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application, we establish, when F is analytic, an extended α-theory similar to 
Smale’s α-theory for nonlinear analytic equations.
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1. Introduction

We study the convergence issue of the extended Newton method (Algorithm A(x0) below, with a suitable 
starting point x0) for the problem

F (x) ≥C 0, (1.1)

or, as a special kind,

F (x) = 0, (1.2)

where F : Ω ⊆ X → Y is a continuously differentiable function, X, Y are Banach spaces, Ω is an open 
subset, and ≥C is a partial order (or preorder) defined by a closed convex cone C in Y :

y1 ≥C y2 ⇐⇒ y1 − y2 ∈ C. (1.3)
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Newton’s method is probably the most important method for solving problem (1.2), which proceeds as 
follows: for any starting point x0 ∈ Ω, construct iteratively a sequence such that

xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, . . . . (1.4)

An important result on Newton’s method is the well-known Kantorovich theorem (cf. [13]), which provides 
a simple and clear criterion ensuring the quadratic convergence of Newton’s method under some mild 
condition such as that the Fréchet derivative F ′(x0) of F at starting point x0 is nonsingular and the second 
Fréchet derivative of F is bounded on an appropriate metric ball of the starting point x0 contained in Ω. 
Another important result on Newton’s method is the famous Smale α-theory (with analytic F ), presented 
in the report [29] (see also [28,30]), studying the notion of approximate zeros (in section 4 we briefly recall 
this important notion), and establishing rules to decide if a starting point x0 is an approximate zero. One 
assumes that F ′(x0) is nonsingular and defines

α(F, x) := β(F, x)γ(F, x)

with

γ(F, x) := sup
k≥2

‖ F ′(x)−1F
(k)(x)
k! ‖ 1

k−1 and β(F, x) := ‖F ′(x)−1F (x)‖.

Then the rule is set to depend on information α(F, ·) at this starting point x0: if x0 ∈ X is such that

α(F, x0) < α0, (1.5)

with α0 := 0.130716944 · · · being the unique root of the equation 2u = (1 − 4u + 2u2)2 in (0, 1 −
√

2
2 ), then 

Newton’s method with the starting point x0 is well defined (namely (1.4) generates a unique sequence {xn}) 
and satisfies that

‖xn+1 − xn‖ ≤
(

1
2

)2n−1

‖x1 − x0‖ for any n ≥ 0. (1.6)

Since then, this line of research has been extensively studied resulting many significant improvements and 
extensions in several directions; see for example [4,6–9,26,32,34] and references therein. In particular, Smale’s 
result was sharpened in [32] in such a way that the criterion (1.5) is replaced by the following weaker 
condition:

α(F, x0) ≤
13 − 3

√
17

4 = 0.157671 · · · ; (1.7)

while (1.6) by the following stronger one:

‖xn+1 − xn‖ ≤
(

1
2

)2n−1

‖xn − xn−1‖ for any n ≥ 0, (1.8)

that is x0 is an approximate zero of F .
When X, Y are Euclidean spaces, these results were extended by Shub and Smale [26] to cover the case 

of underdetermined analytic system defined by F such that, at the starting point x0,

F ′(x0) is surjective (1.9)
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(but F ′(x0) is not necessarily injective, and so they used the notion of the corresponding Moore–Penrose 
inverses to replace that of the inverses in the definitions of γ(F, ·) and β(F, ·)).

Another direction of extending Smale’s theory concerns with the general case when the analytic assump-
tion is dropped. This was done in [33] (see also [31]) by making use of the weak γ-condition for nonlinear 
C2-operators F between Banach spaces. The notion of the weak γ-condition was also used in [12,19,17] to 
extend and improve the corresponding results in [26,7,5], respectively. More extensions of this idea to the 
Gauss–Newton method for convex composite optimization are referred to [10] and [15].

Concerning the issue of solving (1.1), Robinson proposed in [22] the following Algorithm A(x0) (which 
is called the extended Newton method) with starting point x0 ∈ Ω. For x ∈ Ω, we define

D(x) := {d ∈ X : F (x) + F ′(x)d ∈ C}. (1.10)

Moreover, for any subset D of a normed space, ‖D‖ denotes the distance from D to the origin, namely,

‖D‖ := d(0, D) = inf{‖a‖ : a ∈ D} ≤ +∞ (1.11)

(so ‖D‖ < +∞ if and only if D is nonempty).

Algorithm A(x0). For k = 0, 1, · · ·, having xk, determine xk+1 as follows:
Let dk ∈ D(xk) exist such that ‖dk‖ = ‖D(xk)‖. Then pick such dk and set xk+1 = xk + dk.

If such dk does exist for all k, then x0 is called an implementable starting point for Algorithm A(x0). 
In this paper we present a point estimate theory (which maybe called an extended Smale α-theory) in 
which we provide some sufficient conditions ensuring that a starting point x0 is an implementable one for 
Algorithm A(x0) and any sequence {xn} so generated converges to a solution x∗ for (1.1) giving estimates 
how rapid of the convergence. Specializing to problem (1.2) (that is C := {0}), results reported here 
recapture the corresponding results of Shub and Smale [26] but in a broad context, namely assumption 
(1.9) is dropped and X and Y are not necessarily Euclidean spaces in our consideration.

Our main results are the following Theorems 1.1 and 1.2, applicable to C2-functions and analytic functions 
respectively. For each x ∈ Ω, let Tx : X → 2Y be the convex process defined by

Txd := F ′(x)d− C for each d ∈ X, (1.12)

so T−1
x : Y → 2X is the convex process defined by

T−1
x y := {d ∈ X : F ′(x)d ∈ y + C} for each y ∈ Y (1.13)

and

T−1
x (−F (x)) = D(x). (1.14)

Henceforth, we assume that X is reflexive and x0 ∈ Ω is such that

F (x0) + F ′(x0)d ∈ C for some d ∈ X. (1.15)

Let

ξ := ‖T−1
x0

(−F (x0))‖, (1.16)

the distance to the origin from the set T−1
x (−F (x0)) and we fix γ ≥ 0. Let r∗ be defined by

0
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r∗ :=
{

1+γξ−
√

(1+γξ)2−8γξ
4γ if γ > 0,

ξ if γ = 0.
(1.17)

Moreover, if F is Ck at x, we write

‖T−1
x0

F (k)(x)‖ := sup{‖T−1
x0

(F (k)(x)(z1, z2, · · · , zk))‖ : {zi}ki=1 ⊂ B(0, 1)}, (1.18)

where, as usual, B(x, r) denotes the closure of the open ball B(x, r) with center x and radius r. Note that

R(F (k)(x)) ⊆ R(Tx0) whenever ‖T−1
x0

F (k)(x)‖ < +∞ (1.19)

(see (2.1) and (3.3) in next sections for the definition of the ranges R(Tx0)) and R(F (k)(x)).

Theorem 1.1. Let Ω ⊇ B(x0, r∗), and suppose that F is C2 on B(x0, r∗). Suppose that

ξ ≤ 3 − 2
√

2
γ

, (1.20)

and that (Tx0 , F ) satisfies the weak γ-condition at x0 on B(x0, r∗):

‖T−1
x0

F ′′(x)‖ ≤ 2γ
(1 − γ‖x− x0‖)3

for each x ∈ B(x0, r
∗). (1.21)

Then x0 is a implementable starting point for Algorithm A(x0), and any sequence {xn} generated by Algo-
rithm A(x0) is contained in B(x0, r∗) and converges to a solution x∗ of (1.1) satisfying

‖xn+1 − xn‖ ≤ q2n−1‖xn − xn−1‖ for each n = 1, 2, . . . (1.22)

and

‖xn − x∗‖ ≤ q2n−1r∗ for each n = 0, 1, 2, . . . , (1.23)

where q is a constant such that 0 ≤ q < 1; in fact, q can be given by

q :=
1 − γξ −

√
(1 + γξ)2 − 8γξ

1 − γξ +
√

(1 + γξ)2 − 8γξ
, (1.24)

provided that 0 < γ < +∞.

