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Abstract. Using the technique of variational analysis and in terms of normal cones, we establish unified
separation results for finitely many closed (not necessarily convex) sets in Banach spaces, which not only cover
the existing nonconvex separation results and a classical convex separation theorem, but also recapture the
approximate projection theorem. With help of the separation result for closed sets, we provide necessary and
sufficient conditions for approximate Pareto solutions of constrained vector optimization problems. In parti-
cular, we extend some basic optimality results for approximate solutions of numerical optimization problems to
the vector optimization setting.
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1. Introduction. The separation theorems for convex sets play a key role in func-
tional analysis and optimization theory. The most well-known and useful version of
these theorems is probably the following: if A1 and A2 are disjoint closed convex sets
in X with one of them being compact, then there exists a continuous linear functional x�

on X such that

inf
x∈A2

hx�; xi > sup
x∈A1

hx�; xi;

whereX is a Banach space (or more generally, a locally convex topological vector space).
In order to focus on the main issues and also for the simplicity of presentation, we assume
throughout that X is a Banach space (we shall explicitly make clear if X is required to
satisfy additional assumptions, such as thatX is an Asplund space). In recent years, a lot
of attention has been directed to studying the more general case that A1, A2 are closed
(not necessarily convex) subsets of X (cf. [14], [22], [23], and references therein). In an
Asplund space and in terms of Fréchet normal cone, Mordukhovich and Shao [15] first
established the extremal principle for two closed sets with an extremal point (a special
common point of these two sets). In some sense, this extremal principle can be regarded
as a kind of fuzzy separation theorem for two nonconvex closed subsets. Further,
Mordukhovich, Treiman, and Zhu [17] introduced the extremal point concept for finitely
many closed sets and established the extremal principle for finitely many closed sets. At
this point, let us define the so-called nonintersect index γðA1; : : : ; AnÞ by
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γðA1; : : : ; AnÞ ≔ inf

�Xn−1

i¼1

kai − ank: ai ∈ Ai; i ¼ 1; : : : ; n

�
:

Note that γðA1; : : : ; AnÞ ¼ 0 if⋂n
i¼1 Ai ≠ ∅ and that for any ε > 0, there exists ai ∈ Ai

(1 ≤ i ≤ n) such that

Xn−1

i¼1

kai − ank < γðA1; : : : ; AnÞ þ ε:ð1:1Þ

Improving the extremal principles by Mordukhovich et al., the author [29] established
the following result.

THEOREM A. Consider closed sets A1; : : : ; An of a Banach (resp., Asplund) space X
such that ⋂n

i¼1 Ai ¼ ∅. Let ε > 0 and ai ∈ Ai (1 ≤ i ≤ n) satisfy (1.1). Then, for any
λ > 0, there exist āi ∈ Ai and a�i ∈ X� such that

(i)
P

n
i¼1 kāi − aik < λ, max1≤i≤n−1ka�i k ¼ 1, and

P
n
i¼1 a

�
i ¼ 0;

(ii) a�i ∈ NcðAi; āiÞ þ ε
λBX� (resp., a�i ∈ N̂ðAi; āiÞ þ ε

λBX�), i ¼ 1; : : : ; n,
where NcðAi; āiÞ and N̂ðAi; āiÞ denote, respectively, the Clarke and Fréchet normal
cones (see section 2 for their definitions).

Unfortunately, even in the case when n ¼ 2, A1 ¼ fxg, and A2 is convex (and
closed) such that x ∈= A2, this theorem and all other existing fuzzy separation results
for general closed sets cannot recapture the classical separation theorem stated at
the beginning of this section. On the other hand, by the approximate projection theorem
for a closed set (proved by the authors [30] and [12]), for any η ∈ ð0; 1Þ, there exist ā2 ∈
A2 and −a�2 ∈ NcðA2; ā2Þ such that ka�2k ¼ 1 and

ηkx− ā2k ≤ ha�2; ā2 − xi:ð1:2Þ

Clearly, (1.2) does imply that A1 ¼ fxg and A2 can be separated (in the usual sense) if
A2 is convex. From the theoretical viewpoint as well as for applications, it is important
and interesting to have a new kind of fuzzy separation theorem that can result in existing
fuzzy separation theorems and classical convex separation results. It is one of our aims to
establish such fuzzy separation results for closed sets.

Vector optimization relates to functional analysis and mathematical programming
and has been found to play many important roles in economics theory, engineering de-
sign, management science, and so on. In recent years, the study of vector optimization
has received increasing attention in the literature (see [7], [10], [13], and references there-
in). Another aim of this paper is to study constrained vector optimization problems and
thereby improve and extend some well-known results on numerical optimization. Many
authors (cf. [14], [20], [23], and references therein) studied a numerical optimization pro-
blem with a constraint defined by finitely many inequalities and equalities. Most of the
earlier authors provide necessary/sufficient conditions for a feasible point to be a solu-
tion, and their studies are based on the assumption that the problem concerned does
have a (local or global) solution. On one hand, this assumption is too restrictive in some
contexts, while, on the other hand, we note a well-known fact: if a function ϕ0∶X → R is
smooth and bounded below, then for any ε > 0 there exists xε ∈ X such that

ϕ0ðxεÞ < inf
x∈X

ϕ0ðxÞ þ ε and kϕ 0
0ðxεÞk < ε:ð1:3Þ
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Without the smoothness assumption, in a geometric constraint case, Chou, Ng, and
Pang [4] proved the following result: if ϕ0 is Lipschitz and bounded below on a closed
subset A of X , then for any ε > 0 there exists xε ∈ A such that

ϕðxεÞ < inf
x∈A

ϕ0ðxÞ þ ε and dð0; ∂ϕ0ðxεÞ þ NðA; εÞÞ < ε:ð1:4Þ

Mordukhovich and Wang [18] studied suboptimality conditions for approximate solu-
tions for a numerical constraint optimization problem in infinite dimensional Asplund
spaces. In particular, they established the Lagrange rule of an approximate solution for
such a problem in terms of subdifferentials. With the help of the separation theorem for
finitely many closed sets, this and other related results, as well as the result of Chou, Ng,
and Pang mentioned above, are extended in section 4 for vector optimization problems.

2. Preliminaries. For convenience of the readers, this section recalls some known
notions and results in variational analysis, which will be used in our later analysis (see
[14], [22], [23] for more details).

We use BX and ΣX to denote the unit ball and unit sphere of X , respectively, and
Bðx; rÞ denotes the open ball with center a and radius r. Let A be a closed subset of X
and a be a point in A. We denote by TcðA; aÞ and TðA; aÞ the Clarke tangent cone and
the contingent (Bouligand) cone of A at a, respectively; that is,

TcðA; aÞ ≔ fv ∈ X∶ ∀an→
A
a and ∀tn → 0þ ∃vn → v s:t: an þ tnvn ∈ A ∀n ∈ Ng

and

TðA; aÞ ≔ fv ∈ X∶ ∃tn → 0þ and vn → v s:t: aþ tnvn ∈ A ∀n ∈ Ng:

The Clarke normal cone NcðA; aÞ of A at a is defined by

NcðA; aÞ ≔ fx� ∈ X�jhx�; hi ≤ 0 ∀ h ∈ TcðA; aÞg:

For ε ≥ 0 and a ∈ A, the nonempty set

N̂ εðA; aÞ ≔
�
x� ∈ X�jlim sup

x→
A
a

hx�; x− ai
kx− ak ≤ ε

�

is called the set of Fréchet ε-normals of A at a, where x→
A
a means x → a and x ∈ A.

