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Using the convex process theory we study the convergence issues of the iterative sequences
generated by the Gauss–Newton method for the convex inclusion problem defined by a
cone C and a smooth function F (the derivative is denoted by F ′). The restriction in our
consideration is minimal and, even in the classical case (the initial point x0 is assumed to
satisfy the following two conditions: F ′ is Lipschitz around x0 and the convex process Tx0 ,
defined by Tx0 · = F ′(x0) · −C , is surjective), our results are new in giving sufficient con-
ditions (which are weaker than the known ones and have a remarkable property being
affine-invariant) ensuring the convergence of the iterative sequence with initial point x0.
The same study is also made for the so-called convex-composite optimization problem
(with objective function given as the composite of a convex function with a smooth map).

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let X and Y be Banach spaces. Let F be a smooth map from X to Y and let C be a closed convex set in Y . There are
two interesting and closely related problems associated to F and C . One is known as the convex inclusion problem

F (x) ∈ C . (1.1)

The other to be considered is the convex-composite optimization problem

min
x∈X

(h ◦ F )(x), (1.2)

where h is a real-valued convex function on Y and F is as in problem (1.1). If h(·) := d(·, C), the distance function associated
to C , then (1.2) reduces to (1.1) (provided that the latter is solvable). Many problems in optimization theory, such as minimax
problems, penalization methods and goal programming, can be cast as problem (1.2); see [2,4,14,15,23,29,30] for many
such examples. Problem (1.1) has been studied extensively and many problems in optimization such as linear semi-infinite
optimization and conic programming can be recast into the form (1.1), see for example [5–7,10–12,17,18]. In [25], Robinson
proposed the following algorithm (which is called the extended Newton method) for solving (1.1) (assuming that C is a
closed (convex) cone and X is a reflexive space) with starting point x0:
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Algorithm A(x0). For k = 0,1, . . . , having xk , determine xk+1 as follows.
If D∞(xk) �= ∅, choose dk ∈ D∞(xk) to satisfy ‖dk‖ = mind∈D∞(xk) ‖d‖, and set xk+1 = xk + dk , where D∞(x) is defined by

D∞(x) := {
d ∈ X : F (x) + F ′(x)d ∈ C

}
for each x ∈ X . (1.3)

Since D∞(x) may be empty for some x ∈ X , the above algorithm is not necessarily well defined in some unfavorable cases
(we say that an algorithm is well defined if it generates at least one sequence). Robinson made two important assumptions
in [25]. One is

Range(Tx0) = Y , (1.4)

where Tx0 is the convex process defined by

Tx0d = F ′(x0)d − C for each d ∈ X . (1.5)

The second assumption is that F ′ is Lipschitz continuous (say with the modulus K ). Under these assumptions (so in partic-
ular, T −1

x0
is normed: ‖T −1

x0
‖ < ∞), it was proved in [25] that a sequence {xk} generated by Algorithm A(x0) converges to a

solution x∗ satisfying F (x∗) ∈ C provided that the following “convergence criterion” is satisfied:

‖x1 − x0‖ � 1

2K‖T −1
x0 ‖ . (1.6)

In the present paper, we will prove the same result with a sharper convergence criterion and under weaker assumptions.
Similarly, we establish a convergence result regarding an algorithm in the Gauss–Newton method for solving problem (1.2).
This algorithm has been studied in [3,19,22,30] and in a recent work [21] of ours. Our approach covers both cases when
‖T −1

x0
‖ is finite or otherwise. Even for the finite case our results are shaper than the earlier results. To the best of our

knowledge, in all the works regarding the Gauss–Newton methods by the earlier researchers, the convergence criteria that
have been put forward for the convergence of a sequence generated by their algorithms do not share the so-called affine-
invariant property, an important property enjoyed by the classical Kantorovich convergence criterion for Newton method for
nonsingular system (cf. [8,9,20]), which means that it is independent of the decompositions of f as f = h ◦ F or f = h̃ ◦ F̃ ,
where h̃ = h ◦ A−1, F̃ = A ◦ F and A is an inversible transformation.

The paper is organized as follows. In Section 2, we introduce the new notion of the weak-Robinson condition for convex
processes and prove some related results for use of the proof of our main results, which are given in Section 3; particularly
the convergence criteria given in Theorems 3.1 and 3.2 are affine-invariant. Further comments and examples about the
comparison of the results of the present paper with the known ones are given in Section 4.

2. Convex process and the weak-Robinson condition

We always assume that X, Y , Z are Banach spaces. Let B(x, r) stand for the open ball in X or Y with center x and
radius r. Let S be a closed convex subset of X or Y . We use d(x, S) to denote the distance from x to S . The concept of
convex process (which was introduced by Rockafellar [27,28] for convexity problems) plays a key role in the study of this
paper.

Definition 2.1. A set-valued map T : X → 2Y is called a convex process from X to Y if it satisfies

(a) T (x + y) ⊇ T x + T y for all x, y ∈ X ;
(b) T (λx) = λT x for all λ > 0, x ∈ X ;
(c) 0 ∈ T 0.

Thus T : X → 2Y is a convex process if and only if its graph Gr(T ) is a convex cone in X × Y . As usual, the domain, range
and inverse of a convex process T are respectively denoted by D(T ), R(T ) and T −1; i.e.,

D(T ) = {x ∈ X : T x �= ∅},
R(T ) =

⋃{
T x: x ∈ D(T )

}
and

T −1 y = {x ∈ X : y ∈ T x} for each y ∈ Y .

Obviously T −1 is a convex process from Y to X . Furthermore, for a nonempty set A in X , Y or Z , it would be convenient
to use the notation ‖A‖ to denote its distance to the origin, that is,

‖A‖ = inf
{‖a‖: a ∈ A

}
, (2.1)

with the convention that ‖∅‖ = +∞. We also make the convention that A + ∅ = ∅ for each set A.
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Definition 2.2. Suppose that T is a convex process. The norm of T is defined by

‖T ‖ = sup
{‖T x‖: x ∈ D(T ), ‖x‖ � 1

}
.

If ‖T ‖ < +∞, we say that the convex process T is normed.

Let T , S : X → 2Y and Q : Y → 2Z be convex processes. Recall that T ⊆ S means that Gr(T ) ⊆ Gr(S), that is, T x ⊆ Sx for
each x ∈ D(T ). By definition, one can verify easily that ‖T ‖ � ‖S‖ if T ⊆ S and D(T ) = D(S). Moreover, T ⊆ S if and only if
T −1 ⊆ S−1. The sum T + S , composite Q S and multiple λT (with 0 �= λ ∈ R) are processes defined respectively by

(T + S)(x) = T x + Sx for each x ∈ X,

Q S(x) = Q
(

S(x)
) =

⋃
y∈S(x)

Q (y) for each x ∈ X

and

(λT )(x) = λ(T x) for each x ∈ X .

It is well known (and easy to verify) that T + S , Q S , λT are still convex processes and the following assertions hold:

‖T + S‖ � ‖T ‖ + ‖S‖, ‖Q S‖ � ‖Q ‖‖S‖ and ‖λT ‖ = |λ|‖T ‖. (2.2)

We also require two propositions below: they can be found in [26].

Proposition 2.1. Let T : X → 2Y be a convex process with D(T ) = X. Then T is normed. Consequently, T −1 is normed if R(T ) = Y .