Theorem 1.2. Let Ω ⊇ B(x0, r∗). Suppose that F is analytic on Ω,

ξ ≤ 13 − 3
√

17
4γ , (1.25)

and

γ = sup
k≥2

∥∥∥∥∥T
−1
x0

F (k)(x0)
k!

∥∥∥∥∥
1

k−1

< +∞. (1.26)

Then, assumptions (1.20) and (1.21) hold, and x0 is an approximate solution of (1.1), that is, x0 is an im-
plementable starting point for Algorithm A(x0) with any generated sequence {xn} satisfying (1.8). Moreover, 
any sequence {xn} generated by Algorithm A(x0) is contained in B(x0, r∗).
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To extend the Smale α-theory in [26] for underdetermined equation systems to the case when X and 
Y are not necessarily finite-dimensional and (1.9) is not necessarily satisfied, we introduce the notion of 
generalized inverses as follows. Let X be a Hilbert space and A : X → Y be a bounded linear operator 
such that R(A) is complemented in Y (in the sense that there exists a bounded linear projection operator 
Q : X → R(A)), where R(T ) denotes the image of an operator T . Then, by [21], there exists a bounded 
linear operator (called a generalized inverse of A and denoted by A+) from Y into X such that

AA+ A = A, A+ AA+ = A+ and A+ A = I − ΠkerA, (1.27)

where ΠkerA is the orthogonal projection on kerA and I is the identify operator on X.
Applying Theorem 1.2 to the following extended Newton method for solving problem (1.2):

xn+1 := xn − F ′(xn)+F (xn) for any n = 0, 1, . . . , (1.28)

we have the following corollary.

Corollary 1.1. Let Ω ⊇ B(x0, r∗). Suppose that X is a Hilbert space and F is analytic on Ω such that 
R(F ′(x0)) is complemented in Y . Let

ξ := ‖F ′(x0)+F (x0)‖ and γ := sup
k≥2

∥∥∥∥F ′(x0)+F (k)(x0)
k!

∥∥∥∥
1

k−1

(1.29)

be such that (1.25) holds. Suppose further that

F (x0) ∈ R(F ′(x0)) and R(F (k)(x0)) ⊆ R(F ′(x0)) for any k ∈ N (1.30)

(of course, they are satisfied trivially if F ′(x0) is surjective). Then, x0 is an approximate zero of F , that is, 
the extended Newton method (1.28) is well-defined and the generated sequence {xn} satisfies (1.8).

Another motivation of the present paper stems from [5] for finite inequality systems and [17] for the conic 
inequality system (1.1), where the Smale α-theory was used to establish the existence and the error bound 
results for the solution of (1.1). As an applications of the extended Smale α-theory in the present paper, 
we will study in our next paper [18] the issue of the error bounds for not only the conic inequality system 
(1.1) but also perturbed systems arising from (1.1), and will establish some quantitative results on the error 
bounds, the calmness property and the Lipschitz-like continuity for the solution maps of these systems. In 
particular, some corresponding results in [2,3,5,11,17,20] will be extended and improved.

The paper is organized as follows. In section 2, we list some basic concepts and known facts needed in 
the sequel. In section 3 we extend the notion of the γ-condition introduced in [33] for operators to the case 
of convex processes, together with some related results, and then provide the proof for Theorem 1.1. The 
proofs for Theorem 1.2 and Corollary 1.1 are given in section 4.

2. Preliminaries

We always assume that X, Y , Z are Banach spaces. Fix x ∈ X. Let B(x, r) stand for the open ball in X
or Y with center x and radius r; while the corresponding closed ball is denoted by B(x, r). As usual, the 
space of bounded linear operators from X to Y is denoted by L(X, Y ), endowed with the operator norm.

The concept of convex process (which was introduced by Rockafeller [25,24] and extensively used by 
Robinson [22,23] for problem (1.1)) plays a key role in the study of this paper.
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Definition 2.1. A set-valued map T : X → 2Y is called a convex process from X to Y if it satisfies

(a) T (x + y) ⊇ Tx + Ty for all x, y ∈ X;
(b) T (λx) = λTx for all λ > 0, x ∈ X;
(c) 0 ∈ T0.

Thus T : X → 2Y is a convex process if and only if its graph Gr(T ) := {(x, y) ∈ X × Y : y ∈ Tx} is a 
convex cone in X × Y . By definition, a convex process T : X → 2Y is closed if its graph Gr(T ) is closed. 
As usual, the domain, range and inverse of a convex process T are respectively denoted by D(T ), R(T ) and 
T−1; i.e.,

D(T ) := {x ∈ X : Tx �= ∅},

R(T ) :=
⋃

{Tx : x ∈ D(T )} (2.1)

and

T−1y := {x ∈ X : y ∈ Tx} for each y ∈ Y.

Obviously T−1 is a convex process from Y to X. Recall that, for a subset D of a normed space, ‖D‖ is 
its distance to the origin. We also make the convention that D + ∅ = ∅ for each set D. By definition, the 
following inequality holds for a convex process T :

‖T (x + y)‖ ≤ ‖Tx‖ + ‖Ty‖ for any x, y ∈ D(T ). (2.2)

Definition 2.2. Suppose that T is a convex process. The norm of T is defined by

‖T‖ := sup{‖Tx‖ : x ∈ D(T ), ‖x‖ ≤ 1}.

If ‖T‖ < +∞, we say that the convex process T is normed.

Proposition 2.1. Suppose that Y is reflexive and that T : Y → 2Z is a closed convex process. If ‖T−1‖ < ∞, 
then R(T ) is closed.

Proof. Let {zn} ⊆ R(T ) be such that zn → z0. Then {zn} ⊆ D(T−1). Without loss of generality, we may 
assume that ‖zn‖ = ‖z0‖ = 1. Since ‖T−1‖ < ∞, we can take {yn} ⊆ Y such that {yn} is bounded and 
yn ∈ T−1zn for each n. Since Y is reflexive, by the Eberlein–Smulian Theorem in Functional Analysis 
(cf. [35, p. 141]), we may assume that, without loss of generality (using a subsequence if necessary), {yn}
converges weakly to one point in Y , say y0. Consequently, it follows from the Mazur Theorem in Functional 
Analysis (cf. [35, p. 120]) that there exists a sequence {ỹk} with the convex expression

ỹk :=
nk∑
i=1

αk
i yki

for each k = 1, 2, · · · ,

where {αk
i } ⊆ [0, 1] satisfies 

∑nk

i=1 α
k
i = 1 for each k, such that {ỹk} converges in norm to y0 and the 

corresponding sequence {z̃k} generated by the convex combinations of {zk} converges to z0, that is,

z̃k :=
nk∑

αk
i zki

→ z0.

i=1
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Note by definition that

z̃k ∈
nk∑
i=1

αk
i Tyki

⊆ T ỹk.

It follows from the closedness assumption of T that z0 ∈ Ty0; hence z0 ∈ R(T ) and the proof is complete. �
Let T, S : X → 2Y and Q : Y → 2Z be convex processes. Recall that T ⊆ S means that Gr(T ) ⊆ Gr(S), 

that is, Tx ⊆ Sx for each x ∈ D(T ). By definition, one can verify easily that ‖T‖ ≥ ‖S‖ if T ⊆ S and 
D(T ) = D(S). Moreover, T ⊆ S if and only if T−1 ⊆ S−1. The sum T + S, composite Q S and multiple λT
are processes defined respectively by

(T + S)(x) := Tx + Sx for each x ∈ X,

QS(x) = Q(S(x)) :=
⋃

y∈S(x)

Q(y) for each x ∈ X

and

(λT )(x) := λ(Tx) for each x ∈ X.

It is well known (and easy to verify) that T + S, Q S, λT are also convex processes and the following 
assertions hold:

‖T + S‖ ≤ ‖T‖ + ‖S‖, ‖QS‖ ≤ ‖Q‖ ‖S‖ and ‖λT‖ = |λ|‖T‖. (2.3)

We also require two propositions below: the first one is known in [23] while the second is a direct 
consequence of the first one and [22, Theorem 5].

Proposition 2.2. Let T : X → 2Y be a closed convex process. Then we have the following assertions:

(i) If D(T ) = X, then T is normed.
(ii) If R(T ) = Y , then T−1 is normed. Consequently, T−1 is normed if R(T ) is a closed linear subspace.