When ε ¼ 0, N̂ εðA; aÞ is a convex cone which is called the Fréchet normal cone of A
at a and is denoted by N̂ðA; aÞ. The Mordukhovich (limiting) normal cone NðA; aÞ
of A at a is defined by

NðA; aÞ ≔ fx� ∈ X�∶ ∃εn → 0þ; an→
A
a and x�n→

w�
x� s:t: x�n ∈ N̂ εn

ðA; anÞ ∀n ∈ Ng:

It is known (cf. [14], [23]) that

N̂ðA; aÞ ⊂ NðA; aÞ ⊂ NcðA; aÞ:

Mordukhivich and Shao [16] proved that if X is an Asplund space, then

NcðA; aÞ ¼ cl�ðcoðNðA; aÞÞÞ and NðA; aÞ ¼ lim sup

x→
A
a

N̂ðA; xÞ;
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where cl� denotes the weak� closure. It is well known that if A is a convex set, then
TcðA; aÞ ¼ TðA; aÞ and

NcðA; aÞ ¼ N̂ðA; aÞ ¼ fx� ∈ X�jhx�; xi ≤ hx�; ai ∀ x ∈ Ag:

Let ϕ∶ X → R ∪ fþ∞g be a proper lower semicontinuous function. The Clarke–
Rockafellar subdifferential ∂cϕðxÞ of ϕ at x ∈ domðϕÞ is defined as

∂cϕðxÞ ≔ fx� ∈ X�jhx�; hi ≤ ϕ↑ðx; hÞ ∀h ∈ Xg;

where

ϕ↑ðx; hÞ ≔ lim
ε↓0

lim sup
ϕ

z→x;t↓0

inf
w∈hþεBx

ϕðz þ twÞ− ϕðzÞ
t

.

The Fréchet subdifferential of ϕ at x ∈ domðϕÞ is defined as

∂̂ϕðxÞ ≔
�
x� ∈ X�jlim inf

z→x

ϕðzÞ− ϕðxÞ− hx�; z − xi
kz − xk ≥ 0

�
:

It is well known (cf. [14]) that

∂̂ϕðxÞ ⊂ ∂cϕðxÞð2:1Þ
and that if ϕ is convex, then

∂cϕðxÞ ¼ ∂̂ϕðxÞ ¼ fx� ∈ X�jhx�; y− xi ≤ ϕðyÞ− ϕðxÞ ∀y ∈ Xg ∀ x ∈ domðϕÞ:

For a closed set A in X , let δA denote the indicator function of A. It is known (see [14],
[23]) that

NcðA; aÞ ¼ ∂cδAðaÞ; N̂ðA; aÞ ¼ ∂̂δAðaÞ ∀ a ∈ AðCSÞ

and

∂cϕðxÞ ¼ fx� ∈ X�jðx�;−1Þ ∈ NcðepiðϕÞ; ðx;ϕðxÞÞÞg ∀ x ∈ domðϕÞ;ðCFÞ

∂̂ϕðxÞ ¼ fx� ∈ X�jðx�;−1Þ ∈ N̂ðepiðϕÞ; ðx;ϕðxÞÞÞg ∀ x ∈ domðϕÞ;

where epiðϕÞ ≔ fðx; tÞ ∈ X × R∶ϕðxÞ ≤ tg.
We recall the following known subdifferential rules for the sum-function (cf. [14],

[22], [23]), which plays a important role in our later analysis.
LEMMA 2.1. Let ϕ1, ϕ2∶X → R ∪ fþ∞g be proper lower semicontinuous functions.

Let x ∈ domðϕ1Þ ∩ domðϕ2Þ, and suppose that ϕ1 is locally Lipschitz around x. Then,

∂cðϕ1 þ ϕ2ÞðxÞ ⊂ ∂cϕ1ðxÞ þ ∂cϕ2ðxÞ:

If, in addition, X is an Asplund space, then for any x� ∈ ∂̂ðϕ1 þ ϕ2ÞðxÞ and any ε > 0
there exist x1, x2 ∈ Bðx; εÞ such that jϕiðxiÞ− ϕiðxÞj < ε (i ¼ 1, 2) and

x� ∈ ∂̂ϕ1ðx1Þ þ ∂̂ϕ2ðx2Þ þ εBX� :

UNIFIED SEPARATION THEOREM FOR CLOSED SETS 889

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



For a multifunction F between Banach spaces X and Y , we use GrðFÞ to denote its
graph, and say that it is closed (resp., convex) if GrðFÞ is a closed (resp., convex) subset
ofX ×Y . Recall (cf. [2], [9]) that F is pseudo-Lipschitz at ðx̄; ȳÞ ∈ GrðFÞ if there exist L,
r1, r2 ∈ ð0;þ∞Þ such that

Fðx1Þ ∩ Bðȳ; r1Þ ⊂ Fðx2Þ þ kx1 − x2kLBY ∀ x1; x2 ∈ Bðx̄; r2Þ:

For x ∈ X and y ∈ FðxÞ, let D̂�Fðx; yÞ andD�
cFðx; yÞ∶Y � ⇉ X� denote the coderivatives

of F at ðx; yÞ with respect to the Fréchet and Clarke normal cones, respectively; that is,

D̂�Fðx; yÞðy�Þ ≔ fx� ∈ X�∶ðx�;−y�Þ ∈ N̂ðGrðFÞ; ðx; yÞÞg ∀ y� ∈ Y �ð2:2Þ

and

D�
cFðx; yÞðy�Þ ≔ fx� ∈ X�∶ðx�;−y�Þ ∈ NcðGrðFÞ; ðx; yÞÞg ∀ y� ∈ Y �:

3. Fuzzy separation results. In this section, we establish fuzzy separation results
for finitely many closed sets, which not only unifies the convex separation theorem men-
tioned in section 1 and the existing nonconvex separation results, but also recaptures the
approximate projection theorem proved in [30] and [12].

Let 1 ≤ p ≤ þ∞ and γpðA1; : : : ; AnÞ denote the (p-weighted) nonintersect index of
finitely many closed subsets A1; : : : ; An of a Banach space X , which is defined by

γpðA1; : : : ; AnÞ ≔ inf

��Xn−1

i¼1

kxi − xnkp
�1

p

∶xi ∈ Ai; i ¼ 1; : : : ; n

�
;

where ðPn−1
i¼1 kxi − xnkpÞ

1
p is understood as max0≤i≤nkxi − xnk when p ¼ þ∞.

For a point e and two subsets S1 and S2 of a Banach space, let

dðS1; S2Þ≔ inffku− vk∶u ∈ S1 and v ∈ S2g and dðe; S2Þ≔dðfeg; S2Þ:

THEOREM 3.1. Let A1; : : : ; An be closed nonempty subsets of X such that
⋂n

i¼1 Ai ¼ ∅. Let 1 ≤ p, q ≤ þ∞ with 1
p þ 1

q ¼ 1, ε > 0, and ai ∈ Ai (1 ≤ i ≤ n) be such

that

�Xn−1

i¼1

kai − ankp
�1

p

< γpðA1; : : : ; AnÞ þ ε:ð3:1Þ

Then, for any λ > 0, there exist āi ∈ Ai and a�i ∈ X� with the following properties:
(i) ðPn

i¼1 kāi − aikpÞ
1
p < λ.

(ii) ðPn−1
i¼1 ka�i kqÞ

1
q ¼ 1,

P
n
i¼1 a

�
i ¼ 0, and ðPn

i¼1 dða�i ; NcðAi; āiÞÞqÞ
1
q < ε

λ.
(iii) ðPn−1

i¼1 kān − āikpÞ
1
p ¼ P

n−1
i¼1 ha�i ; ān − āii.