Proposition 2.2. Let S1, S2 : X → 2Y be convex processes with D(S1) = D(S2) = X and R(S1) = Y . Suppose that ‖S−1
1 ‖‖S2‖ < 1

and that (S1 + S2)(x) is closed for each x ∈ X. Then R(S1 + S2) = Y and ‖(S1 + S2)
−1‖ � ‖S−1

1 ‖
1−‖S−1

1 ‖‖S2‖ .

The following definition is a modified version of the classic Lipschitz condition. Let L be a positive constant and let
L(X, Y ) denote the Banach space of all continuous linear operators from X to Y . Let x0 ∈ X and r ∈ (0,+∞].

Definition 2.3. Let T : Y → 2Z be a convex process and H : X → L(X, Y ) be a map. The pair (T , H) is said to be Lipschitz
continuous on B(x0, r) with modulus L if∥∥T

(
H(x) − H(y)

)∥∥ � L‖x − y‖ for all x, y ∈ B(x0, r). (2.3)

Clearly, if T is normed and H is Lipschitz continuous on B(x0, r), then the pair (T , H) is Lipschitz continuous on B(x0, r).
In fact, it is not difficult to verify that if H is Lipschitz continuous on B(x0, r), then the pair (T , H) is Lipschitz continuous
on B(x0, r) if and only if

sup
x,y∈B(x0,r)

‖T ‖V xy < ∞,

where V xy := R(H(x) − H(y)) for any x, y ∈ X , and ‖T ‖V denotes the norm of T restricted on the linear space V defined
by

‖T ‖V := sup
{∥∥T (v)

∥∥: v ∈ V , ‖v‖ � 1
}
.

For a given continuous vector-valued function G : [a,b] → Y , let
∫ b

a G(τ )dτ denote the usual Riemann integral of G
on [a,b], that is, it is the limit of the corresponding Riemann sums (see, for instance, [20, Chapter 17]).

Lemma 2.1. Let g : [0,1] → R and G : [0,1] → Y be continuous. Let Z be a reflexive Banach space. Suppose that T : Y → 2Z is a
convex process with closed graph such that D(T ) ⊇ R(G) and that∥∥T G(t)

∥∥ � g(t) for each t ∈ [0,1]. (2.4)

Then T
∫ 1

0 G(τ )dτ �= ∅ and

∥∥∥∥∥T

1∫
0

G(τ )dτ

∥∥∥∥∥ �
1∫

0

g(τ )dτ . (2.5)
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Proof. Let k = 1,2, . . . . Set

yk := 1

k

k∑
i=1

G

(
i

k

)
and y0 :=

1∫
0

G(τ )dτ .

Then limk yk = y0. Furthermore, T yk ⊇ 1
k

∑k
i=1 T G( i

k ) and so

‖T yk‖ � 1

k

k∑
i=1

∥∥∥∥T G

(
i

k

)∥∥∥∥ � 1

k

k∑
i=1

g

(
i

k

)
.

Thus there exists zk ∈ T yk such that

‖zk‖ � 1

k

k∑
i=1

g

(
i

k

)
+ 1

k
. (2.6)

Since

lim
k

1

k

k∑
i=1

g

(
i

k

)
=

1∫
0

g(τ )dτ , (2.7)

it follows that {zk} is bounded. Since Z is reflexive, by the Eberlein–Smulian Theorem in Functional Analysis (cf. [31]), we
may assume that, without loss of generality (using a subsequence if necessary), {zk} converges weakly to one point in Z ,
say z0. Consequently, it follows from the Mazur Theorem in Functional Analysis (cf. [31]) that there exists a sequence {z̃k}
with the expression

z̃k =
nk∑

i=1

αk
i zki for each k = 1,2, . . . ,

where {αk
i } ⊆ [0,1] satisfies

∑nk
i=1 αk

i = 1 for each k, such that limk z̃k = z0 and the corresponding sequence { ỹk} generated
by the convex combinations of {yk} converges to y0, that is,

ỹk :=
nk∑

i=1

αk
i yki → y0.

Since T is a convex process, it follows that

z̃k =
nk∑

i=1

αk
i zki ∈

nk∑
i=1

αk
i T yki ⊆ T

( nk∑
i=1

αk
i yki

)
= T ỹk for each k = 1,2, . . . .

Since Gr(T ) is closed by assumption, one has that

z0 ∈ T y0 = T

1∫
0

G(τ )dτ . (2.8)

Thus T
∫ 1

0 G(τ )dτ �= ∅. Since {zk} converges weakly to z0, it follows from (2.6), (2.7) and (2.8) that∥∥∥∥∥T

1∫
0

G(τ )dτ

∥∥∥∥∥ � ‖z0‖ � lim
k

‖zk‖ �
1∫

0

g(τ )dτ .

The proof is complete. �
For the remainder of the present paper, we shall always assume that C is a nonempty closed cone in Y , and that

F : X → Y is a smooth map, that is, its Fréchet derivative F ′ is continuous. Let x ∈ X . We define a convex process Tx by

Txd = F ′(x)d − C for each d ∈ X . (2.9)

Note that D(Tx) = X , and T −1
x is given by

T −1
x y = {

d ∈ X : F ′(x)d ∈ y + C
}

for each y ∈ Y . (2.10)
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Since F ′(x) is continuous and C is closed, it is easy to verify that Tx and T −1
x are of closed graphs. Moreover,

D∞(x) = T −1
x

(−F (x)
) = T −1

x

(−F (x) + C
)

(2.11)

(since C + C = C ).
In his study of the convex inclusion problem (1.1), Robinson imposed an important condition that Tx0 is surjective

(henceforth to be referred to as the Robinson condition; see [21]). In light of the preceding lemma, we put forward the
following definition giving a condition weaker than the Robinson condition. Recall that x0 ∈ X and r ∈ (0,+∞].

Definition 2.4. The inclusion (1.1) is said to satisfy the weak-Robinson condition at x0 on B(x0, r) if

−F (x0) ∈ R(Tx0) and R
(

F ′(x)
) ⊆ R(Tx0) for each x ∈ B(x0, r). (2.12)

Clearly, the following implication holds for the inclusion (1.1) when C is a closed cone:

Robinson condition at x0 ⇒ weak-Robinson condition at x0 on X .

Lemma 2.2. Let x0, x, x′ ∈ X be such that R(F ′(z)) ⊆ R(Tx0 ) for each z in the line-segment [x′, x]. Suppose that X is reflexive and∥∥T −1
x0

(
F ′(z) − F ′(x′))∥∥ � L

∥∥z − x′∥∥ for each z ∈ [
x′, x

]
. (2.13)

Then T −1
x0

∫ 1
0 (F ′(x′ + τ (x − x′)) − F ′(x′))(x′ − x)dτ �= ∅ and

∥∥∥∥∥T −1
x0

1∫
0

(
F ′(x′ + τ

(
x − x′)) − F ′(x′))(x′ − x

)
dτ

∥∥∥∥∥ � L

2

∥∥x − x′∥∥2
. (2.14)

Proof. Define G and g respectively by

G(t) := (
F ′(x′ + t

(
x − x′)) − F ′(x′))(x′ − x

)
for each t ∈ [0,1]

and

g(t) := L
∥∥x − x′∥∥2

t for each t ∈ [0,1].
Then, G and g are continuous on [0,1], and it is easy to verify from (2.13) that∥∥T −1

x0
G(t)

∥∥ � L
∥∥x − x′∥∥2

t = g(t) for each t ∈ [0,1].
(Thus (2.4) holds with T replaced by T −1

x0
.) Moreover, T −1

x0
is of closed graph (as we noted before), and D(T −1

x0
) = R(Tx0 ) ⊇

R(G) thanks to the given assumptions. Therefore, Lemma 2.1 is applicable to getting T −1
x0

∫ 1
0 (F ′(x′ + τ (x − x′)) − F ′(x′))×

(x′ − x)dτ �= ∅ and∥∥∥∥∥T −1
x0

1∫
0

(
F ′(x′ + τ

(
x − x′)) − F ′(x′))(x′ − x

)
dτ

∥∥∥∥∥ �
1∫

0

L
∥∥x − x′∥∥2

τ dτ = L

2

∥∥x − x′∥∥2
.