Proposition 2.3. Let S1, S2 : X → 2Y be closed convex processes with D(S1) = D(S2) = X and R(S1) = Y . 
Suppose that ‖S−1

1 ‖‖S2‖ < 1 and that (S1 + S2)(x) is closed for each x ∈ X. Then R(S1 + S2) = Y and 

‖(S1 + S2)−1‖ ≤ ‖S−1
1 ‖

1−‖S−1
1 ‖‖S2‖

.

The following lemma is a two-dimensional extension of its one-dimensional version given in [16] and we 
shall omit its proof which is similar to that in [16, Lemma 2.1].

Lemma 2.1. Let g : [0, 1] × [0, 1] → R and G : [0, 1] × [0, 1] → Y be continuous. Let Z be a reflexive Banach 
space. Suppose that T : Y → 2Z is a closed convex process such that

‖TG(t, s)‖ ≤ g(t, s) for each (t, s) ∈ [0, 1] × [0, 1]. (2.4)

Then T
¨

[0,1]2

G(t, s) dtds �= ∅ and

∥∥∥∥∥∥∥T
¨

2

G(t, s) dtds

∥∥∥∥∥∥∥ ≤
¨

2

g(t, s) dtds. (2.5)

[0,1] [0,1]
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Let ψ and η denote the functions defined by

ψ(τ) := τ − 1
τ(2τ − 1)

and η(t) := 2
1 + t +

√
(1 + t)2 − 8t

for any τ ∈ [1, 2 +
√

2
2

], t ∈ [0, 3 − 2
√

2]. (2.6)

By differential calculus, one can verify that they are (strictly) increasing functions such that ψ maps [1, 2+
√

2
2 ]

onto [0, 3 − 2
√

2] and ψ−1 = η.
Assume, for the remainder of this subsection, that (γ, ξ) is a fixed pair of constants such that

γ ≥ 0, ξ ≥ 0 and γξ ≤ 3 − 2
√

2. (2.7)

We also adopt the following convention:

00 := 1 and a

0 := +∞ for any a > 0. (2.8)

Define the function φγ,ξ (to be abbreviated to φ for short) by

φ(t) := ξ − t + γt2

1 − γt
for each t ∈ [0, 1

γ
). (2.9)

Then, one has

φ′(t) = −2 + 1
(1 − γt)2 and φ′′(t) = 2γ

(1 − γt)3 for each t ∈ [0, 1
γ

) (2.10)

(in particular, φ′ and φ′′ do not depend on ξ). Assuming γ �= 0, let

r0 := 2 −
√

2
2γ and r∗ :=

1 + γξ −
√

(1 + γξ)2 − 8γξ
4γ , (2.11)

that is, r∗ is the smaller zero of φ in [0, +∞). Thus, by (2.7) and (2.11), we have that

r∗ ≤ 1 + γξ

4γ ≤ 1 + (3 − 2
√

2)
4γ = 2 −

√
2

2γ = r0, (2.12)

and

r∗ < r0 if γξ < 3 − 2
√

2 (2.13)

(so r∗ < 1
γ as 2−

√
2

2 < 1). Note that r0 is the unique zero of φ′ in [0, 1γ ) and that φ is decreasing in [0, r0)
while increasing in (r0, 1γ ). Let {tn} be the sequence generated by Newton’s method for φ with starting 
point t0 = 0:

tn+1 := tn − φ′(tn)−1φ(tn) for each n = 0, 1, . . . . (2.14)

In particular,

t1 = ξ. (2.15)

Let
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q :=
1 − γξ −

√
(1 + γξ)2 − 8γξ

1 − γξ +
√

(1 + γξ)2 − 8γξ
(2.16)

and

p :=
1 + γξ −

√
(1 + γξ)2 − 8γξ

1 + γξ +
√

(1 + γξ)2 − 8γξ
. (2.17)

Noting (2.7), it is elementary to show that

q ≤ 1
2 ⇐⇒ ξ ≤ 13 − 3

√
17

4γ . (2.18)

Furthermore, we have the following lemma, which is known in [31].

Lemma 2.2. Under assumption (2.7), the following assertions hold:

(i) The sequence {tn} is increasing and has the closed form:

r∗ − tn = 1 − p

1 − q2n−1p
q2n−1r∗ ≤ q2n−1r∗ for each n = 0, 1, 2, . . . . (2.19)

(ii)

tn+1 − tn ≤ q2n−1(tn − tn−1) for each n = 1, 2, . . . . (2.20)

Remark 2.1. Suppose that γ = 0. Then, by the usual convention,

r0 = +∞ and r∗ = ξ

(
= lim

γ→0+

1 + γξ −
√

(1 + γξ)2 − 8γξ
4γ

)
; (2.21)

thus (2.7) and (2.12) hold trivially. Also the function φ defined by (2.9) simply means that φ(t) = ξ − t

for each t ∈ [0, +∞). Therefore tn = ξ for all n ≥ 1 and p = q = 0. Consequently, (2.19) and (2.20) in 
Lemma 2.2 also hold trivially in this case.

3. Proof of Theorem 1.1

Before presenting the proof of Theorem 1.1, let us recall some notation and a preparatory lemma. As as-
sumed in the introduction section, let X, Y be Banach spaces, F : Ω ⊆ X → Y a continuously differentiable 
function, and C a nonempty closed convex cone in Y .

For x ∈ Ω, we define two convex processes Tx and T−1
x as in (1.12) and (1.13). Since F ′(x) is continuous 

and C is closed, it is easy to verify that Tx and T−1
x are closed. Furthermore, for any x0 ∈ Ω, one can show 

(by a straightforward verification and making use of the fact that C + C = C), that

T−1
x F ′(x0)T−1

x0
⊆ T−1

x (3.1)

and that

D(x) = T−1
x (−F (x)) = T−1

x (C − F (x)) (3.2)

(recalling (1.10)). For convenience, let us introduce further notations that will be used in this paper.
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Let N denote the set of all natural numbers and let k ∈ N, and consider a k-multilinear bounded operator 
Λ : (X)k → Y . We define the norm ‖Λ‖ by

‖Λ‖ := sup{‖Λ(x1, . . . , xk)‖ : (x1, . . . , xk) ∈ (X)k, ‖xi‖ ≤ 1 for each i};

also, let R(Λ) denote the image of Λ:

R(Λ) := {Λ(x1, . . . , xk) : (x1, . . . , xk) ∈ (X)k}. (3.3)

Assume that F is Ck (kth continuously differentiable) on Ω. The kth derivative F (k)(x) at x is a k-multilinear 
operator from (X)k to Y . It follows that, for any k − 1 points z1, z2, · · · , zk−1 ∈ X, T−1

x0
(F (k)(x)(z1, z2,

· · · , zk−1)) is a convex process from X to Y . Then

‖T−1
x0

F (k)(x)‖ = sup{‖T−1
x0

(F (k)(x)(z1, z2, · · · , zk−1))‖ : {zi}k−1
i=1 ⊂ B(0, 1)}. (3.4)

Note in particular that, for each j ≤ k,

‖T−1
x0

F (k)(x)zj‖ ≤ ‖T−1
x0

F (k)(x)‖‖z‖j for each z ∈ X, (3.5)

where and in the sequel, the zj denotes, as usual, (z, · · · , z) ∈ (X)j for each z ∈ X; moreover, if (z1, · · · , zl) ∈
(X)l, then (zj , z1, · · · , zl) denotes the corresponding element in (X)j+l. Thus, in terms of the notation R(·), 
it is routine to verify that, for all x, z ∈ X, the following equivalences hold:

R(F ′(x)) ⊆ R(Tz) ⇐⇒ R(Tx) ⊆ R(Tz) ⇐⇒ D(T−1
z F ′(x)) = X. (3.6)

Lemma 3.1 below is known in [16] (cf. the proof for [16, Proposition 2.3]).