Proof. Define ϕ∶ Xn → R ∪ fþ∞g as follows:

ϕðx1; : : : ; xnÞ ≔
�Xn−1

i¼1

kxi − xnkp
�1

p

þ δA1× · · ·×An
ðx1; : : : ; xnÞ

for all ðx1; : : : ; xnÞ ∈ Xn, where Xn is equipped with the norm
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kðx1; : : : ; xnÞk ¼
�Xn

i¼1

kxikp
�1

p

∀ ðx1; : : : ; xnÞ ∈ Xn:

Then

γpðA1; : : : ; AnÞ ¼ inffϕðx1; : : : ; xnÞ∶ðx1; : : : ; xnÞ ∈ Xng;

and (by (3.1)) there exists ε 0 ∈ ð0; εÞ such that

ϕða1; : : : ; anÞ < inffϕðx1; : : : ; xnÞ∶ðx1; : : : ; xnÞ ∈ Xng þ ε 0:

Since ϕ is a lower semicontinuous function on the Banach space Xn, it follows from
the Ekeland variational principle (cf. [14, Theorem 2.26]) that there exists ðā1; : : : ; ānÞ ∈
Xn such that (i) holds and

ϕðā1; : : : ; ānÞ ≤ ϕðx1; : : : ; xnÞ þ
ε 0

λ

�Xn
i¼1

kxi − āikp
�1

p

∀ ðx1; : : : ; xnÞ ∈ Xn:ð3:2Þ

Hence ϕðā1; : : : ; ānÞ < þ∞ and so āi ∈ Ai for each i. Noting that ⋂n
i¼1 Ai ¼ ∅, it

follows that

ðā1 − ān; : : : ; ān−1 − ānÞ ≠ ð0; : : : ; 0Þ:ð3:3Þ

For each ðx1; : : : ; xnÞ ∈ Xn, let

fðx1; : : : ; xnÞ ≔
�Xn−1

i¼1

kxi − xnkp
�1

p

þ ε 0

λ

�Xn
i¼1

kxi − āikp
�1

p

:

Then f is a continuous convex function on Xn, and (3.2) means that f attains its mini-
mum overA1× · · · ×An at ðā1; : : : ; ānÞ. Hence 0 ∈ ∂cðf þ δA1× · · ·×An

Þðā1; : : : ; ānÞ. This
and Lemma 2.1 imply that

0 ∈ ∂gðā1; : : : ; ānÞ þNcðA1; ā1Þ× · · · ×NcðAn; ānÞ þ
ε 0

λ
BðXnÞ� ;

where gðx1; : : : ; xnÞ ≔ ðPn−1
i¼1 kxi − xnkpÞ

1
p for all ðx1; : : : ; xnÞ ∈ Xn. Hence there exists

ð−a�1; : : : ;−a�nÞ ∈ ∂gðā1; : : : ; ānÞ such that

�Xn
i¼1

dða�i ; NcðAi; āiÞÞq
�1

q

≤
ε 0

λ
<

ε

λ
:

Thus,

Xn
i¼1

h−a�i ; xi − āii ≤
�Xn−1

i¼1

kxi − xnkp
�1

p

−
�Xn−1

i¼1

kāi − ānkp
�1

p

ð3:4Þ

for all ðx1; : : : ; xnÞ ∈ Xn. Setting x1 ¼ · · ·¼ xn ¼ x, it follows that
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Xn
i¼1

h−a�i ; x− āii ≤ −
�Xn−1

i¼1

kāi − ānkp
�1

p

∀ x ∈ X;

and so
P

n
i¼1 a

�
i ¼ 0. This and (3.4) imply that

Xn−1

i¼1

h−a�i ; xi − xn − ðāi − ānÞi ≤
�Xn−1

i¼1

kxi − xnkp
�1

p

−
�Xn−1

i¼1

kāi − ānkp
�1

p

for all ðx1; : : : ; xnÞ ∈ Xn. Taking an arbitrary element ðu1; : : : ; un−1Þ inXn−1 and letting
xi ≔ ui þ xn (1 ≤ i ≤ n− 1), it follows that

Xn−1

i¼1

h−a�i ; ui − ðāi − ānÞi ≤
�Xn−1

i¼1

kuikp
�1

p

−
�Xn−1

i¼1

kāi − ānkp
�1

p

and so

ð−a�1; : : : ;−a�n−1Þ ∈ ∂k · kXn−1ðā1 − ān; : : : ; ān−1 − ānÞ:

It follows from (3.3) that

�Xn−1

i¼1

ka�i kq
�1

q

¼ 1 and
Xn−1

i¼1

ha�i ; ān − āii ¼
�Xn−1

i¼1

kāi − ānkp
�1

p

:

This completes the proof. ▯
THEOREM 3.1′ Let A1; : : : ; An, and p, q be as in Theorem 3.1. Suppose that

�Xn−1

i¼1

kai − ankp
�1

p

¼ γpðA1; : : : ; AnÞ:

Then, there exist a�i ∈ X� (1 ≤ i ≤ n) with the following properties:
(i) ðPn−1

i¼1 ka�i kqÞ
1
q ¼ 1,

P
n
i¼1 a

�
i ¼ 0, and a�i ∈ NcðAi; aiÞ, i ¼ 1; : : : ; n.

(ii) ðPn−1
i¼1 kan − aikpÞ

1
p ¼ P

n−1
i¼1 ha�i ; an − aii.

Proof. Let ϕ and g be as in the proof of Theorem 3.1. Then

ϕða1; : : : ; anÞ ¼ inffϕðx1; : : : ; xnÞ∶ðx1; : : : ; xnÞ ∈ Xng:

Hence

0 ∈ ∂ϕða1; : : : ; anÞ ⊂ ∂gða1; : : : ; anÞ þNcðA1; a1Þ× · · · ×NcðAn; anÞ:

It follows that ða�1; : : : ; a�nÞ ∈ ∂gðx1; : : : ; xnÞ such that a�i ∈ NcðAi; aiÞ (i ¼ 1; : : : ;m).
Noting that ða1 − an; : : : ; an−1 − anÞ ≠ ð0; : : : ; 0Þ, as in the corresponding part of the
proof of Theorem 3.1, one has

�Xn−1

i¼1

ka�i kq
�1

q

¼ 1 and
Xn−1

i¼1

ha�i ; ai − ani ¼
�Xn−1

i¼1

kai − ankp
�1

p

:

The proof is completed. ▯
In view of Theorem 3.1, we have the following corollary.
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COROLLARY 3.2. Let A1 and A2 be two closed nonempty subsets of X such that
A1 ∩ A2 ¼ ∅. Then, for any ε > 0, there exist ai ∈ Ai (i ¼ 1, 2) and a� ∈ X� with
ka�k ¼ 1 such that

−a� ∈ NcðA1; a1Þ þ εBX� ; a� ∈ NcðA2; a2Þ þ εBX�

and

ka1 − a2k ¼ ha�; a1 − a2i < dðA1; A2Þ þ ε:

Remark. In Corollary 3.2, ε cannot be taken as 0 even in the convex setting. Indeed,
there exist two closed convex sets A1 and A2 of R2 such that dðA1; A2Þ > 0 but
NðA1; a1Þ ∩ −NðA2; a2Þ ¼ f0g for any a1 ∈ A1 and a2 ∈ A2. Let A1 ¼ fðs; tÞ ∈
R2þ \ f0g∶ 1

s ≤ tg and A2 ¼ R× ½−1;−∞Þ. Then A1 and A2 are closed convex sets. It
is clear that bdðA1Þ ¼ fðs; tÞ ∈ R2þ \ f0g∶t ¼ 1

sg, bdðA2Þ ¼ R× f−1g, and R× f0g is
the asymptotic line of bdðA1Þ. Hence, dðA1; A2Þ ¼ 1,