The proof is complete. �
The following proposition provides a stability result for the weak-Robinson condition (2.12) and a solvability result for

the approximated inclusion problem (2.15) (with x ∈ X near to x0) below:

F (x) + F ′(x)d ∈ C . (2.15)

Proposition 2.3. Let x0 ∈ X, L � 0 and 0 < r � 1
L . Suppose that (1.1) satisfies the weak-Robinson condition at x0 on B(x0, r) and that

(T −1
x0

, F ′) is Lipschitz continuous on B(x0, r) with modulus L. Let x ∈ B(x0, r). Then

R(Tx0) = R(Tx), D
(
T −1

x F ′(x0)
) = X (2.16)

and ∥∥T −1
x F ′(x0)

∥∥ � 1

1 − L‖x − x0‖ . (2.17)

Furthermore, if X is additionally reflexive, we have that

D∞(x) �= ∅. (2.18)



474 C. Li, K.F. Ng / J. Math. Anal. Appl. 389 (2012) 469–485
Proof. Let S1 = I (the identity map on X ) and let S2 = T −1
x0

(F ′(x) − F ′(x0)). By the assumed weak-Robinson condition,
R(F ′(x) − F ′(x0)) ⊆ R(Tx0 ) and so D(S2) = X . Note further that S2 is a normed convex process with closed graph and that

‖S2‖ = ∥∥T −1
x0

(
F ′(x) − F ′(x0)

)∥∥ � L‖x − x0‖ < 1

as x ∈ B(x0, r). Thus, by Proposition 2.2, R(I + S2) = X , and

∥∥(I + S2)
−1

∥∥ � ‖I−1‖
1 − ‖I−1‖‖S2‖ � 1

1 − L‖x − x0‖ . (2.19)

Further, since

T −1
x0

F ′(x0) ⊇ F ′(x0)
−1 F ′(x0) ⊇ I and T −1

x0
F ′(x) ⊇ T −1

x0

(
F ′(x) − F ′(x0)

) + T −1
x0

F ′(x0),

it follows that

T −1
x0

F ′(x) ⊇ S2 + I. (2.20)

So R(T −1
x0

F ′(x)) ⊇ R(S2 + I) = X and

∥∥−(
T −1

x0
F ′(x)

)−1∥∥ = ∥∥(
T −1

x0
F ′(x)

)−1∥∥ �
∥∥(I + S2)

−1
∥∥ � 1

1 − L‖x − x0‖ . (2.21)

Moreover, for any y, z ∈ X , the following equivalences are valid:

z ∈ −(
T −1

x0
F ′(x)

)−1
y ⇐⇒ y ∈ T −1

x0
F ′(x)(−z)

⇐⇒ F ′(x0)y ∈ F ′(x)(−z) + C

⇐⇒ F ′(x)z ∈ (−F ′(x0)y
) + C

⇐⇒ z ∈ T −1
x

(−F ′(x0)
)

y.

Then T −1
x (−F ′(x0)) = −(T −1

x0
F ′(x))−1. Hence D(T −1

x F ′(x0)) = R(T −1
x0

F ′(x)) = X , and (2.21) implies that

∥∥T −1
x

(−F ′(x0)
)∥∥ � 1

1 − L‖x − x0‖; (2.22)

thus (2.17) and the second equality in (2.16) hold (since F ′(x0) is linear it is evident that ‖T −1
x (−F ′(x0))‖ = ‖T −1

x F ′(x0)‖).
To prove R(Tx0 ) = R(Tx), it suffices to show the inclusion R(Tx0 ) ⊆ R(Tx) as the converse inclusion is clear by assumed

weak-Robinson condition. To do this, let y ∈ F ′(x0)u − C for some u ∈ X . Then, by what we have already proved, there exists
w ∈ X such that −u ∈ T −1

x0
F ′(x)w , that is, F ′(x0)(−u) ∈ F ′(x)w + C . Then F ′(x0)u ∈ F ′(x)(−w) − C . Since C is a cone, it

follows that y ∈ F ′(x0)u − C ⊆ F ′(x)(−w) − C ⊆ R(Tx). This proves that R(Tx0 ) ⊆ R(Tx).
Finally, suppose that X is additionally reflexive. Then thanks to the given assumptions, Lemma 2.2 is applicable to [x0, x]

in place of [x′, x]. Hence,

T −1
x0

1∫
0

(
F ′(x0 + t(x − x0)

) − F ′(x0)
)
(x0 − x)dt �= ∅. (2.23)

Then (2.16) implies that

T −1
x F ′(x0)T −1

x0

1∫
0

(
F ′(x0 + t(x − x0)

) − F ′(x0)
)
(x0 − x)dt �= ∅ (2.24)

and

T −1
x F ′(x0)(x0 − x) �= ∅. (2.25)

Note that

T −1
x F ′(x0)T −1

x0
⊆ T −1

x (2.26)

(which can be checked easily by making use of the fact that C + C = C ), and that
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F (x0) − F (x) =
1∫

0

F ′(x0 + t(x − x0)
)
(x0 − x)dt

=
1∫

0

(
F ′(x0 + t(x − x0)

) − F ′(x0)
)
(x0 − x)dt + F ′(x0)(x0 − x).

Since T −1
x is a convex process, it follows from (2.26) that

T −1
x

(
F (x0) − F (x)

) ⊇ T −1
x F ′(x0)T −1

x0

( 1∫
0

(
F ′(x0 + t(x − x0)

) − F ′(x0)
)
(x0 − x)dt

)

+ (
T −1

x F ′(x0)
)
(x0 − x)

�= ∅, (2.27)

where the nonemptiness assertion holds by (2.25) and (2.24). Similarly, by (2.16), (2.12) and (2.26) again, we have that

∅ �= T −1
x F ′(x0)T −1

x0

(−F (x0)
) ⊆ T −1

x

(−F (x0)
)
. (2.28)

From the convex process property,

T −1
x

(−F (x)
) ⊇ T −1

x

(−F (x0)
) + T −1

x

(
F (x0) − F (x)

)
, (2.29)

we make use of (2.27) and (2.28) to conclude that T −1
x (−F (x)) �= ∅, that is, (2.18) holds (because of (2.11)). The proof is

complete. �
3. Gauss–Newton method and convergence criteria

This section is devoted to establishing two of our main convergence results in the Gauss–Newton method. The first re-
gards Robinson’s Algorithm A(x0) (explained in Section 1 for problem (1.1)); while the second regards Algorithm A(η,�, x0)

for problem (1.2) which has already been studied by many researches (see [3,19,22,30] for the case when the underlying
spaces are finite-dimensional).