Lemma 3.1. Let x0 ∈ X and A ∈ L(X, Y ) be such that R(F ′(x0) + A) ⊆ R(Tx0) and ‖T−1
x0

A‖ < 1. Define 
T̃ (·) := Tx0(·) + A(·). Then

R(Tx0) ⊆ R(T̃ ), D(T̃−1F ′(x0)) = X (3.7)

and

‖T̃−1F ′(x0)‖ ≤ 1
1 − ‖T−1

x0 A‖
. (3.8)

In his study of problem (1.1), Robinson [22] required an important assumption that Tx0 is surjective 
(henceforth to be referred to as the Robinson condition; see [15]). We say that (cf. [16]) (Tx0, F ) satisfies 
the weak-Robinson condition at x0 on B(x0, r) if (1.15) holds: −F (x0) ∈ R(Tx0), and

R(F ′(x)) ⊆ R(Tx0) for each x ∈ B(x0, r). (3.9)

For the case when F is C2 on the involved closed ball B(x0, r), the notion of the γ-condition for nonlinear 
operators F in Banach spaces was first introduced by Wang [33] to study Smale’s point estimate theory for 
operators which are not necessarily analytic. This notion was also used in [12] to improve the corresponding 
results in [26]. An extended version of this notion given below will be useful in the presence of convex 
processes (the equality in (3.10) is due to (2.10)).
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Definition 3.1. Let x0 ∈ X, γ ≥ 0 and 0 < r ≤ 1
γ . Let F : B(x0, r) → R be C2. We say that (Tx0 , F ) (or 

problem (1.1)) satisfies the weak γ-condition at x0 on B(x0, r) if

‖T−1
x0

F ′′(x)‖ ≤ 2γ
(1 − γ‖x− x0‖)3

= φ′′(‖x− x0‖) for each x ∈ B(x0, r). (3.10)

Note that (3.10) implies the following inclusion:

R(F ′′(x)) ⊆ R(Tx0) for each x ∈ B(x0, r). (3.11)

Another consequence of (3.10) for the case when γ = 0 is given in the following remark.

Remark 3.1. Suppose that γ = 0 in Definition 3.1. Then, by (3.5), (3.10) and (1.13), one has that 0 ∈
T−1
x0

F ′′(x)(u, v), namely 0 ∈ F ′′(x)(u, v) +C for all u, v ∈ X and x ∈ B(x0, r). Replacing v by −v, it follows 
that F ′′(x)(u, v) ∈ C for all u, v ∈ X and x ∈ B(x0, r). Thus by continuity and since C is closed, we have

F ′′(x)(u, v) ∈ C for all u, v ∈ X and x ∈ B(x0, r). (3.12)

Proposition 3.1. Suppose that X is reflexive. Let x0 ∈ X, γ ≥ 0 and 0 < r ≤ 1
γ . Suppose that (Tx0 , F )

satisfies the weak γ-condition at x0 on B(x0, r). Then the following assertions hold:

(I) (Tx0 , F ) satisfies (3.9).
(II) Assume further that

r ∈ (0, 2 −
√

2
2γ ) and x ∈ B(x0, r). (3.13)

Then the following assertions hold.
(i) For any x′ ∈ X satisfying ‖x − x′‖ + ‖x′ − x0‖ < r, we have

T−1
x0

¨

[0,1]2

[−sF ′′(x′ + ts(x− x′))](x− x′)2 dsdt �= ∅ (3.14)

and ∥∥∥∥∥∥∥T
−1
x0

¨

[0,1]2

[−sF ′′(x′ + ts(x− x′))](x− x′)2 dsdt

∥∥∥∥∥∥∥
≤

¨

[0,1]2

sφ′′(‖x′ − x0‖ + ts‖x− x′‖)‖x− x′‖2 dsdt. (3.15)

(ii) D(T−1
x F ′(x0)) = X,

‖T−1
x0

(F ′(x) − F ′(x0))‖ < 1 (3.16)

and

∥∥T−1
x F ′(x0)

∥∥ ≤
(

2 − 1
(1 − γ‖x− x0‖)2

)−1

. (3.17)



C. Li, K.F. Ng / J. Math. Anal. Appl. 440 (2016) 636–660 647
(iii) If (1.15) holds, then

D(x) �= ∅. (3.18)

Proof. Let φ be defined as in (2.9) with given pair (γ, ξ) satisfying (2.7).
(I) Let x ∈ B(x0, r), u ∈ X, and define continuous functions G and g on [0, 1] respectively by

G(t) := F ′′(x0 + t(x− x0))(x− x0, u) for each t ∈ [0, 1]

and

g(t) := φ′′(t‖x− x0‖)‖x0 − x‖‖u‖ for each t ∈ [0, 1].

Then, by (3.10), we have, for each t ∈ [0, 1[,

‖T−1
x0

G(t)‖ = ‖T−1
x0

F ′′(x0 + t(x− x0))(x− x0, u)‖
≤ φ′′(t‖x− x0‖)‖x− x0‖‖u‖
= g(t).

Hence, by [16, Lemma 2.1] (with T−1
x0

in place of T ), one has that T−1
x0

1ˆ

0

(F ′′(x0+t(x −x0))(x −x0, u)dt �= ∅. 

Since

F ′(x)u− F ′(x0)u =
1ˆ

0

(F ′′(x0 + t(x− x0))(x− x0, u)dt,

it follows that T−1
x0

(F ′(x)u − F ′(x0)u) �= ∅. Let v ∈ T−1
x0

(F ′(x)u − F ′(x0)u). Then F ′(x0)v ∈ F ′(x)u −
F ′(x0)u − C. This means that

F ′(x)(−u) ∈ F ′(x0)(−(u + v)) − C ⊆ R(Tx0).

Hence R(F ′(x)) ⊆ R(Tx0) and inclusion (3.9) is shown. The proof for (I) is complete.
(II) Let x ∈ B(x0, r) and x′ ∈ X to satisfy ‖x − x′‖ + ‖x′ − x0‖ < r. In place of the functions G and g

used in (I), we define continuous functions G and g on [0, 1]2 respectively by

G(t, s) := −sF ′′(x′ + ts(x− x′))(x− x′)2 for each (t, s) ∈ [0, 1]2

and

g(t, s) := sφ′′(‖x′ − x0‖ + ts‖x− x′‖)‖x− x′‖2 for each (t, s) ∈ [0, 1]2.

By (3.10), one has that, for any s, t ∈ [0, 1],

‖T−1
x0

G(t, s)‖ ≤ sφ′′(‖x′ + ts(x− x′) − x0‖)‖x− x′‖2 ≤ sφ′′(‖x′ − x0‖ + ts‖x− x′‖)‖x− x′‖2 = g(t, s)

(noting that φ′′ is increasing on [0, 1γ )). Thus, Lemma 2.1 is applicable (to T−1
x0

in place of T ) and assertion
(i) follows.
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To verify assertion (ii), we shall apply Lemma 3.1 to A := F ′(x) − F ′(x0). By (I), we have from (3.9)
that R(F ′(x0) + A) ⊆ R(Tx0). Next, since x ∈ B(x0, r) and r < 2−

√
2

2γ by (3.13), we have from (2.10) that

φ′(t) − φ′(0) = 1
(1 − γt)2 − 1 for each t ∈ [0, 1

γ
). (3.19)

In particular,

φ′(‖x− x0‖) − φ′(0) < φ′(r) − φ′(0) = 1
(1 − γr)2 − 1 ≤ 1

(1 − 2−
√

2
2 )2

− 1 = 1. (3.20)

Since, for all t ∈ [0, 1],

‖T−1
x0

(F ′′(x0 + t(x− x0))‖ ≤ 2γ
(1 − γt‖x− x0‖)3

= φ′′(t‖x− x0‖)

(thanks to the assumption of the weak γ-condition), we have by [16, Lemma 2.1] that

‖T−1
x0

A‖ = ‖T−1
x0

(F ′(x) − F ′(x0))

=

∥∥∥∥∥∥T−1
x0

1ˆ

0

(F ′′(x0 + t(x− x0))(x− x0)dt

∥∥∥∥∥∥
≤

1ˆ

0

φ′′(t‖x− x0‖)‖x− x0‖dt

= φ′(‖x− x0‖) − φ′(0) (3.21)

Hence, ‖T−1
x0

A‖ < 1 by (3.20) and Lemma 3.1 is indeed applicable, and so (3.7) and (3.8) hold with T̃ := Tx. 
In particular, (3.8), together with (3.21) and (3.19), implies that

∥∥T−1
x F ′(x0)

∥∥ ≤ 1
1 − ‖T−1

x0 A‖
≤ 1

1 − (φ′(‖x− x0‖) − φ′(0)) =
(

2 − 1
(1 − γ‖x− x0‖)2

)−1

.