NðA1; ðs; tÞÞ ¼ Rþ

�
−

1

s2
;−1

�
and NðA2; ðs 0; t 0ÞÞ ¼ Rþð0; 1Þ

for all ðs; tÞ ∈ bdðA1Þ and all ðs 0; t 0Þ ∈ bdðA2Þ. It follows that
NðA1; ðs; tÞÞ ∩ −NðA2; ðs 0; t 0ÞÞ ¼ fð0; 0Þg ∀ ðs; tÞ ∈ A1 and ∀ ðs 0; t 0Þ ∈ A2:

COROLLARY 3.3. Let A1 be a closed nonempty subset of X and A2 a closed, bounded,
and convex nonempty subset of X . Suppose thatA1 ∩ A2 ¼ ∅. Then, for any ε > 0, there
exist a1 ∈ A1 and a� ∈ NcðA1; a1Þ with ka�k ¼ 1 such that

dðA1; A2Þ− ε < inf
x∈A2

ha�; xi− ha�; a1i:

Consequently, if in addition A1 is convex, then

dðA1; A2Þ− ε < inf
x∈A2

ha�; xi−max
x∈A1

ha�; xi:

Proof. Let k be an arbitrary natural number, and take aiðkÞ ∈ Ai such that

ka1ðkÞ− a2ðkÞk < dðA1; A2Þ þ
1

k2
;ð3:5Þ

that is,

ka1ðkÞ− a2ðkÞk < γ1ðA1; A2Þ þ
1

k2
:

By Theorem 3.1, there exist āiðkÞ ∈ Ai and a�i ðkÞ ∈ X� such that

kā1ðkÞ− a1ðkÞk þ kā2ðkÞ− a2ðkÞk <
1

k
;ð3:6Þ

ka�1ðkÞk ¼ 1; a�1ðkÞ þ a�2ðkÞ ¼ 0; a�i ðkÞ ∈ NcðAi; āiðkÞÞ þ
1

k
BX� ; i ¼ 1; 2;
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and

kā1ðkÞ− ā2ðkÞk ¼ ha�1ðkÞ; ā2ðkÞ− ā1ðkÞi:

Take ā�i ðkÞ ∈ NcðAi; āiðkÞÞ such that kā�i ðkÞ− a�i ðkÞk < 1
k (i ¼ 1, 2). Then

1−
1

k
< kā�i ðkÞk < 1þ 1

k
; kā�1ðkÞ þ ā�2ðkÞk <

2

k
;

and so
�
1−

1

k

�
kā1ðkÞ− ā2ðkÞk ≤ hā�1ðkÞ; ā2ðkÞ− ā1ðkÞi

≤ h−ā�2ðkÞ; ā2ðkÞi− hā�1ðkÞ; ā1ðkÞi þ kā�1ðkÞ þ ā�2ðkÞkkā2ðkÞk

≤ −max
x∈A2

hā�2ðkÞ; xi− hā�1ðkÞ; ā1ðkÞi þ
2L

k

≤ inf
x∈A2

hā�1ðkÞ; xi− hā�1ðkÞ; ā1ðkÞi þ
3L

k
;

where L ¼ maxx∈A2
kxk. Let ~a�ðkÞ ≔ ā�1ðkÞ

kā�1ðkÞk. Then ~a�ðkÞ ∈ NcðA1; ā1ðkÞÞ, and it follows
that

�
1− 1

k

�
kā1ðkÞ− ā2ðkÞk− 3L

k

kā�1ðkÞk
≤ inf

x∈A2

h ~a�ðkÞ; xi− h ~a�ðkÞ; ā1ðkÞi:

By (3.5) and (3.6), one has
�
1− 1

k

�
kā1ðkÞ− ā2ðkÞk− 3L

k

kā�1ðkÞk
→ dðA1; A2Þ:

Hence

dðA1; A2Þ− ε < inf
x∈A2

h ~a�ðkÞ; xi− h ~a�ðkÞ; ā1ðkÞi

for all k sufficiently large. The proof is completed. ▯
Remark. In Corollary 3.3, if A2 is compact, then dðA1; A2Þ > 0; taking ε in

ð0; dðA1; A2ÞÞ, one can see that Corollary 3.3 improves and generalizes the convex
separation theorem mentioned in section 1.

The following theorem implies that, when X is an Asplund space, the Clarke normal
cone in Theorem 3.1 can be replaced by the Fréchet normal cone, provided that the
equality in Theorem 3.1(iii) is replaced with an inequality.

THEOREM 3.4. Let X be an Asplund space and A1; : : : ; An be closed nonempty sub-
sets of X such that ⋂n

i¼1 Ai ¼ ∅. Let 1 ≤ p, q ≤ þ∞ with 1
p þ 1

q ¼ 1, ε > 0, and ai ∈ Ai

(1 ≤ i ≤ n) be such that

�Xn−1

i¼1

kai − ankp
�1

p

< γpðA1; : : : ; AnÞ þ ε:
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Then, for any λ > 0 and any ρ ∈ ð0; 1Þ, there exist ~ai ∈ Ai and a�i ∈ X� with the following
properties:

(i) ðPn
i¼1 k ~ai − aikpÞ

1
p < λ.

(ii) ðPn−1
i¼1 ka�i kqÞ

1
q ¼ 1,

P
n
i¼1 a

�
i ¼ 0, and ðPn

i¼1 dða�i ; N̂ðAi; ~aiÞÞqÞ
1
q < ε

λ.
(iii) ρðPn−1

i¼1 k ~ai − ~ankpÞ
1
p ≤

P
n−1
i¼1 ha�i ; ~an − ~aii.

Proof. Let ϕ be as in the proof of Theorem 3.1. Then

ϕða1; : : : ; anÞ < inffϕðx1; : : : ; xnÞ∶ðx1; : : : ; xnÞ ∈ Xng þ ε:

Take ε 0 ∈ ð0; εÞ and λ 0 ∈ ð0; λÞ such that

ε 0

λ 0
<

ε

λ
and ϕða1; : : : ; anÞ < inffϕðx1; : : : ; xnÞ∶ðx1; : : : ; xnÞ ∈ Xng þ ε 0:

It follows from Ekeland’s variational principle that there exists ðā1; : : : ; ānÞ ∈ Xn such
that

�Xn
i¼1

kāi − aikp
�1

p

< λ 0ð3:7Þ

and

ϕðā1; : : : ; ānÞ ≤ ϕðx1; : : : ; xnÞ þ
ε 0

λ 0

�Xn
i¼1

kxi − āikp
�1

p

∀ ðx1; : : : ; xnÞ ∈ Xn:ð3:8Þ

Since ⋂n
i¼1 Ai ¼ ∅, (3.8) implies that

Xn−1

i¼1

kāi − ānk > 0:ð3:9Þ

For each ðx1; : : : ; xnÞ ∈ Xn, let

f ðx1; : : : ; xnÞ ¼
�Xn−1

i¼1

kxi − xnkp
�1

p

þ ε 0

λ 0

�Xn
i¼1

kxi − āikp
�1

p

:

By (3.8) and the definition of ϕ, one has 0 ∈ ∂̂ðf þ δA1× · · ·×An
Þðā1; : : : ; ānÞ. Let

0 < β < minfελ − ε 0
λ 0 ; λ− λ 0g. Then, by the Asplund space version of Lemma 2.1 and