As in the earlier sections we assume always that X and Y are Banach spaces, F : X → Y is a smooth map, and C is
a closed cone in Y . For the remainder of this paper, we assume in addition that X is reflexive. Moreover, whenever the
problem (1.2) or Algorithm A(η,�, x0) is considered, we will assume implicitly that h : Y → R is a (continuous) convex
function, and the cone C is the set of its minimum points:

C := argmin h. (3.1)

For any � ∈ (0,+∞] and x ∈ X , let D�(x) denote the set of all d ∈ X satisfying ‖d‖ � � and

h
(

F (x) + F ′(x)d
) = min

{
h
(

F (x) + F ′(x)d′): d′ ∈ X, ‖d′‖ � �
}
. (3.2)

Clearly, d ∈ D�(x) if and only if d is a solution of the convex minimization problem:

min
{

h
(

F (x) + F ′(x)d′): d′ ∈ X,
∥∥d′∥∥ � �

}
. (3.3)

Let

D�(x) = {
d ∈ X : ‖d‖ � �, F (x) + F ′(x)d ∈ C

}
. (3.4)

Note that D�(x) ⊆ D�(x) for each x ∈ X .

Remark 3.1.

(a) If � < +∞, then D�(x) �= ∅ for each x ∈ X .
(b) If F (x∗) ∈ C then x∗ solves (1.2).
(c) Suppose that D�(x) �= ∅. Then for each d ∈ X with ‖d‖ � �, the following equivalences hold.

d ∈ D�(x) ⇐⇒ d ∈ D�(x) ⇐⇒ d ∈ D∞(x) ⇐⇒ d ∈ D∞(x). (3.5)

Let η ∈ [1,+∞), � ∈ (0,+∞] and x0 ∈ X . Recall the following algorithm (the Gauss–Newton method) for solving (1.2).



476 C. Li, K.F. Ng / J. Math. Anal. Appl. 389 (2012) 469–485
Algorithm A(η,�, x0). For k = 0,1, . . . , having xk , determine xk+1 as follows.
If h(F (xk)) = min{h(F (xk) + F ′(xk)d): d ∈ X, ‖d‖ � �}, then stop; otherwise, choose dk ∈ D�(xk) to satisfy ‖dk‖ �

ηd(0, D�(xk)), and set xk+1 = xk + dk .

We shall base our analysis on a majorizing function technique. In what follows, we make the following blanket ar-
rangement on notations. Fix a point x0 ∈ X and constants L ∈ (0,+∞), η ∈ [1,+∞), � ∈ (0,+∞], and we assume that
−F (x0) ∈ R(Tx0 ). Define ξ and α by

ξ := η
∥∥T −1

x0

(−F (x0)
)∥∥ and α := η

1 + (η − 1)Lξ
. (3.6)

Define the quadratic “majorizing function” φη by

φη(t) = ξ − t + αL

2
t2 for each t � 0.

Then

φ′
η(t) = −(1 − αLt) for each t � 0. (3.7)

Let {tη,n} denote the sequence generated by Newton’s method for φη with initial point tη,0 = 0:

tη,n+1 = tη,n − φ′
η(tη,n)

−1φη(tη,n) for each n = 0,1, . . . . (3.8)

In particular,

tη,1 = ξ. (3.9)

Lemma 3.1. Suppose that

ξ � 1

L(η + 1)
. (3.10)

Then the zeros of φη are given by

r∗
η

r∗∗
η

}
= 1 + (η − 1)Lξ ∓ √

1 − 2Lξ − (η2 − 1)(Lξ)2

Lη
. (3.11)

Moreover {tη,n} is increasingly convergent to r∗
η and has the closed form

tη,n =
∑2n−2

i=0 qη
i∑2n−1

i=0 qη
i
r∗
η for each n = 1,2, . . . , (3.12)

where

qη = 1 − Lξ − √
1 − 2Lξ − (η2 − 1)(Lξ)2

Lηξ
. (3.13)

Proof. Note that

ξ � 1

L(η + 1)
⇐⇒ ξ � 1

2αL
.

Thus the zeros of φη are

r∗
η

r∗∗
η

}
= 1 ∓ √

1 − 2αLξ

αL
. (3.14)

It is also known (see for example [16,24]) that

tη,n =
∑2n−2

i=0 q̃i
α∑2n−1

i=0 q̃i
α

r∗
η for each n = 1,2, . . . , (3.15)

where

q̃α := r∗
η

r∗∗
η

= 1 − √
1 − 2αLξ

1 + √
1 − 2αLξ

. (3.16)

Substituting α = η
1+(η−1)Lξ

into (3.14)–(3.16), one sees that the conclusions of this lemma hold. �
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Theorem 3.1. Let L ∈ (0,+∞). Suppose that the inclusion (1.1) satisfies the weak-Robinson condition at x0 on B(x0, r∗
η), and that

(T −1
x0

, F ′) is Lipschitz continuous on B(x0, r∗
η) with modulus L. Assume that

ξ � min

{
1

L(η + 1)
,�

}
. (3.17)

Then Algorithm A(η,�, x0) is well defined (even if � = +∞) and any sequence {xn} so generated converges to some x∗ with F (x∗) ∈ C
and the following assertions hold for each n = 1,2, . . . :

‖xn − xn−1‖ � tη,n − tη,n−1, (3.18)

F (xn−1) + F ′(xn−1)(xn − xn−1) ∈ C (3.19)

and, for each n = 0,1, . . . ,

∥∥xn − x∗∥∥ � qη
2n−1∑2n−1

i=0 qη
i
r∗
η. (3.20)

Proof. Let us first note that, for each n � 1,

ξ � tη,n < r∗
η � 1

L
. (3.21)

In fact, the first two inequalities hold because ξ = tη,1 � r∗
η by (3.9) and Lemma 3.1. Moreover note from (3.17) that Lξ < 1

and so 1+(η−1)Lξ
Lη � 1

L ; thus r∗
η � 1

L by (3.11), and (3.21) is proved. Below we shall use mathematical induction to verify

(3.18) and (3.19). For this end, let k � 1 and use 1,k to denote the set of all integers n satisfying 1 � n � k.
By the weak-Robinson condition assumption, we have from (2.11) together with (3.5) that

D∞(x0) = D∞(x0) = T −1
x0

(−F (x0)
) �= ∅. (3.22)

Hence, by (3.6), (3.9) and (3.17),

ηd
(
0, D∞(x0)

) = η
∥∥T −1

x0

(−F (x0)
)∥∥ = ξ = tη,1 − tη,0 � �. (3.23)

Since η � 1 and X is reflexive, it follows from (3.22) that there exists d ∈ D∞(x0) such that ‖d‖ � ξ � �. Thus,
d(0, D�(x0)) = d(0, D∞(x0)) and, by Remark 3.1,

D�(x0) = D�(x0) �= ∅.

In particular, x1 is well defined and F (x0) + F ′(x0)d0 ∈ C ; hence (3.19) holds for n = 1. Furthermore, by (3.23) and Algo-
rithm A(η,�, x0) one has that ‖d0‖ � ηd(0, D∞(x0)) � tη,1 − tη,0, i.e., ‖x1 − x0‖ � tη,1 − tη,0. This shows that (3.18) holds
for n = 1.