This, together with (3.7) shows assertion (ii).
Below we show assertion (iii). To do this, assume that (1.15) holds. By (i) and (ii) (applied to [x0, x] in 

place of [x′, x]), we have

D(T−1
x F ′(x0)) = X (3.22)

and

T−1
x0

¨

[0,1]2

[−sF ′′(x0 + ts(x− x0))](x− x0)2 dsd t �= ∅,

so

T−1
x F ′(x0)T−1

x0

¨

[0,1]2

[−sF ′′(x0 + ts(x− x0))](x− x0)2 dsdt �= ∅. (3.23)

Consequently, by (3.1) and (3.22), we get
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T−1
x

¨

[0,1]2

[−sF ′′(x0 + ts(x− x0))](x− x0)2 dsdt �= ∅, (3.24)

and

(T−1
x F ′(x0))(x0 − x) �= ∅. (3.25)

Noting by the fundamental theorem of calculus that

F (x0) − F (x) = −
1ˆ

0

F ′(x0 + s(x− x0)) (x− x0)ds

=
¨

[0,1]2

[−sF ′′(x0 + ts(x− x0))](x− x0)2 dsd t + F ′(x0)(x0 − x),

and since Tx is a convex process, it follows from (3.24) and (3.25) that

T−1
x (F (x0) − F (x)) �= ∅. (3.26)

Similarly, by (3.22), (1.15) and (3.1) again, we have that

∅ �= T−1
x F ′(x0)T−1

x0
(−F (x0)) ⊆ T−1

x (−F (x0)). (3.27)

From the convex process property,

T−1
x (−F (x)) ⊇ T−1

x (−F (x0)) + T−1
x (F (x0) − F (x)), (3.28)

we make use of (3.26) and (3.27) to conclude that T−1
x (−F (x)) �= ∅, that is, (3.18) holds (see (3.2)) and 

assertion (iii) is shown. The proof is complete. �
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. First we deal with the case when γ = 0. By (1.15), (3.2), and (1.17), we have that 
D(x0) �= ∅ and ‖D(x0)‖ = ξ = r∗. Since D(x0) is closed and X is reflexive, it follows that x1 = x0 + d1 for 
some d1 ∈ D(x0) with ‖d1‖ = ξ. By (3.2), (1.10) and (1.13), one has that

F (x0) + F ′(x0)(x1 − x0) ∈ C.

Moreover, by Definition 3.1 and Remark 3.1 (applied to r∗ in place of r, thanks to the given γ-condition 
assumption), we have that

F ′′(x0 + t(x1 − x0)(x1 − x0)2(1 − t) ∈ C for each t ∈ [0, 1].

Hence, since C is a closed, the fundamental theorem of calculus implies that F (x1) ∈ C because

F (x1) = F (x0) + F ′(x0)(x1 − x0) +
1ˆ

0

F ′′(x0 + t(x1 − x0)(x1 − x0)2(1 − t)dt ∈ C + C = C.

Thus, x∗ := x1 = xn for all n ∈ N solving (1.1); clearly {xn} ⊆ B(x0, r∗), (1.22) and (1.23) hold trivially in 
this case.
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Henceforth we consider the case when γ > 0. Let {tn} be the sequence defined by (2.19). Then, by 
(2.12)–(2.15) and Lemma 2.2, we have that

ξ = t1 ≤ tn < r∗ ≤ r0 = 2 −
√

2
2γ for all n ≥ 1. (3.29)

We will show that Algorithm A(x0) generates at least one sequence {xn} and, for any sequence {xn}
generated by Algorithm A(x0), the following assertions hold for each n:

‖xn+1 − xn‖ ≤ (tn+1 − tn)
(
‖xn − xn−1‖
tn − tn−1

)2

, (3.30)

‖xn − xn−1‖ ≤ tn − tn−1, (3.31)

and

F (xn−1) + F ′(xn−1)(xn − xn−1) ∈ C. (3.32)

Granting these, one has that, for all m ≥ n ≥ 0,

‖xn − xm‖ ≤ tm − tn → r∗ − tn

as m → ∞. In particular, x∗ := limn→∞ xn exists in X and satisfies that

‖xn − x∗‖ ≤ r∗ − tn. (3.33)

Passing to the limit in (3.32), one has that F (x∗) ∈ C, so x∗ solves (1.1).
It remains to verify that Algorithm A(x0) generates at least one sequence {xn}, and that any sequence 

{xn} generated by Algorithm A(x0) satisfies (3.30)–(3.32). We do by mathematical induction. Let us first 
note that Proposition 3.1 is applicable (applied to r∗ in place of r, thanks to the given weak γ-condition 
assumption and (3.29)). Hence, by (1.15), (3.2) and (3.18), we have that

D(x) = T−1
x (−F (x)) �= ∅ for each x ∈ B(x0, r

∗). (3.34)

In particular,

D(x0) = T−1
x0

(−F (x0)) �= ∅. (3.35)

This, together with (1.16) and (2.15), implies that

d(0,D(x0)) = ‖T−1
x0

(−F (x0))‖ = ξ = t1 − t0. (3.36)

Since X is reflexive, it follows that there exists d1 ∈ D(x0) such that ‖d1‖ = d(0, D(x0)) and so x1
is generated. Thus, F (x0) + F ′(x0)(x1 − x0) ∈ C by Algorithm A(x0) and so (3.32) holds for n = 1. 
Furthermore, by (3.36), one has that

‖d1‖ = d(0,D(x0)) = t1 − t0,

i.e., ‖x1 − x0‖ = t1 − t0. This shows that (3.31) holds for n = 1.
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Assume that (3.31) and (3.32) hold for all n = 1, 2, . . . , k. We will complete our induction by showing 
that (3.30) also holds for n = k, and that (3.31) and (3.32) hold for each n = k + 1. To do this, note first 
that

‖xk − x0‖ ≤
k∑

i=1
‖xi − xi−1‖ ≤

k∑
i=1

(ti − ti−1) = tk (3.37)

and

‖xk−1 − x0‖ ≤ tk−1 ≤ tk (3.38)

because {tn} is increasing (see Lemma 2.2). In particular, xk ∈ B(x0, r∗) and so, by (3.17) (applied to r∗

in place of r, again thanks to the given weak γ-condition assumption and (3.29)) and (3.34), one has

‖T−1
xk

F ′(x0)‖ ≤
(

2 − 1
(1 − γ‖xk − x0‖)2

)−1

and D(xk) �= ∅. (3.39)

In particular, in view of Algorithm A(x0), xk+1 can be generated (as we noted for the case when k = 0) 
and (3.32) holds for n = k + 1. We further claim that

∅ �= (T−1
xk

F ′(x0))T−1
x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)] ⊆ D(xk). (3.40)

Noting D(T−1
xk

F ′(x0)) = X by assertion (ii) of Proposition 3.1(II) (applied to xk in place of x, recalling that 
Proposition 3.1 is applicable as noted earlier), to prove the above nonemptiness assertion, it is sufficient to 
show that

T−1
x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)] �= ∅. (3.41)

Recall that ‖xk−1 − x0‖ ≤ tk−1 by (3.38) and ‖xk − xk−1‖ ≤ tk − tk−1 by assumptions earlier. Since

−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1) =
¨

[0,1]2

[−τF ′′(xk−1 + τt(xk − xk−1))](xk − xk−1)2 d τd t,

(3.41) follows from Proposition 3.1 II(i) (applied to [xk−1, xk] in place of [x′, x] and noting that ‖xk −
xk−1‖ + ‖xk−1 − x0‖ ≤ tk < r∗). This and (3.15) imply that