(3.9), there exist x̄i ∈ X and ~ai ∈ Ai such that

�Xn
i¼1

kx̄i − āikp
�1

p

< β;

�Xn
i¼1

k ~ai − āikp
�1

p

< β; 0 <
Xn−1

i¼1

kx̄i − x̄nk;ð3:10Þ

and

0 ∈ ∂̂f ðx̄1; : : : ; x̄nÞ þ N̂ðA1× · · · ×An; ð ~a1; : : : ; ~anÞÞ þ βBn
X� :ð3:11Þ

It follows from (3.7) that (i) holds. Let g be as in the proof of Theorem 3.1. Then,
f ¼ gþ ε 0

λ 0 k · kXn . By the convexity of f and g, one has
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∂̂fðx̄1; : : : ; x̄nÞ ¼ ∂gðx̄1; : : : ; x̄nÞ þ
ε 0

λ 0
BðXnÞ� :

It follows from (3.11) that

0 ∈ ∂gðx̄1; : : : ; x̄nÞ þ N̂ðA1; ~a1Þ× · · · ×N̂ðAn; ~anÞ þ
�
βþ ε 0

λ 0

�
BðXnÞ� :

Hence there exists −ða�1; : : : ; a�nÞ ∈ ∂gðx̄1; : : : ; x̄nÞ such that

�Xn
i¼1

dða�i ; N̂ðAi; ~aiÞÞq
�1

q

≤ βþ ε 0

λ 0
<

ε

λ
:

Noting (by the third inequality of (3.10)) that ðx̄1 − x̄n; : : : ; x̄n−1 − x̄nÞ ≠ ð0; : : : ; 0Þ, as
in the corresponding part of the proof of Theorem 3.1, one has

�Xn−1

i¼1

ka�i kq
�1

q

¼ 1 and
Xn−1

i¼1

ha�i ; x̄n − x̄ii ¼
�Xn−1

i¼1

kx̄i − x̄nkp
�1

p

:

It follows from (3.10) that

Xn−1

i¼1

ha�i ; ~an − ~aii ¼
Xn−1

i¼1

ha�i ; x̄n − x̄ii þ
Xn−1

i¼1

ha�i ; ~an − x̄n − ð ~ai − x̄iÞi

≥
�Xn−1

i¼1

kx̄i − x̄nkp
�1

p

−
�Xn−1

i¼1

k ~an − x̄n − ð ~ai − x̄iÞkp
�1

p

≥
�Xn−1

i¼1

k ~ai − ~ankp
�1

p

− 2

�Xn−1

i¼1

k ~an − x̄n − ð ~ai − x̄iÞkp
�1

p

≥
�Xn−1

i¼1

k ~ai − ~ankp
�1

p

− 2

�Xn−1

i¼1

ð4βÞp
�1

p

≥
�Xn−1

i¼1

k ~ai − ~ankp
�1

p

− 8ðn− 1Þβ:

Note that β is arbitrary in ð0;minfελ − ε 0
λ 0 ; λ− λ 0gÞ and that (3.10) and (3.9) imply that

limβ→0þ

��Xn−1

i¼1

k ~ai − ~ankp
�1

p

− 8ðn− 1Þβ
�

¼
�Xn−1

i¼1

kāi − ānkp
�1

p

> 0:

By ρ ∈ ð0; 1Þ, one has

limβ→0þρ

�Xn−1

i¼1

k ~ai − ~ankp
�1

p

¼ ρ

�Xn−1

i¼1

kāi − ānkp
�1

p

< limβ→0þ

��Xn−1

i¼1

k ~ai − ~ankp
�1

p

− 8ðn− 1Þβ
�
:
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It follows that there exists β ∈ ð0;minfελ − ε 0
λ 0 ; λ− λ 0gÞ sufficiently small such that

ρ

�Xn−1

i¼1

k ~ai − ~ankp
�1

p

<
�Xn−1

i¼1

k ~ai − ~ankp
�1

p

− 8ðn− 1Þβ:

Consequently ρðPn−1
i¼1 k ~ai − ~ankpÞ

1
p <

P
n−1
i¼1 ha�i ; ~ai − ~ani. The proof is completed. ▯

Remark. The extremal principle by Mordukhovich et al. plays a key role in varia-
tional analysis in infinite dimensional spaces and deals with finitely many closed sets
with a special common point (named as an extremal point). In contrast, Theorem A
mentioned in section 1 deals with finitely many closed sets whose intersections are
empty. As observed in [29, p. 1161, Remark], Theorem A improves the extremal prin-
ciple. But, none of these fuzzy separation results can recapture the classical convex se-
paration theorem even in the special case of a singleton and a closed convex set. We
emphasize that the points ~ai and a�i (i ¼ 1; 2; : : : ; n) in Theorem 3.1 (and Theorem 3.4)
satisfy properties (i), (ii), and (iii) simultaneously: if we only require these points to
satisfy (i) and (ii), then the task is relatively easier and the contents of these theorems
are basically the same as Theorem A, but to require the points to have the additional
property (iii) makes the result even more interesting, so that it not only covers the ex-
isting fuzzy separation results but also recaptures the classical convex separation the-
orem mentioned in section 1. But, the existing fuzzy separation results cannot cover the
convex separation theorem even in the special case of a singleton and a closed convex set.

In view of the above fuzzy separation theorem, we can establish approximate
projection results as follows. In the special case when n ¼ 1, these approximate projec-
tion results have been known and played an important role in the study of error bound,
metric regularity, and metric linear regularity for generalized equations (cf. [30], [31]).

COROLLARY 3.5. Let X be an Asplund space and A1; : : : ; An be closed nonempty
subsets of X . Let x ∈ X \⋂n

i¼1 Ai and ρ ∈ ð0; 1Þ. Then there exist ai ∈ Ai and
a�i ∈ X� (1 ≤ i ≤ n) such that the following assertions hold:

(i) max1≤i≤nka�i k ¼ 1 and a�i ∈ N̂ðAi; aiÞ (1 ≤ i ≤ n).
(ii) ρ

P
n
i¼1 kx− aik ≤ min fPn

i¼1 dðx; AiÞ;
P

n
i¼1ha�i ; x− aiig.

Proof. For each natural number k, take aiðkÞ ∈ Ai (1 ≤ i ≤ n) such that

Xn
i¼1

kaiðkÞ− xk <
Xn
i¼1

dðx; AiÞ þ
1

k2
:ð3:12Þ

Let Anþ1 ≔ fxg. Then γ1ðA1; : : : ; An; Anþ1Þ ¼
P

n
i¼1 dðx; AiÞ and

Xn
i¼1

kaiðkÞ− xk < γ1ðA1; : : : ; An; Anþ1Þ þ
1

k2
:

By Theorem 3.4 (applied to a1 ¼ a1ðkÞ; : : : ; an ¼ anðkÞ, anþ1 ¼ x, ε ¼ 1
k2
, λ ¼ 1

k, and
ρ ¼ 1− 1

k), there exist ~aiðkÞ ∈ Ai and a�i ðkÞ ∈ X� such that

Xn
i¼1

k ~aiðkÞ− aiðkÞk <
1

k
;ð3:13Þ

max
1≤i≤n

ka�i ðkÞk ¼ 1; a�i ðkÞ ∈ N̂ðAi; ~aiðkÞÞ þ
1

k
BX� ð1 ≤ i ≤ nÞ;ð3:14Þ
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and
�
1−