Now assume that (3.18) and (3.19) hold for all n ∈ 1,k. Write

xτ
k = τ xk + (1 − τ )xk−1 for each τ ∈ [0,1]. (3.24)

Note that

‖xk − x0‖ �
k∑

i=1

‖xi − xi−1‖ �
k∑

i=1

(tη,i − tη,i−1) = tη,k (3.25)

and

‖xk−1 − x0‖ � tη,k−1 � tη,k. (3.26)

It follows from (3.24) and (3.21) that xτ
k ∈ B(x0, r∗

η) ⊆ B(x0,1/L) for each τ ∈ [0,1]. Note in particular that, by Remark 3.1
and (2.18) in Proposition 2.3 (applied to r∗

η in place of r),

D∞(xk) = D∞(xk) �= ∅ (3.27)

(where D∞(xk) and D∞(xk) are defined by (3.2) and (1.3) respectively). In particular, xk+1 is well defined and (3.19) holds
for n = k + 1. Letting τ = 1, we further note that ‖xk − x0‖ < r∗

η � 1
L and it follows from the Lipschitz continuity assumption

that ∥∥T −1
x

(
F ′(xk) − F ′(x0)

)∥∥ � L‖xk − x0‖ < Lr∗
η � 1. (3.28)
0
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Together with the assumed weak-Robinson condition, we see that Lemma 4.1 is applicable to xk in place of x. Hence

D
(
T −1

xk
F ′(x0)

) = X (3.29)

and ∥∥T −1
xk

F ′(x0)
∥∥ �

(
1 − L‖xk − x0‖

)−1 � (1 − Ltη,k)
−1 (3.30)

thanks to (2.17), (3.25) and (3.28). By (3.25) and the weak-Robinson condition, we apply Lemma 2.2 (applied to [xk−1, xk] in
place of [x′, x]) to get

T −1
x0

1∫
0

(
F ′(xτ

k

) − F ′(xk−1)
)
(xk−1 − xk)dτ �= ∅

and ∥∥∥∥∥T −1
x0

1∫
0

(
F ′(xτ

k

) − F ′(xk−1)
)
(xk−1 − xk)dτ

∥∥∥∥∥ � L

2
‖xk − xk−1‖2 � L

2
(tη,k − tη,k−1)

2

(thanks to (3.18)). Since

−F (xk) + F (xk−1) =
1∫

0

F ′(xk−1 + τ (xk − xk−1)
)
(xk−1 − xk)dτ , (3.31)

it follows that

T −1
x0

[−F (xk) + F (xk−1) − F ′(xk−1)(xk−1 − xk)
] �= ∅ (3.32)

and ∥∥T −1
x0

[−F (xk) + F (xk−1) − F ′(xk−1)(xk−1 − xk)
]∥∥ � L

2
(tη,k − tη,k−1)

2. (3.33)

Similar but using (3.8), we have that

φη(tη,k) = αL

2
(tη,k − tη,k−1)

2,

and it follows from (3.33) that

∥∥T −1
x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)
]∥∥ �

φη(tη,k)

α
. (3.34)

We claim that

∅ �= (
T −1

xk
F ′(x0)

)
T −1

x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)
] ⊆ D∞(xk). (3.35)

In fact, the above nonemptiness assertion follows from (3.29) and (3.32). To show the inclusion in (3.35), let z := −F (xk) +
F (xk−1) + F ′(xk−1)(xk − xk−1) and d ∈ (T −1

xk
F ′(x0))T −1

x0
(z), that is, d ∈ (T −1

xk
F ′(x0))u for some u ∈ T −1

x0
(z). We have to show

that d ∈ D∞(xk). Note that F ′(xk)d ∈ F ′(x0)u + C and F ′(x0)u ∈ z + C , so F ′(xk)d ∈ z + C + C = z + C , since C is a cone. Since
(3.19) holds for n = k, it follows from the definition of z that

F (xk) + F ′(xk)d ∈ F (xk−1) + F ′(xk−1)(xk − xk−1) + C ⊆ C + C = C,

that is d ∈ D∞(xk) as required to show. Therefore, (3.35) is valid and it follows that

d
(
0, D∞(xk)

)
�

∥∥(
T −1

xk
F ′(x0)

)
T −1

x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)
]∥∥. (3.36)

Combining this with (3.30) and (3.34) we arrive at

d
(
0, D∞(xk)

)
�

∥∥T −1
xk

F ′(x0)
∥∥∥∥T −1

x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)
]∥∥

�
φη(tη,k)

α(1 − Ltη,k)

� − 1

η

φη(tη,k)

φ′ (t )
(3.37)
η η,k
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where the last inequality holds because, by (3.6) and (3.21),

1 � η = α
(
1 + (η − 1)Lξ

)
� α

(
1 + (η − 1)Ltη,k

)
,

and so

η

α
(1 − Ltη,k)

−1 � (1 − αLtη,k)
−1 = −φ′

η(tη,k)
−1. (3.38)

By (3.37) and (3.8), we have

ηd
(
0, D∞(xk)

)
� −φη(tη,k)

φ′
η(tη,k)

= (tη,k+1 − tη,k). (3.39)

Noting that the real-valued function t �→ −φ′
η(t)−1φη(t) is decreasing on (0, r∗

η), we have that

tη,k+1 − tη,k = −φ′
η(tη,k)

−1φη(tη,k) � −φ′
η(tη,0)

−1φη(tη,0) = ξ � �.

It follows from (3.39) that d(0, D∞(xk)) � ηd(0, D∞(xk)) � �, which together with (3.27) implies that there exists d0 ∈ X
with ‖d0‖ � � such that F (xk) + F ′(xk)d0 ∈ C . Consequently, by Remark 3.1,

D�(xk) = D�(xk) �= ∅
and

d
(
0, D�(xk)

) = d
(
0, D∞(xk)

)
. (3.40)

Thus it follows from (3.39) that

‖xk+1 − xk‖ = ‖dk‖ � ηd
(
0, D�(xk)

)
� (tη,k+1 − tη,k),

that is (3.18) holds for n = k + 1. Hence, by induction, (3.18) and (3.19) hold for all n = 1,2, . . . . Consequently, {xn} is a
Cauchy sequence and so converges to some x∗ with F (x∗) ∈ C by (3.19). Moreover, by (3.18),∥∥xn − x∗∥∥ � r∗

η − tη,n for each n = 0,1,2, . . . .