‖T−1
x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)]‖

=

∥∥∥∥∥∥∥T
−1
x0

¨

[0,1]2

[−τF ′′(xk−1 + τt(xk − xk−1))](xk − xk−1)2 d τd t

∥∥∥∥∥∥∥
≤

¨

[0,1]2

τφ′′(‖xk−1 − x0‖ + tτ‖xk − xk−1‖)‖xk − xk−1‖2 dτdt

≤
¨

[0,1]2

τφ′′(tk−1 + tτ(tk − tk−1))(tk − tk−1)2 dτdt
(
‖xk − xk−1‖
tk − tk−1

)2

. (3.42)

An elementary calculation shows that
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φ(tk) =
¨

[0,1]2

τφ′′(tk−1 + tτ(tk − tk−1))(tk − tk−1)2 dτdt,

and it follows from (3.42) that

∥∥T−1
x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)]
∥∥ ≤ φ(tk) ·

(
‖xk − xk−1‖
tk − tk−1

)2

. (3.43)

We next show the inclusion in (3.40). Let z := −F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1) and d ∈
(T−1

xk
F ′(x0))T−1

x0
(z), that is, d ∈ (T−1

xk
F ′(x0))u for some u ∈ T−1

x0
(z). We have to show that d ∈ D(xk). Note 

that F ′(xk)d ∈ F ′(x0)u + C and F ′(x0)u ∈ z + C, so F ′(xk)d ∈ z + C + C = z + C, since C is a convex 
cone. Making use of the definition of z, it follows that

F (xk) + F ′(xk)d ∈ F (xk−1) + F ′(xk−1)(xk − xk−1) + C ⊆ C + C = C,

where the inclusion holds as (3.32) holds for n = k by assumption, that is d ∈ D(xk) as we want to show. 
Therefore, (3.40) is valid and it follows from (3.39) and (3.43) that

d(0,D(xk)) ≤ ‖
(
T−1
xk

F ′(x0)
)
T−1
x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)]‖

≤
(

2 − 1
(1 − γtk)2

)−1

· φ(tk) ·
(
‖xk − xk−1‖
tk − tk−1

)2

= − φ(tk)
φ′(tk)

·
(
‖xk − xk−1‖
tk − tk−1

)2

= (tk+1 − tk)
(
‖xk − xk−1‖
tk − tk−1

)2

, (3.44)

where the last equality is true by (2.14), while the first equality holds because of the first equality of (2.10):

(
2 − 1

(1 − γtk)2

)−1

= −φ′(tk)−1. (3.45)

Hence,

‖xk+1 − xk‖ = ‖dk‖ ≤ d(0,D(xk)) ≤ (tk+1 − tk)
(
‖xk − xk−1‖
tk − tk−1

)2

, (3.46)

showing that (3.30) holds for n = k. Since (3.31) holds for n = k by inductional assumptions, this implies 
that ‖xk+1−xk‖ ≤ tk+1− tk, namely (3.31) holds for n = k+1. This completes our mathematical induction 
argument and the proof is complete. �
4. Approximate solutions and the extended Smale α-theory

In his fundamental work on point estimate theory regarding Newton’s method for solving the nonlinear 
analytic equation F (x) = 0, where F : Ω ⊆ X → Y is an analytic function, Smale (cf. [28–30]; see also 
[1]) made an important use of his assumption that F ′(x0) is nonsingular (at starting point x0 ∈ Ω). In the 
course of his study, a key notion is the quantity γ(F, x0) ∈ R, defined by

γ(F, x0) := sup
∥∥∥∥F ′(x0)−1F (k)(x0)

k!

∥∥∥∥
1

k−1

. (4.1)

k≥2
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To extend the theory of the Smale point estimate to cover the case of F ′(x0) being not necessarily nonsin-
gular, Smale and Shub introduced in [26] assumption (1.9):

F ′(x0) is surjective, (4.2)

and replaced F ′(x0)−1 in (4.1) by F ′(x0)†, the Moore–Penrose inverse of F ′(x0), but only in the case when 
X and Y are finite-dimensional. The present section is devoted to an attempt addressing similar issues for 
problem (1.1); in particular, we give the proofs of Theorem 1.2 and Corollary 1.1. We make the following 
assumption (as in the Smale theory):

• F is analytic on Ω.

Moreover, we define a quantity γ(F,C)(x0) ∈ R ∪ {+∞} by

γ(F,C)(x0) := sup
k≥2

∥∥∥∥∥T
−1
x0

F (k)(x0)
k!

∥∥∥∥∥
1

k−1

, (4.3)

where ‖T−1
x0

F (k)(x0)‖ is defined as in (1.18). Similar to the weak γ-condition, let us say that (Tx0, F ) (or 
problem (1.1)) satisfies the weak-Smale condition at x0 if

γ(F,C)(x0) < +∞; (4.4)

this in particular implies that

R(F (k)(x0)) ⊆ R(Tx0) for each k = 2, 3, · · · . (4.5)

Remark 4.1. Suppose that F ′(x0) is nonsingular, or that X and Y are finite-dimensional. If C = {0}
and (4.2) holds, then, by the definition of the Moore–Penrose inverse, one has that ‖T−1

x0
F (k)(x0)‖ =

‖F ′(x0)†F (k)(x0)‖ for each k ∈ N, and so γ(F,C)(x0) = γ(F, x0).

For our discussion in Proposition 4.1, it is convenient to introduce a notion of the sum for a sequence of 
convex processes. Let {Tk} be a sequence of convex processes form X to Y . For each x ∈ X, define T (x)
to be the set of all points u ∈ Y for which there exists a sequence {uk} ⊆ Y with uk ∈ Tk(x) for each k

such that u =
∞∑
k=1

uk. Note that T is a convex process with D(T ) ⊆
⋂∞

k=1 D(Tk). It would be convenient to 

denote this T more suggestively by 
∞∑
k=1

Tk and call it the sum of {Tk}.

Lemma 4.1. Suppose that D(Tk) = X for each k and 
∞∑
k=1

‖Tk‖ < +∞. Let T =
∞∑
k=1

Tk. Then D(T ) = X and 

‖T‖ ≤
∞∑
k=1

‖Tk‖.

Proof. Let z ∈ X and let ε > 0. Then there exists uk ∈ Tk(z) such that ‖uk‖ ≤ (‖Tk‖ + ε
2k )‖z‖. Hence, 

∞∑
uk converges, say to u. Then u ∈ T (z) and z ∈ D(T ). Furthermore, we have that
k=1
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‖u‖ ≤
( ∞∑

k=1

‖Tk‖
)
‖z‖ + ε‖z‖.

Therefore, ‖T‖ ≤
∞∑
k=1

‖Tk‖ and the proof is complete. �

Proposition 4.1. Let x0 ∈ X and γ := γ(F,C)(x0) (see (4.3)). Suppose that (Tx0 , F ) satisfies the weak-Smale 
condition at x0, that is γ < +∞. Then it satisfies the weak γ-condition at x0 on B(x0, 1γ ).

Proof. Let x ∈ B(x0, 1γ ). In view of Definition 3.1, we only need to verify that

‖T−1
x0

F ′′(x)‖ ≤ 2γ
(1 − γ‖x− x0‖)3

. (4.6)

To do this, we first consider a function γ̃F : X → R defined by

γ̃F (y) := sup
k≥2

∥∥∥∥F (k)(y)
k!

∥∥∥∥
1

k−1

for each y ∈ X

(γ̃F (y) < +∞ for each y ∈ X because F is analytic). We claim that γ̃F is continuous on X. Since it is easy to 

verify it is lower semicontinuous (as it is the super function of the continuous functions {
∥∥∥F (k)(·)

k!

∥∥∥ 1
k−1 }), we 

only need to check the upper semicontinuity at an arbitrary point y0 ∈ X. To do this, let y ∈ B(y0, 1
γ̃F (y0) ). 