1

k

�Xn
i¼1

k ~aiðkÞ− xk ≤
Xn
i¼1

ha�i ðkÞ; x− ~aiðkÞi:ð3:15Þ

For each i, take ~a�i ðkÞ ∈ N̂ðAi; ~aiðkÞÞ such that k ~a�i ðkÞ− a�i ðkÞk ≤ 1
k, and let ηk ≔

max1≤i≤nk ~a�i ðkÞk. It follows from (3.15) that

1

ηk

�
1−

2

k

�Xn
i¼1

k ~aiðkÞ− xk ≤
Xn
i¼1

�
~a�i ðkÞ
ηk

; x− ~aiðkÞ
�
:ð3:16Þ

Clearly, (3.12) and (3.13) imply that

Xn
i¼1

k ~aiðkÞ− xk <
Xn
i¼1

dðx; AiÞ þ
1

k
þ 1

k2
:

Noting that ηk → 1 as k → ∞, ρ ∈ ð0; 1Þ, and 0 <
P

n
i¼1 dðx; AiÞ ≤

P
n
i¼1 k ~aiðkÞ− xk for

all k, it follows from (3.16) that

ρ
Xn
i¼1

k ~aiðkÞ− xk ≤ min

�Xn
i¼1

dðx;AiÞ;
Xn
i¼1

�
~a�i ðkÞ
ηk

; x− ~aiðkÞ
��

for all k sufficiently large. The proof is completed. ▯
Similar to the proof of Corollary 3.5 (with Theorem 3.1 replacing Theorem 3.4), one

can prove the following result.
COROLLARY 3.6. Let X be a general Banach space and A1; : : : ; An be closed

nonempty subsets of X . Let x ∈ X \⋂n
i¼1 Ai and ρ ∈ ð0; 1Þ. Then there exist ai ∈ Ai

and a�i ∈ X�(1 ≤ i ≤ n) such that the following assertions hold:
(i) max1≤i≤nka�i k ¼ 1 and a�i ∈ NcðAi; aiÞ (1 ≤ i ≤ n).
(ii) ρ

P
n
i¼1 kai − xk ≤ min fPn

i¼1 dðx; AiÞ;
P

n
i¼1ha�i ; ai − xig.

Theorems 3.1 and 3.4 unify the classical convex separation theorem and existing
fuzzy separation results mentioned in section 1.

4. Application to multiobjective optimization. Let Y be a Banach space and
K be a closed convex pointed cone in Y , which specifies a partial order ≤K on Y as
follows: for y1, y2 ∈ Y ,

y1 ≤K y2 if and only if y2 − y1 ∈ K:

Let Kþ denote the dual cone of K ; that is,

Kþ ≔ fy� ∈ Y �∶0 ≤ hy�; yi ∀y ∈ Kg:

Let Z be a subset of Y and recall that y ∈ Z is said to be a Pareto efficient point, written
as y ∈ EðZ;KÞ, if z ∈ Z and z ≤K y ⇒ z ¼ y. It is known and easy to verify that

y ∈ EðZ;KÞ ⇔ ðZ þKÞ ∩ ðy−KÞ ¼ fyg:

In the case when intðKÞ ≠ ∅, recall that y ∈ Z is said to be a weak Pareto efficient point,
written as y ∈ WEðZ;KÞ, if

898 XI YIN ZHENG AND KUNG FU NG

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



ðZ þKÞ ∩ ðy− intðKÞÞ ¼ ∅:

Throughout this section, let X;Y 0; Y 1; : : : ; Ym be Banach spaces, Φi∶X ⇉ Yi

(i ¼ 0; 1; : : : ;m) be closed multifunctions, A be a closed subset of X , and Ki be a closed
convex cone in Yi (i ¼ 0; 1; : : : ;m). We consider the following constraint vector opti-
mization problem:

K0 −min Φ0ðxÞ;
ΦiðxÞ ∩ −Ki ≠ ∅; i ¼ 1; : : : ;m;

x ∈ A:ð4:1Þ

In the special case when Y 0 ¼ · · ·¼ Ym ¼ R, K0 ¼ · · ·¼ Kn ¼ Rþ, Knþ1 ¼ · · ·¼
Km ¼ f0g, and each Φi is single-valued, (4.1) reduces to the usual constraint numerical
optimization problem. In the remainder of this section, suppose that K 0 is pointed, and
let Z denote the feasible set of (4.1); that is,

Z ≔ A ∩
�
⋂
m

i¼
Φ−1

i ð−KiÞ
�
:ð4:2Þ

For x̄ ∈ Z and ȳ ∈ Φ0ðx̄Þ, we say that ðx̄; ȳÞ is a Pareto solution (resp., weak Pareto
solution) of vector optimization problem (4.1) if

ȳ ∈ EðΦ0ðZÞ; K0Þ ðresp:; ȳ ∈ WEðΦ0ðZÞ; K0ÞÞ;

that is,

Φ0ðZÞ ∩ ðȳ−K0Þ ¼ fȳg

ðresp:; Φ0ðZÞ ∩ ðȳ− intðK0ÞÞ ¼ ∅Þ:

It is well known that

ȳ ∈ EðΦ0ðZÞ; K0Þ ⇔ ðΦ0ðZÞ þK 0Þ ∩ ðȳ−K0Þ ¼ fȳg:ð4:3Þ

Many authors have established sufficient or necessary optimality conditions for Pareto
solutions and weak Pareto solutions of constraint vector optimization (4.1) (see [3], [5],
[6], [17], [21], [26], [27], [28], [29], [32], and references therein). In general, even in the case
when Y 0 ¼ · · ·¼ Yn, K0 ¼ · · ·¼ Kn ¼ Rþ, and each Φi is single-valued, (4.1) need not
have a (Pareto or weak Pareto) solution if X is infinite dimensional. So it is natural and
interesting to consider some kinds of approximate solutions. Let Φ0∶X → R ∪ fþ∞g be
a proper lower semicontinuous function bounded below on Z . For ε > 0, one naturally
defines that x̄ ∈ Z is an ε-approximate solution of the following problem:

min
x∈Z

Φ0ðxÞðNOPÞ

if

Φ0ðx̄Þ < inffΦ0ðxÞ∶x ∈ Zg þ ε;

or equivalently,
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diamððΦ0ðZÞ þ RþÞ ∩ ðΦ0ðaÞ− RþÞÞ < ε:ð4:4Þ

Motivated by (4.3) and (4.4), we introduce the following notions of an approximate
Pareto solution for vector optimization problem (4.1).

DEFINITION 4.1. Let ε > 0, x̄ ∈ Z , and ȳ0 ∈ Φ0ðx̄Þ. We say that ðx̄; ȳ0Þ is
(i) an ε-Pareto solution of (4.1) if

diamððΦ0ðZÞ þK 0Þ ∩ ðȳ0 −K 0ÞÞ < ε;ð4:5Þ

(ii) a weak ε-Pareto solution of (4.1) if there exists e ∈ εBY 0
such that

Φ0ðZÞ ∩ ðȳ0 þ e−K0Þ ¼ ∅ð4:6Þ

(whether intðK0Þ is empty or not).
PROPOSITION 4.1. Let ε > 0, x̄ ∈ Z , and ȳ0 ∈ Φ0ðx̄Þ be such that ðx̄; ȳ0Þ is an ε-Pareto

solution of (4.1). Then, (4.6) holds for any e ∈ −K0 with kek ≥ ε. Consequently, ðx̄; ȳ0Þ
is a weak ε-Pareto solution of (4.1).