This together with (3.12) implies that (3.20) holds for each n = 0,1, . . . . �
Theorem 3.2. Let L ∈ (0,+∞) and ξ = ‖T −1

x0
(−F (x0))‖. Suppose that the inclusion (1.1) satisfies the weak-Robinson condition at x0

on B(x0, r∗
1) and that (T −1

x0
, F ′) is Lipschitz continuous on B(x0, r∗

1) with modulus L, where r∗
1 is defined by (3.11) with η = 1. Assume

that

ξ � 1

2L
. (3.41)

Then Algorithm A(x0) is well defined and any sequence {xn} so generated converges to a solution x∗ of (1.1) satisfying

∥∥xn − x∗∥∥ � q1
2n−1∑2n−1

i=0 q1
i
r∗

1 for each n = 0,1, . . . , (3.42)

where

q1 = 1 − Lξ − √
1 − 2Lξ

Lξ
. (3.43)

Proof. Let h be the distance function of C defined by

h(y) := d(y, C) = inf
z∈C

‖y − z‖ for each y ∈ Y . (3.44)

Let � = +∞ and η = 1 (so (3.17) and (3.41) are identical). Since D∞(x0) �= ∅ by the weak-Robinson condition, there exists
x′

1 ∈ X such that d0 := x′
1 − x0 ∈ D∞(x0) and ‖d0‖ = d(0,D∞(x0)). Noting that D∞(x0) = D∞(x0) by Remark 3.1(c), x′

1 can
be regarded as a point obtained by Algorithm A(η,�, x0) at its first iteration. Then Theorem 3.1 is applicable; it follows
from (3.19) and Remark 3.1 that there exists x′

2 ∈ X such that d1 := x′
2 − x′

1 ∈ D∞(x′
1) = D∞(x′

1) with the minimal norm.
Hence, x′

2 is also a point obtained by Algorithm A(η,�, x0) at its second iteration. Inductively, we see that, for each k,
∅ �= D∞(x′

k) = D∞(x′
k), and this means that Algorithm A(x0) is well defined and any sequence {xk} so generated is also a

sequence generated by Algorithm A(η,�, x0). Thus, the conclusion follows from Theorem 3.1 and the proof is complete. �
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Corollary 3.1. (See Robinson [25].) Suppose that Tx0 is surjective and that F ′ is Lipschitz continuous on B(x0, R̂) with modulus K > 0:∥∥F ′(x) − F ′(y)
∥∥ � K‖x − y‖ for all x, y ∈ B(x0, R̂), (3.45)

where

R̂ :=
1 −

√
1 − 2K‖T −1

x0 ‖ξ
K‖T −1

x0 ‖ and ξ = ∥∥T −1
x0

(−F (x0)
)∥∥. (3.46)

Assume that

‖x1 − x0‖ � 1

2K‖T −1
x0 ‖ . (3.47)

Then the conclusions of Theorem 3.2 hold with r∗
1 = R̂ and

q1 =
1 − K‖T −1

x0
‖ξ −

√
1 − 2K‖T −1

x0 ‖ξ
K‖T −1

x0 ‖ξ . (3.48)

Proof. Since Tx0 is surjective, it follows from Proposition 2.1 that ‖T −1
x0

‖ < +∞ and the inclusion (1.1) satisfies the weak-
Robinson condition at x0 on B(x0,+∞). Let L := K‖T −1

x0
‖. Then, (3.43) and (3.48) are consistent. Likewise, r∗

1 given in (3.11)

equals R̂ . Furthermore, by the assumed Lipschitz continuity (3.45), one has that∥∥T −1
x0

(
F ′(x) − F ′(y)

)∥∥ �
∥∥T −1

x0

∥∥∥∥F ′(x) − F ′(y)
∥∥ � L‖x − y‖ for all x, y ∈ B

(
x0, r∗

1

)
.

This means that (T −1
x0

, F ′) is Lipschitz continuous on B(x0, r∗
1) with modulus L. Since ξ = ‖T −1

x0
(−F (x0))‖ = ‖x1 − x0‖ by

Algorithm A(x0) and (2.11), we see that (3.41) and (3.47) are the same. Therefore, the result follows from Theorem 3.2. �
Remark 3.2. The convergence criteria given in Theorems 3.1 and 3.2 are affine-invariant in the sense described below. Let
A be an invertible continuous linear operator from Y to itself. Define functions h̃ := h ◦ A−1 and F̃ := A ◦ F and define
C̃ = A(C). Then argmin h̃ = C̃ and h ◦ F = h̃ ◦ F̃ . Hence the minimization problem (1.2) and the corresponding inclusion
problem (1.1) can be rewritten respectively as

min
x∈X

(h̃ ◦ F̃ )(x) (3.49)

and

F̃ (x) ∈ C̃ . (3.50)

Moreover T̃ x0 = A ◦ Tx0 and T̃ −1
x0

= T −1
x0

◦ A−1, where T̃ x0 denotes the convex process (associated with (3.50)) defined by

T̃ x0d := F̃ ′(x0)d − C̃ . (3.51)

Then the weak-Robinson condition assumed in Theorem 3.1 for (1.1) is equivalent to the corresponding one for (3.50). Like-
wise, the Lipschitz continuity condition for (T −1

x0
, F ′) is equivalent to that for (T̃ −1

x0
, F̃ ′). Moreover, ξ = η‖T −1

x0
(−F (x0))‖ =

η‖T̃ −1
x0

(− F̃ (x0))‖. Therefore, the convergence criteria given in Theorems 3.1 and 3.2 for (1.2) and (1.1) coincide respectively
with the corresponding ones for (3.49) and (3.50), that is to say, such convergence criteria are affine-invariant. Note that the
convergence criteria given in [21, Theorem 4.1] and [25, Theorem 2] do not have such property.

Remark 3.3. We exclude the trivial case when L = 0 in our study because, in this trivial case, if (T −1
x0

, F ′) is Lipschitz
continuous with the modulus L on B(x0, r), then

F (x) − F (x0) − F ′(x0)(x − x0) ∈ C for each x ∈ B(x0, r),

and therefore, under the assumption made in Theorems 3.1 and 3.2, the Gauss–Newton method stops at the first step, that
is, F (x1) ∈ C .

Remark 3.4. Let F be a set-valued mapping from X to Y . Consider the following generalized equation:

0 ∈ F (x) + F (x). (3.52)

The Newton method for solving the above generalized equation and its local and/or stable local convergence have been
explored extensively recently; see for example [1], the monographs [13] (in particular, Chapter 6) and the references therein.
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The main tool there to analyze the local convergence is the notion of the metric regularity put on the set-valued mapping
F + F . Clearly, problem (1.1) is a special example by taking the set-valued mapping F := −C . According to the Robinson
extension of the open mapping theorem to convex processes (see [24]), if Tx0 is surjective then the mapping F − C is metric
regular around x0, and so the results in [1] or [13] may apply. However, our approach here for (1.1) has several advantages:
a) Our mapping F (·) − C is not required to have the metric regularity (as Tx0 is not necessarily surjective); b) the existence
of the solution is not initially assumed; and c) our convergence result given in Theorem 3.1 concerned with any sequence
provided by Algorithm A(x0) (which, in general, is different from the Newton method considered in [1] and [13] for solving
Eq. (3.52) with F = −C ).

4. Conclusion and examples

Under the assumptions that C is a closed cone, the inclusion (1.1) satisfies the weak-Robinson condition at x0, and
(T −1

x0
, F ′) is Lipschitz continuous with modulus L, we have established a convergence criterion ensuring the convergence of

the Gauss–Newton method for solving convex-composite optimization problems. In particular, we obtain the convergence
criterion for the extended Newton method for solving the inclusion problem considered by Robinson in [25]. In general, the
norm of ‖T −1

x0
‖ is not necessarily finite. Even in the special case when X, Y are finite-dimensional and Tx0 is surjective (so

‖T −1
x0

‖ < +∞), our result is sharper than that in [25] as shown in Example 4.1 below.

Example 4.1. Let X = R, Y = R
2 and λ > 0. Define F by

F (x) =
[

x − cos x + 1 + λ
1
2 x2 + x + λ

]
for each x ∈ R.