We will make use of a well-known identity (cf. [1, p. 150])

∞∑
j=0

(k + j)!
k! j! tj = 1

(1 − t)k+1 for each t ∈ [−1, 1) and k = 0, 1, · · · (4.7)

to show that

γ̃F (y) ≤ γ̃F (y0)(
1 − γ̃F (y0)‖y − y0‖

)3 (4.8)

(so in passing to the limit as y → y0, we have that lim supy→y0
γ̃F (y) ≤ γ̃F (y0), that is γ̃F (·) is upper 

semicontinuous at y0). Indeed, by Taylor formula,

F (k)(y) =
∞∑
j=0

F (k+j)(y0)
j! (y − y0)j for any y0 ∈ X and y ∈ B(y0,

1
γ̃F (y0) ). (4.9)

Since 
∥∥∥F (k)(y0)

k!

∥∥∥ ≤ γ̃F (y0)k−1 for each k ≥ 2, it follows that

∥∥∥∥F (k)(y)
k!

∥∥∥∥ ≤
∞∑
j=0

‖F (k+j)(y0)‖
k! j! ‖y − y0‖j

≤
∞∑
j=0

(k + j)! γ̃F (y0)k+j−1

k! j! ‖y − y0‖j

= γ̃F (y0)k−1
∞∑
j=0

(k + j)!
k! j! (γ̃F (y0)‖y − y0‖)j

= γ̃F (y0)k−1( )k+1 ,
1 − (γ̃F (y0)‖y − y0‖)
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where the last equality holds by (4.7) (applied to γ̃F (y0)‖y − y0‖ in place of t, as y ∈ B(y0, 1
γ̃F (y0) )). 

Therefore, (4.8) holds as

γ̃F (y) = sup
k≥2

∥∥∥∥F (k)(y)
k!

∥∥∥∥
1

k−1

≤ sup
k≥2

γ̃F (y0)(
1 − γ̃F (y0)‖y − y0‖

) k+1
k−1

= γ̃F (y0)(
1 − γ̃F (y0)‖y − y0‖

)3 ,

where the last equality holds because the sequence {a
k+1
k−1 } is increasing for any a ∈ (0, 1). Now we know 

that γ̃F is continuous and so there exists a positive constant λ such that γ̃F (y) ≤ λ for all y ∈ [x0, x], the 
line-segment with end points x0 and x. Take a natural number p such that λ‖x−x0‖

p < 1. Subdivide [x0, x]
into p subsegments with equal length determined by the consecutive points x0 < x1 < · · · < xp−1 < xp = x. 
Thus

‖xi − xi−1‖ <
1

γ̃F (xi)
for each i = 1, . . . , p. (4.10)

Consequently, by (4.9),

F (k)(xi) =
∞∑
j=0

1
j!F

(k+j)(xi−1)(xi − xi−1)j for each i = 1, . . . , p. (4.11)

We claim that, for each i = 0, 1, . . . , p,
∥∥∥∥∥T

−1
x0

F (k)(xi)
k!

∥∥∥∥∥ ≤ γk−1

(1 − γ‖xi − x0‖)k+1 for each k = 1, 2, · · · . (4.12)

(This in particular implies (4.6) holds as x = xp.) Indeed, this is certainly true when i = 0 as, by definition, ∥∥T−1
x0

F ′(x0)
∥∥ ≤ 1 and 

∥∥∥∥∥T
−1
x0

F (k)(x0)
k!

∥∥∥∥∥ ≤ γk−1 for all k = 2, · · · . Inductively, we assume that (4.12) holds 

for some m − 1 ≤ p:
∥∥∥∥∥T

−1
x0

F (k)(xm−1)
k!

∥∥∥∥∥ ≤ γk−1

(1 − γ‖xm−1 − x0‖)k+1 for each k = 1, 2, · · · . (4.13)

To establish our claim, we need only to show that (4.12) holds when i is replaced by m. To do this, let 
k ∈ N be arbitrary but fixed and let z1, z2 · · · , zk−1 ∈ X be of norm no more than 1. It suffices to show that

∥∥∥∥∥T
−1
x0

F (k)(xm)(z1 z2 · · · zk−1)
k!

∥∥∥∥∥ ≤ γk−1

(1 − γ‖xm − x0‖)k+1 . (4.14)

To proceed, let j ∈ N ∪ {0} and let Tj : X → X be the convex process defined by

Tj = 1
j!T

−1
x0

F (k+j)(xm−1)((xm − xm−1)jz1 z2 · · · zk−1). (4.15)

Then D(Tj) = X as (4.5) holds by the assumed weak-Smale condition. Noting ((xm − xm−1)j , z1, z2, · · · ,
zk−1) ∈ (X)k+j−1 and z1, z2 · · · , zk−1 ∈ X are of norm no more than 1, it follows from (4.13) (applied to 
k + j in place of k) that

‖Tj‖ ≤ (k + j)!γk+j−1‖xm − xm−1‖j
k+j+1 . (4.16)
j! (1 − γ‖xm−1 − x0‖)
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Let aj denote the expression on the right-hand side of (4.16), i.e.,

aj := (k + j)!γk+j−1‖xm − xm−1‖j
j! (1 − γ‖xm−1 − x0‖)k+j+1 = k! γk−1

(1 − γ‖xm−1 − x0‖)k+1

[
(k + j)!
k! j!

(
γ‖xm − xm−1‖

1 − γ‖xm−1 − x0‖

)j
]
.

Since x0, xm−1 and xm are in the same line-segment (so ‖xm − x0‖ = ‖xm − xm−1‖ + ‖xm−1 − x0‖) and 
applying (4.7) (to γ‖xm−xm−1‖

1−γ‖xm−1−x0‖ in place of t), one has that

∞∑
j=0

aj = k! γk−1

(1 − γ‖xm−1 − x0‖)k+1 · 1(
1 − γ‖xm−xm−1‖

1−γ‖xm−1−x0‖

)k+1 = k! γk−1

(1 − γ‖xm − x0‖)k+1 < +∞.

Therefore, 
∞∑
j=0

‖Tj‖ < +∞, and it follows from Lemma 4.1 that T :=
∞∑
j=0

Tj has the properties

D(T ) = X and ‖T‖ ≤ k! γk−1

(1 − γ‖xm − x0‖)k+1 . (4.17)

We will show that

T (z) ⊆ T−1
x0

(
F k(xm)z1 z2 · · · zk−1

)
(z) for each z ∈ X. (4.18)

Granting this, we then have from (4.17) that (4.14) holds and so (4.12) holds when i is replaced by m.
Thus it remains to show that (4.18). To verify this, let z ∈ X and u ∈ T (z). By definition of T , we 

represent u =
∞∑
j=0

uj with each uj ∈ Tj(z). By definition of Tj , we have that

F ′(x0)uj ∈
1
j!F

(k+j)(xm−1)((xm − xm−1)jz1 z2 · · · zk−1z) + C for each k = 2, 3, · · · ,

and so for each n ∈ N,

F ′(x0)

⎛
⎝ n∑

j=0
uj

⎞
⎠ ∈

⎛
⎝ n∑

j=0

F (k+j)(xm−1)((xm − xm−1)jz1 z2 · · · zk−1z)
j!

⎞
⎠ + C.

Noting from (4.11) (applied to m in place of i) that

lim
n→∞

n∑
j=0

F (k+j)(xm−1)((xm − xm−1)jz1 z2 · · · zk−1z)
j! = F (k)(xm)(z1 z2 · · · zk−1z),

we then have F ′(x0)u ∈ F (k)(xm)(z1 z2 · · · zk−1z) + C, verifying (4.18). The proof is complete. �
Combining Theorem 1.1 and Proposition 4.1, we obtain the following corollary. Recall that ξ is defined 

by (1.16).

