implies that
d(h, T (F−1(b), u)) = ‖h‖. It follows from (5.13) that (v) holds.
(v) ⇒ (vi). Suppose that there exist τ , δ ∈ (0, +∞) such that (5.14) holds. Let x ∈ B(a, δ

2 ) and u ∈ PF−1(b)(x). Then
x − u ∈ NP(F−1(b), u). Noting that

‖u − a‖ ≤ ‖u − x‖ + ‖x − a‖ ≤ 2‖x − a‖ < δ,

it follows from (5.14) that

d(0,DF(u, b)(x − u)) ≥ τ‖x − u‖ = τd(x, F−1(b)).

Hence (vi) holds. The proof is completed. �

In Theorem 5.2, if F is assumed to be locally convex at (a, b) then the following proposition shows that each of (iii) and
(vi) implies (i).

Proposition 5.1. Suppose that F is locally convex at (a, b), namely there exists r > 0 such that Gr(F) ∩ (B(a, r) × B(b, r)) is
convex. Further suppose that one of the following properties is satisfied.

(1) There exist τ > 0 and δ ∈ (0, r) such that (5.12) holds.
(2) There exist τ , δ ∈ (0, +∞) such that (5.15) holds for all x ∈ B(a, δ) and u ∈ PF−1(b)(x).

Then (GE) is metrically subregular at a.

Proof. First suppose that (1) holds. By Theorem 5.2, we need only show that (ii) of Theorem 5.2. Let u ∈ F−1(b)∩B(a, δ) and
u∗

∈ NP(F−1(b), u) ∩ BX . It follows from (1) that there exist z ∈ F−1(b) ∩ B(a, δ) and v ∈ BY such that u∗
∈ D∗

PF(z, b)(τv).
From the local convexity assumption, it is easy to verify that

⟨u∗, x − z⟩ − ⟨τv, y − b⟩ ≤ 0 ∀x ∈ B(a, r) and y ∈ F(x) ∩ B(b, r). (5.26)

Setting y = b in (5.26), it follows that

⟨u∗, x − z⟩ ≤ 0 ∀x ∈ F−1(b) ∩ B(a, r). (5.27)

On the other hand, noting that u∗
∈ NP(F−1(b), u) and F−1(b) ∩ B(a, r) is convex, one has

⟨u∗, x − u⟩ ≤ 0 ∀x ∈ F−1(b) ∩ B(a, r).

Since δ < r , it follows from (5.26) that ⟨u∗, u⟩ = ⟨u∗, z⟩. By (5.25), one has u∗
∈ D∗

PF(u, b)(τv). This shows that (ii) of
Theorem 5.2 holds.

Next suppose that (2) holds. Without loss of generality, we assume that δ < r
2 . Let x ∈ B(a, δ). Since Gr(F) ∩ (B(a, r) ×

B(b, r)) is convex, F−1(b) ∩ B̄(a, 2δ) is a closed convex set. By the projection theorem, there exists u ∈ F−1(b) ∩ B̄(a, 2δ)
such that u ∈ PF−1(b)∩B̄(a,2δ)(x). Since ‖x − a‖ ≤ δ, d(x, F−1(b)) = d(x, F−1(b) ∩ B̄(a, 2δ)). Hence u ∈ PF−1(b)(x). This and (2)
imply that (5.15) holds. By the convexity of Gr(F) ∩ (B(a, r) × B(b, r)), one has

(x − u, y − b) ∈ T (Gr(F) ∩ (B(a, r) × B(b, r)), (u, b)) = T (Gr(T ), (u, b))
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for all y ∈ F(x) ∩ B(b, r). It follows from (5.15) that

‖y − b‖ ≥ τd(x, F−1(b)) ∀y ∈ F(x) ∩ B(a, r).

Since d(x, F−1(b)) < r
2 , one has

d(b, F(x)) ≥ min{τ , 2}d(x, F−1(b)).

This shows that (GE) is metrically regular at a. The proof is completed. �

Remark. In the special case when F(x) = [f (x), +∞) and f : X → R ∪ {+∞}, Theorem 5.2 together with Proposition 5.1
extends Result II.
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