Thus

F ′(x) =
[

sin x + 1

x + 1

]
for each x ∈ R (4.1)

and ∥∥F ′(x) − F ′(x′)∥∥ �
√

2
∣∣x − x′∣∣ for all x, x′ ∈ R

(K := √
2 is in fact the optimal Lipschitz constant). Take x0 = 0 and C = {(t1, t2)

T ∈ R
2: t1 � 0, t2 � 0}. Then

F (x0) = (λ,λ)T , F ′(x0) = (1,1)T

and

T −1
x0

y = (−∞,min{y1, y2}
]

for each y = (y1, y2)
T ∈ R

2.

Hence,∥∥T −1
x0

∥∥ = 1,
∥∥T −1

x0

(−F (x0)
)∥∥ = λ (4.2)

and ∥∥T −1
x0

(
F ′(x) − F ′(x′))∥∥ � max

{∣∣sin x − sin x′∣∣, ∣∣x − x′∣∣} �
∣∣x − x′∣∣ for all x, x′ ∈ R. (4.3)

Thus the modulus L in Theorem 3.2 is equal to 1, and (3.41) means that λ � 1
2 while the corresponding sufficient condition

given in [25, Theorem 2] is λ �
√

2
4 (= 1

2K‖T −1
x0

‖ ). Therefore if λ ∈ (
√

2
4 , 1

2 ] then the corresponding F provides an example

showing that Theorem 3.2 properly extends the earlier results.

As the following example shows, it can happen that T −1
x0

is not normed even though the weak-Robinson condition at x0
is satisfied. Clearly, in this case, [25, Theorem 2] is not applicable. For our examples, it would be convenient to recall the
following fact:

Fact 4.1. If X is reflexive and T −1
x0

is normed, then R(Tx0 ) is closed, that is D(T −1
x0

) is closed.

In fact, let {zn} ⊆ D(T −1
x0

) be such that zn → z. Without loss of generality, we may assume that ‖zn‖ = ‖z‖ = 1. Since

‖T −1
x0

‖ < ∞, we can take {yn} ⊆ X such that {yn} is bounded and yn ∈ T −1
x0

zn for each n. As in the proof of Lemma 2.1,
we may assume that without loss of generality, yn → y weakly for some y ∈ X . Then there exists a sequence { ỹn}, with
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each ỹn = ∑kn
i=1 αn

i yni , where kn � 1 and {αn
i } ⊆ [0,1] satisfies

∑kn
i=1 αn

i = 1, such that ỹn → y and the correspond convex

combination z̃n := ∑kn
i=1 αn

i zni → z. Thus

F ′(x0) ỹn ∈ z̃n + C for each n = 1,2, . . .

and taking limits, we have that F ′(x0)y ∈ z + C . Therefore y ∈ T −1
x0

z and so z ∈ D(T −1
x0

). This proves that D(T −1
x0

) is closed
and Fact 4.1 is established.

Example 4.2. Let X = R
2, Y = R

3 and let the cone C ⊆ R
3 be given by

C := {
(t1, t2, t3)

T : t2
1 + (t3 − t2)

2 � t2
2 and t2 � 0

}
,

that is, C is the cone generated by the origin and the plane disk {(t1,−1, t3)
T : t2

1 + (t3 + 1)2 � 1}. Let x0 = 0 and λ ∈ (0, 5
6 ].

Define F by

F (x) =
⎛
⎝ 0

t1 + t2
2 + λ

5

− λ
5

⎞
⎠ for each x = (t1, t2)

T ∈ R
2.

Then

F ′(x) =
( 0 0

1 2t2
0 0

)
for each x = (t1, t2)

T ∈ R
2.

In particular, F ′(x0) =
(

0 0
1 0
0 0

)
, and so

R(Tx0) = {
(t1, t2, t3)

T ∈ R
3: t3 > 0

} ∪ {
(t1, t2, t3)

T ∈ R
3: t1 = t3 = 0

}
.

Hence,

−F (x0) ∈ R(Tx0) and R
(

F ′(x)
) ⊆ R(Tx0) for each x ∈ R

2.

Therefore, the inclusion (1.1) satisfies the weak-Robinson condition at x0 with r = +∞. Since(
F ′(x) − F ′(x0)

)
y = (0,2t2 y2,0)T for all x = (t1, t2)

T ∈ R
2 and y = (y1, y2)

T ∈ R
2,

it is easy to verify that (T −1
x0

(F ′(x) − F ′(x0)))y = {(z1, z2)
T ∈ R

2: z1 � 2t2 y2}. Therefore,∥∥T −1
x0

(
F ′(x) − F ′(x0)

)∥∥ = 2|t2| � 2‖x − x0‖ for each x ∈ R
2.

Then the (best) modulus L in Theorem 3.2 is equal to 2. Noting that R(Tx0 ) is not closed, we see from Fact 4.1 that T −1
x0

is

not normed. Since F (x0) = (0, λ
5 ,− λ

5 ), it follows that

T −1
x0

(−F (x0)
) =

{
(z1, z2) ∈ R

2:
(

0, z1 + λ

5
,−λ

5

)
∈ C

}
=

{
(z1, z2) ∈ R

2: z1 � −3λ

10

}

and so ‖T −1
x0

(−F (x0))‖ = 3λ
10 � 1

2L because λ � 5
6 . Thus Theorem 3.2 is applicable and we can conclude that Algorithm A(x0)

is well defined and any sequence {xk} so generated converges to a solution of the inclusion problem (1.1).

Below we make some comparison of our results in Section 3 with that reported in [21]. Recall from [21] that x0 ∈ X is
called a quasi-regular point of the inclusion (1.1) if there exist r ∈ (0,+∞] and an increasing positive-valued function β on
[0, r) such that

D∞(x) �= ∅ and d
(
0,D∞(x)

)
� β

(‖x − x0‖
)
d
(

F (x), C
)

for all x ∈ B(x0, r). (4.4)

Furthermore, let rx0 denote the supremum rx0 of r such that (4.4) holds for some increasing positive-valued function β on
[0, r), and βx0 the infimum of β such that (4.4) holds on [0, rx0 ). We call rx0 and βx0 respectively the quasi-regular radius
and the quasi-regular bound function of the quasi-regular point x0.

In general, the quasi-regularity at point x0 doesn’t imply the weak-Robinson condition at x0 even in the case when
‖T −1

x0
‖ < +∞ and (T −1

x0
, F ′) is Lipschitz continuous, see [21, Example 6.1]. The following proposition establishes a relation-

ship between the weak-Robinson condition and the quasi-regularity.

Proposition 4.1. Suppose that X is reflexive. Let x0 ∈ X, L � 0 and 0 < r � 1
L . Suppose that (1.1) satisfies the weak-Robinson condition

at x0 on B(x0, r) and that (T −1
x , F ′) is Lipschitz continuous on B(x0, r) with modulus L. Then the following assertions hold:
0
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(i) If F (x0) /∈ C, then x0 is a quasi-regular point.
(ii) If T −1

x0
is normed, then x0 is a quasi-regular point with the quasi-regular radius rx0 and the quasi-regular bound function βx0

satisfying rx0 � r and

βx0(t) �
‖T −1

x0
‖

1 − Lt
for each t ∈ [0, r).