Corollary 4.1. Let Ω ⊇ B(x0, 1γ ). Suppose that X is reflexive, and (1.15) holds: −F (x0) ∈ R(Tx0). Suppose 
further that (1.20) and (1.26) hold. Then x0 is an implementable starting point for Algorithm A(x0) and 
any sequence {xn} generated by Algorithm A(x0) converges to a solution x∗ of (1.1) satisfying (1.22) and 
(1.23).
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In connection with the issue of solving the operator equation F = 0 by Newton’s method, one of the key 
notions is the one due to Smale: approximate zeros. There are several different (nonequivalent) versions of 
approximate zeros. The first one was introduced by him in [27] but was replaced by a new one in [29,28] (see 
also [1] and [30]) as the later describes the property of quadratic convergence of the sequences generated 
by Newton’s method and is more convenient for applying the theory to the study of the computational 
complexity. The definition of his second one is: x0 is said to be an approximate zero of F if Newton’s 
method (1.4) is well-defined and

‖xn+1 − xn‖ ≤
( 1

2
)2n−1

‖x1 − x0‖

for each n = 1, 2, . . . . The following version due to Wang [31] is similar but slightly stronger:

Definition 4.1. A starting point x0 ∈ Ω is called an approximate zero of F if it is an implementable starting 
point for Newton’s method (1.4) and the sequence {xn} generated by Newton’s method (1.4) satisfies the 
Smale error estimate:

‖xn+1 − xn‖ ≤
(

1
2

)2n−1

‖xn − xn−1‖ for all n = 1, 2, . . . . (4.19)

Another variant of the notion of approximate zeros was introduced in [4] and is defined by

‖F ′(x0)−1F (xn)‖ ≤
(

1
2

)2n−1

‖F ′(x0)−1F (xn−1)‖ for all n = 1, 2, . . . (4.20)

which turns out, as shown in [31], to be equivalent to that given in Definition 4.1. Along the line of (4.19)
and (4.20), the corresponding notion is extended in [14] to the Gauss–Newton method for singular equations 
in Banach spaces.

Similar to Definition 4.1, we adopt the following definition of approximate zeros to the extended Newton 
method for solving problem (1.1).

Definition 4.2. A point x0 ∈ Ω is called an approximate solution of (1.1) for the extended Newton method 
Algorithm A(x0) if x0 is an implementable starting point for Algorithm A(x0) and any sequence {xn}
generated by Algorithm A(x0) satisfies the Smale error estimate (4.19).

Recall that ξ and r∗ are defined by (1.16) and (1.17), respectively. Clearly, Theorem 1.2 is a direct 
consequence of Proposition 4.1 and the following theorem.

Theorem 4.1. Suppose that X is reflexive. Let Ω ⊇ B(x0, r∗), and F be C2 on B(x0, r∗) such that (1.15)
and (1.25) hold. Suppose that (Tx0 , F ) satisfies the weak γ-condition at x0 on B(x0, r∗). Then, assumptions 
(1.20) and (1.21) hold, and x0 is an approximate solution of (1.1). Moreover, any sequence {xn} generated 
by Algorithm A(x0) is contained in B(x0, r∗).

Proof. As noted before, we may assume that γ > 0. By the elementary inequality 13−3
√

17
4γ < 3−2

√
2

γ , it is 
evident that, if (1.25) holds then (1.20) holds and q ≤ 1

2 (noting (2.18)). Thus, the present theorem follows 
from Theorem 1.1 and the proof is complete. �

In connection with Corollary 1.1, it would be convenient to recall some basic facts regarding generalized 
inverses. We consider X and Y as before: X is a Hilbert space and Y is a Banach space. For a nonempty 
closed convex W of X and x ∈ X, let ΠW (x) denote the best approximation w0 to x from W , namely 
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w0 ∈ W and ‖w0 − x‖ ≤ ‖w − x‖ for any w ∈ W . Recall the notation ‖W‖ = infw∈W ‖w‖. A closed 
subspace Z of Y is said to be complemented in Y if it is the range of a bounded linear projection Q from 
Y to Z:

Z = {Qy : y ∈ Y }. (4.21)

The first result in the following lemma is known (cf. [21]):

Lemma 4.2. Let A : Y → X be a bounded linear operator such that R(A) is complemented in Y . Then there 
exists a bounded linear operator A+ : Y → X such that

AA+ A = A, A+ AA+ = A+, A+ A = ΠkerA⊥ and AA+ = Q, (4.22)

where Q is a bounded linear projection Q from Y to R(A), and kerA⊥ denotes the orthogonal complement 
of the kernel of A. Moreover, for each y ∈ R(A), one has that

A+y ∈ A−1(y) and ‖A+y‖ = ‖A−1y‖, (4.23)

that is

A+y = ΠA−1y0. (4.24)

Proof. We only need to prove the second result, that is (4.23). Let y ∈ R(A). Then A(A+y) = Qy = y by 
(4.22), and so the first assertion in (4.23) holds. Further, if x ∈ A−1y, then A+y = A+(Ax) = ΠkerA⊥x by 
(4.22), and so ‖A+y‖ ≤ ‖x‖, proving the second assertion. �

Now we turn to the proof of Corollary 1.1.

Proof of Corollary 1.1. Thanks to the giving assumptions on our starting point x0, one can apply Lemma 4.2
to F ′(x0) (in place of A) that, for each k ∈ N, the norm of the convex process F ′(x0)−1F (k)(x0) has the 
following estimate:

‖F ′(x0)−1F (k)(x0)‖ = ‖F ′(x0)+F (k)(x0)‖ ≤ ‖F ′(x0)+‖‖F (k)(x0)‖. (4.25)

Letting η := supm∈N ‖F ′(x0)+‖
1
m , it follows that

γ := sup
k≥2

∥∥∥∥F ′(x0)+F (k)(x0)
k!

∥∥∥∥
1

k−1

≤ η sup
k≥2

∥∥∥∥F (k)(x0)
k!

∥∥∥∥
1

k−1

< +∞, (4.26)

as F is analytic at x0. Now let C := {0} and consider any x ∈ Ω. Then one has that

Tx = F ′(x) and T−1
x (y) = F ′(x)−1(y) for any y ∈ Y. (4.27)

Hence we have

T−1
x0

F (k)(x0) = F ′(x0)−1F (k)(x0) for each k ≥ 2,

and it follows from (4.26) that
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sup
k≥2

∥∥∥∥∥T
−1
x0

F (k)(x0)
k!

∥∥∥∥∥
1

k−1

= γ < +∞.

Together with the other assumptions of the corollary, one can apply Theorem 1.2 to conclude that x0 is 
an approximate solution of (1.1) with the associated sequence {xn} (contained in B(x0, r∗)) generated by 
Algorithm A(x0): For each n ∈ N ∪ {0},

xn+1 − xn = ΠD(xn)0, (4.28)

that is,

xn+1 − xn = dn ∈ D(xn) and ‖dn‖ = ‖D(xn)‖, (4.29)

where

∅ �= D(xn) = {d ∈ X : F (x) + F ′(x)d ∈ C} = F ′(x)−1(−F (x))

(the nonemptiness is because that x0 is an implementable point). Note that such D(xn) is a nonempty 
set in Hilbert space X, dk is unique and so is the sequence {xk}. It remains to show that {xk} is the 
same as that generated by the extended Newton method (1.28). To see this, note first that since γ is 
finite, (Tx0 , F ) satisfies the weak γ-condition at x0 on B(x0, 1γ ) (see Proposition 4.1). Hence, by part (I) of 
Proposition 3.1, R(F ′(x)) ⊆ R(Tx0)(= R(F ′(x0)), as C = {0}) for all x ∈ B(x0, 1γ ). Together with part (II) 
of Proposition 3.1, one has that

R(F ′(x)) = R(F ′(x0)) for all x ∈ B(x0,
2 −

√
2

2γ ). (4.30)

Note that xn ∈ B(x0, r∗) for each n ∈ N, and that γξ ≤ 13−3
√

17
4 < 3 − 2

√
2. Then, thanks to (2.13), one 

has that ‖xn − x0‖ < 2−
√

2
2γ and so R(F ′(xn) = R(F ′(x0)) by (4.30), and hence R(F ′(xn) is complemented 

in Y (as R(F ′(x0) is so thanks to the given assumption for x0). Moreover, since D(xn) �= ∅, one knows that 
−F (xn) ∈ R(F ′(xn)). Recalling (4.28), (4.29), and that C = {0}, Lemma 4.2 is applicable to F ′(xn) and 
−F (xn) in place of A and y:

F ′(xn)+(−F (xn)) = ΠF ′(xn)−1(−F (xn))0 = ΠD(xn)0.

Since xn+1−xn ∈ ΠD(xn)0 by the definition of Algorithm A(x0), we have that xn+1−xn = −F ′(xn)+F (xn). 
This implies that {xn} is generated by the extended Newton method (1.28). The proof is complete. �
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