Proof. (i). Assume that F (x0) /∈ C and set ρ := d(F (x0), C). Then ρ > 0. By the continuity, there exists r̄ ∈ (0, r) such that

inf
{

d
(

F (x), C
): x ∈ B(x0, r̄)

}
� ρ

2
.

By (2.18) in Proposition 2.3, D∞(x) �= ∅ for each x ∈ B(x0, r̄). Below we will show that there exists a constant θ > 0 such
that

d
(
0,D∞(x)

)
� θ for each x ∈ B(x0, r̄). (4.5)

Granting this, one sees that

d
(
0,D∞(x)

)
� 2θ

ρ
d
(

F (x), C
)

for each x ∈ B(x0, r̄),

and so x0 is a quasi-regular point. To verify (4.5), let x ∈ B(x0, r̄). By (2.27),

∥∥T −1
x

(
F (x0) − F (x)

)∥∥ �
∥∥T −1

x F ′(x0)
∥∥(∥∥∥∥∥T −1

x0

1∫
0

(
F ′(x0 + t(x − x0)

) − F ′(x0)
)
(x0 − x)dt

∥∥∥∥∥ + r̄

)

�
∥∥T −1

x F ′(x0)
∥∥(

Lr̄2

2
+ r̄

)
, (4.6)

where the last inequality holds because, by (2.14) (applied to [x0, x] in place of [x′, x]),
∥∥∥∥∥T −1

x0

1∫
0

(
F ′(x0 + t(x − x0)

) − F ′(x0)
)
(x0 − x)dt

∥∥∥∥∥ � Lr̄2

2
. (4.7)

Further, by (2.28),∥∥T −1
x

(−F (x0)
)∥∥ �

∥∥T −1
x F ′(x0)

∥∥∥∥T −1
x0

(−F (x0)
)∥∥. (4.8)

By (2.29), (4.6) and (4.8), we have that∥∥T −1
x

(−F (x)
)∥∥ � θ. (4.9)

where

θ := ∥∥T −1
x F ′(x0)

∥∥(∥∥T −1
x0

(−F (x0)
)∥∥ + Lr̄2

2
+ r̄

)
.

Note that θ < +∞ by (2.17) and (2.12). By (2.11), (4.9) means that d(0,D∞(x)) � θ and so (4.5) is shown.
(ii). Assume that T −1

x0
is normed. Thus it follows from (2.17), (2.26) and the given Lipschitz continuity assumption, we

have that, for each x ∈ B(x0, r),

∥∥T −1
x

∥∥ �
∥∥T −1

x F ′(x0)T −1
x0

∥∥�
‖T −1

x0
‖

1 − L‖x − x0‖
and so (2.11) entails that

d
(
0,D∞(x)

) = ∥∥T −1
x

(
C − F (x)

)∥∥ �
∥∥T −1

x

∥∥d
(

F (x), C
)
�

‖T −1
x0

‖
1 − L‖x − x0‖d

(
F (x), C

)
.

Recalling the definition of β , we complete the proof. �
In spite of Proposition 4.1, below we give an example to show that Theorem 3.1 is applicable but not [21, Corollary 4.3]

(note in particular that the strict inequalities in (4.11) below hold in this example). For discussion, we continue to use ξ to
denote η‖T −1

x (−F (x0))‖ as in Section 3. Recall that in the discussion of the main results of [21] (see Corollary 4.3 there), it

0
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was assumed that ‖T −1
x0

‖ < +∞ and that the quantity η‖T −1
x0

‖d(F (x0), C) (to be denoted by ξ̂ ) played an important role in
the convergence criterion in [21]. Noting the obvious inclusion

T −1
x0

(
C − F (x0)

) ⊆ T −1
x0

(−F (x0)
)
, (4.10)

one has that∥∥T −1
x0

(−F (x0)
)∥∥ �

∥∥T −1
x0

(
C − F (x0)

)∥∥ �
∥∥T −1

x0

∥∥d
(

F (x0), C
)
,

that is,

ξ � ξ̂ . (4.11)

Example 4.3. Let X = R, Y = R
2 and λ > 0. Let F be as in Example 4.1. Define h by

h(y1, y2) = max{y1,0} + max{0, y2} for each y = (y1, y2)
T ∈ R

2.

Thus

(h ◦ F )(x) = max{x − cos x + 1 + λ,0} + max

{
0,

1

2
x2 + x + λ

}
for each x ∈ R.

Clearly, C = {(t1, t2) ∈ R
2: t1 � 0, t2 � 0}. Take x0 = 0. Then, by (4.3), (T −1

x0
, F ′) is Lipschitz continuous on R with modulus

L = 1. Let η = 1 and � = +∞ (and so α, defined in [21, Corollary 4.3], is equal to ‖T −1
x0

‖ = 1). Then by (4.2) ξ = λ.

Let λ ∈ ( 1
4 , 1

2 ]. Hence (3.41) is satisfied and so Theorem 3.2 is applicable. Below we shall show that [21, Corollary 4.3] is

not applicable. In fact, otherwise, there exist Λ � r > 0 and a positive-valued increasing absolutely continuous function L̂r

defined on [0,Λ) with
∫ Λ

0 L̂r(t)dt = +∞ such that F ′ satisfies the L̂r -average Lipschitz condition on B(x0, r) in the sense
defined in [21, Definition 2.5] and

ξ̂ � b̂1, r̂∗
1 � r (4.12)

where b̂1, r̂∗
1 are the corresponding bα, r∗

α defined for L = L̂r in [21, Section 2] with α = 1. Then, by (4.1) and the assumed

L̂r -average Lipschitz condition, we have

∥∥F ′(x′) − F ′(x)
∥∥ =

√(
sin x′ − sin x

)2 + (
x′ − x

)2 �
|x′−x|+|x|∫

|x|
L̂r(τ )dτ for all x′, x ∈ (−r, r).

In particular,√
sin2 t + t2 �

t∫
0

L̂r(τ )dτ for all t ∈ [0, r),

where the equality holds when t = 0. Differentiating on both sides at t = 0, it follows that L̂r(0) �
√

2. Hence

L̂r(t) � L̂r(0) �
√

2 for each t ∈ [0,Λ) (4.13)

because L̂r is increasing. Let φ̂1 (resp. φ̄1) denote the function φ1 defined in [21, Section 2] with α = 1, ξ = ξ̂ but with L
replaced by L̂r (resp.

√
2 ), namely,

φ̂1(t) = ξ̂ − t +
t∫

0

L̂r(τ )(t − τ )dτ for each t ∈ [0,Λ)

and

φ̄1(t) = ξ̂ − t +
t∫

0

√
2(t − τ )dτ = ξ̂ − t +

√
2

2
t2 for each t ∈ [0,Λ).

Then φ̄1 � φ̂1 by (4.13), and hence φ̄1(r̂∗
1) � φ̂1(r̂∗

1) = 0 with r̂∗
1 � r < Λ (see (4.12)). This means that φ̄1 has a zero in (0,Λ).

Noting that φ̄1 is a quadratic function with real zeros, we have that

ξ̂ � 1

2
√

2
. (4.14)

Noting that d(F (x0), C) = √
2λ, it follows that ξ̂ = η‖T −1

x0
‖d(F (x0), C) = √

2λ. This together with (4.14) implies that
√

2λ �
1

2
√

2
, which contradicts that λ > 1

4 .
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