Proof. Take an arbitrary e in −K0 with kek ≥ ε. Noting that ȳ0 ∈ ðΦ0ðZÞ þK0Þ ∩
ðȳ0 −K0Þ and kȳ0 − ðȳ0 þ eÞk ¼ kek ≥ ε, (4.5) implies that ȳ0 þ e ∈= ðΦ0ðZÞ þK0Þ ∩
ðȳ0 −K0Þ, and so

ðΦ0ðZÞ þK0Þ ∩ ðȳ0 þ e−K0Þ ¼ ∅:

This shows that ðx̄; ȳ0Þ is a weak ε-Pareto solution of (4.1). ▯
By Definition 4.1, it is clear that if ðx̄; ȳ0Þ is a Pareto solution of (4.1), then ðx̄; ȳ0Þ is

an ε-Pareto solution of (4.1) for any ε > 0. In the case when intðK0Þ ≠ ∅, noting that
e−K0 ⊂ −intðK0Þ for each e ∈ −intðK0Þ, it is easy from Definition 4.1 to verify that if
ðx̄; ȳ0Þ is a weak Pareto solution of (4.1), then ðx̄; ȳ0Þ is a weak ε-Pareto solution of (4.1)
for any ε > 0. The following example shows that ðx̄; ȳ0Þ is not necessarily an ε-Pareto
solution of (4.1) when ðx̄; ȳ0Þ is a weak Pareto solution of (4.1).

Example. Let X ¼ Y 0 ¼ · · ·¼ Ym ¼ R2, K 1 ¼ · · ·¼ Km ¼ R2, K0 ¼ R2þ, A ¼ R2,
Φ1 ¼ · · ·¼ Φm ¼ IR2 , and

Φ0ðs; tÞ ¼ fðs; 0Þg ∀ ðs; tÞ ∈ R2:

Then, Z ¼ R2 and Φ0ðZÞ þK0 ¼ R× Rþ. Let ðs; tÞ ∈ Z . It is easy to verify that
ððs; tÞ; ðs; 0ÞÞ is a weak Pareto solution of (4.1) and

ðΦ0ðZÞ þK 0Þ ∩ ððs; 0Þ−K0Þ ¼ ð−∞; s�× f0g;

and so diamððΦ0ðZÞ þK0Þ ∩ ððs; 0Þ−K 0ÞÞ ¼ þ∞. Hence ððs; tÞ; ðs; 0ÞÞ is not an ε-
Pareto solution of (4.1) for any ε > 0.

Given a fixed e0 ∈ K0 \ f0g, in 1979, Kutateladze introduced the concept of an
ðε; e0Þ-minimizer of Φ0ðZÞ with respect to K0∶ ȳ0 ∈ Φ0ðZÞ is said to be an ðε; e0Þ-mini-
mizer of Φ0ðZÞ if (4.6) holds for e ¼ −εe0. Kutateladze’s concept is a very popular kind
of ε-solution in vector optimization (see [1], [2] for the details). Several authors consid-
ered other kinds of ε-solutions for vector optimization (see [9], [19], [24], [25]). Recently,
Gutierrez, Jiménez, and Novo [8] introduced a new ε-solution concept that extends
many ε-solution notions introduced in the literature. Most of the existing approximate
solutions are weaker than the ε-Pareto solution and stronger than the weak ε-Pareto
solution. We will provide some necessary conditions for the existence of weak ε-Pareto
solutions and some sufficient conditions for the existence of ε-Pareto solutions.
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It is trivial that if a real-valued function ϕ∶X → R is bounded below over a subset Z
of X , then for any ε > 0 there exists xε ∈ Z such that

ϕðxεÞ− ε < ϕðxÞ ∀ x ∈ Z:

It is natural to ask whether the corresponding result on ε-Pareto solutions for vector
optimization is true. The following example says that the answer to this problem is
negative.

Example. Let X ¼ R, p ∈ ½1;þ∞Þ, Y ¼ lp, and F∶X ⇉ Y be such that

FðxÞ ¼
��

1

jxj þ 1
; 0; 0; : : :

��
∀ x ∈ X:

Then F is a continuous single-valued function. Let Z ¼ X and K0 consist of all
y ¼ ðt1; t2; : : : Þ ∈ lp such that

P
n
k¼1 tk ≥ 0 for each n ∈ N. It is clear that K0 is a closed

convex pointed cone inY , and 0 is a lower bound of F over Z with respect toK0. Now we
show that (4.1) has no ε-Pareto solution for any ε > 0. Indeed, let x̄ ∈ X , ū ¼ 2jx̄j þ 1,
ȳ ≔ ð 1

jx̄jþ1 ; 0; : : : Þ, and z̄ ≔ ð 1
2ðjx̄jþ1Þ ; 0; : : : Þ. Then Fðx̄Þ ¼ fȳg and FðūÞ ¼ fz̄g. For

any n ∈ N, let yn ≔ ð0; s1; : : : ; s2n; 0; : : : Þ be such that s2k−1 ¼ − 1
4ðjx̄jþ1Þ and

s2k ¼ 1
4ðjx̄jþ1Þ × ðk ¼ 1; : : : ; nÞ. It is easy to verify that

ȳþ yn ∈ ðz̄ þK0Þ ∩ ðȳ−K 0Þ ⊂ ðFðZÞ þK0Þ ∩ ðȳ−K0Þ ∀ n ∈ N:

Noting that ȳ ∈ ðFðZÞ þK0Þ ∩ ðȳ−K 0Þ, it follows that

diamððFðZÞ þK0Þ ∩ ðȳ−K0ÞÞ ≥ kynk ¼ n

2ðjx̄j þ 1Þ → þ∞:

This shows that ðx̄; ȳÞ is not an ε-Pareto solution of (4.1) for any ε > 0.
We will show that (4.1) always has a weak ε-Pareto solution if the objective

multifunction Φ0 is bounded below on the feasible set Z with respect to K 0. Moreover,
under the mild assumption on the ordering cone, we can establish the same result for
ε-Pareto solutions. To do this, recall that a closed convex cone K of a Banach space Y is
said to have a bounded base if there exists a bounded closed convex subset Θ of K such
that

0 ∈= Θ and K ¼ ftθ∶t ≥ 0 and θ ∈ Θg:ð4:7Þ

It is known that every closed convex pointed cone in a finite dimensional Banach space
has a bounded base (cf. [11]).

PROPOSITION 4.2. Let the objective multifunction Φ0 be bounded below on the feasible
set Z with respect to K0; that is, there exists b ∈ Y 0 such that

b ≤K 0
y ∀ y ∈ Φ0ðZÞ:

Then the following statements hold:
(i) For any ε > 0, (4.1) always has a weak ε-Pareto solution.
(ii) If, in addition, K0 has a bounded base, then, for any ε > 0, (4.1) has

an ε-Pareto solution.
Proof. Note that K0 is pointed and K 0 ≠ f0g. Hence there exist y�0 ∈ Kþ

0 and c0 ∈
K0 such that hy�0; c0i > 0. Since Φ0 is bounded below on Z with respect to K 0, for any
ε > 0, there exist x̄ ∈ Z and ȳ0 ∈ Φ0ðx̄Þ such that

UNIFIED SEPARATION THEOREM FOR CLOSED SETS 901

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



hy�0; ȳ0i < inf
y∈Φ0ðZÞ

hy�0; yi þ
�
y�0;

εc0
kc0k

�
:

It follows that Φ0ðZÞ ∩ ðȳ0 − εc0
kc0k −K 0Þ ¼ ∅. Hence ðx̄; ȳ0Þ is a weak ε-Pareto solution

of (4.1). This shows that (i) holds.
To prove (ii), suppose that K0 has a bounded base. Hence there exists a bounded

closed convex subset Θ of K0 such that (4.7) holds. By the separation theorem, there
exists y�0 ∈ Y �

0 with ky�0k ¼ 1 such that

η ≔ inf
θ∈Θ

hy�0; θi > 0:ð4:8Þ

This and (4.7) imply that y�0 ∈ Kþ
0 . Since Φ0 is bounded below on Z with respect to K 0,

y�0 is bounded below on Φ0ðZÞ and hence is bounded below on Φ0ðZÞ þK 0. Let ε be an
arbitrary positive number and take x̄ ∈ Z and ȳ0 ∈ Φ0ðZÞ such that

hy�0; ȳ0i−
ηε

2M
< inf

y∈Φ0ðZÞþK 0

hy�0; yi;ð4:9Þ

where M ¼ supθ∈Θkθk. On the other hand, (4.8) implies that

hy�0; ȳ0 − tθi ≤ hy�0; ȳ0i−
εη

2M
∀ ðt; θÞ ∈

	
ε

2M
;þ∞

�
× Θ:

It follows from (4.9) that ȳ0 − tθ ∈= Φ0ðZÞ þK0 for any ðt; θÞ ∈ ½ ε
2M ;þ∞Þ× Θ; that is,

ðΦ0ðZÞ þK 0Þ ∩ ðȳ0 −K 0Þ ⊂
�
0;

ε

2M

�
Θ:

Hence diamððΦ0ðZÞ þK 0Þ ∩ ðȳ0 −K 0ÞÞ ≤ ε
2. This shows that ðx̄; ȳ0Þ is an ε-Pareto

solution of (4.1). The proof is completed.
For various types of approximate solutions for (4.1), the following implications

indicated in the diagram hold (“¼⇒” is under the assumption that intðK0Þ ≠ ∅):

Remark. All “reverve implications” are not valid, and “weak Pareto” does not imply
“ε-Pareto.”

Let ϕ∶X → R be a real-valued Lipschtiz function such that ϕ is bounded below on
Z . It is well known (cf. [4]) that for any ε > 0 there exists aε ∈ A such that

ϕðaεÞ < inf
x∈Z

ϕðxÞ þ ε and dð0; ∂cϕðaεÞ þ NcðZ; aεÞÞ < ε:

In this section, based on fuzzy separations obtained in section 3, we consider the
corresponding issues for multiobjective optimization problem (4.1). To do this, we first
provide the Lagrange-like multiplier rule for a weak ε-Pareto solution of (4.1).

THEOREM 4.3. Let ε > 0 and ðx̄; ȳ0Þ be a weak ε-Pareto solution of (4.1). Let ȳi ∈
Φiðx̄Þ ∩ −Ki (i ¼ 1; : : : ;m). Then, for any λ > 0 there exist xi ∈ Bðx̄; λÞ, yi ∈ ΦiðxiÞ ∩
Bðȳi; λÞ, xmþ1 ∈ A ∩ Bðx̄; λÞ, c�i ∈ Kþ

i ,
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x�i ∈ D�
cΦiðxi; yiÞ

�
c�i þ

ε

λ
BY �

i

�
þ ε

λ
BX� ð0 ≤ i ≤ mÞ; and

x�mþ1 ∈ NcðA; xmþ1Þ þ
ε

λ
BX�

such that
P

mþ1
i¼0 x�i ¼ 0 and

1

2
−

ε

λ
<

Xm
i¼0

ðkx�i k þ kc�i kÞ < 1þ ε

λ
.ð4:10Þ

Proof. Since ðx̄; ȳ0Þ is a weak ε-Pareto solution of (4.1), there exists e ∈ Y 0 with
kek < ε such that (4.6) holds. Equip the product space X ×

Q
m
i¼0 Yi with the following

norm:

kðx; y0; : : : ; ymÞk ≔ max

�
kxk; max

0≤i≤m
kyik

�
∀ ðx; y0; : : : ; ymÞ ∈ X ×

Ym
i¼0

Yi

and let

Ai ≔
�
ðx; y0; : : : ; ymÞ ∈ X ×

Ym
i¼0

Yi∶ðx; yiÞ ∈ GrðΦiÞ
�

ði ¼ 0; 1; : : : ;mÞ;

Amþ1 ≔ A× ðȳ0 þ e−K 0Þ×
Ym
i¼1

ðȳi −KiÞ:

We claim that ⋂mþ1
i¼0 Ai ¼ ∅. To do this, suppose to the contrary that there exist ~x ∈ A

and ~yi ∈ Φið ~xÞ (i ¼ 0; 1; : : : ;m) such that

~y0 ∈ ȳ0 þ e−K 0 and ~yi ∈ ȳi −Ki ⊂ −Ki ði ¼ 1; : : : ;mÞ:

It follows that ~x ∈ A ∩ ð⋂m
i¼1 Φ−1

i ð−KiÞÞ ¼ Z , and so

~y0 ∈ Φ0ðZÞ ∩ ðȳ0 þ e−K 0Þ;

contradicting (4.6). This shows that ⋂mþ1
i¼0 Ai ¼ ∅. Let

a0 ¼ · · ·¼ am ¼ ðx̄; ȳ0; ȳ1; : : : ; ȳmÞ and amþ1 ¼ ðx̄; ȳ0 þ e; ȳ1; : : : ; ȳmÞ:

Then

max
0≤i≤m

kai − amþ1k ¼ kek < ε ≤ γ∞ðA0; A1; : : : ; Amþ1Þ þ ε:

By Theorem 3.1, there exist āi ¼ ðxi; yi;0; : : : ; yi;mÞ ∈ Ai and ðx�i ; y�i;0; : : : ; y�i;mÞ ∈
ðX × Y 0× · · · ×Ymþ1Þ� such that

Xmþ1

i¼0

dððx�i ; y�i;0; : : : ; y�i;mÞ; NcðAi; āiÞÞ <
ε

λ
;ð4:11Þ
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max
0≤i≤mþ1

kāi−aik ¼ max
0≤i≤m

�
max

�
kxi − x̄k; max

0≤k≤m
kyi;k − ȳkk

�
;

max

�
kxmþ1− x̄k; kymþ1;0− ȳ0−ek; max

1≤k≤m
kymþ1;k− ȳkk

��
< λ;ð4:12Þ

Xmþ1

i¼0

�
kx�i k þ

Xm
k¼0

ky�i;kk
�

¼ 1;ð4:13Þ

and

Xmþ1

i¼0

ðx�i ; y�i;0; : : : ; y�i;mÞ ¼ 0:ð4:14Þ

By the definition of each Ai, one has

NcðAmþ1; āmþ1Þ ⊂ NcðA; xmþ1Þ×
Ym
i¼0

Kþ
i

and

NcðAi; āiÞ ¼ fðx�; y�0; : : : ; y�mÞ∶ðx�; y�i Þ ∈ NcðGrðΦiÞ; ðxi; yi;iÞÞ and y�k ¼ 0 ∀k ≠ ig

for 0 ≤ i ≤ m. This and (4.11) imply that there exist

ð ~x�i ; ~y�i Þ ∈ NcðGrðΦiÞ; ðxi; yi;iÞÞ ð0 ≤ i ≤ mÞ;ð4:15Þ

~x�mþ1 ∈ NcðA; xmþ1Þ; and ðc�0; : : : ; c�mÞ ∈
Ym
k¼0

Kþ
kð4:16Þ

such that

Xmþ1

i¼0

k ~x�i − x�i k þ
Xm
i¼0

k ~y�i − y�i;ik þ
Xm

i;k¼0;k≠i
ky�i;kk þ

Xm
k¼0

ky�mþ1;k − c�kk <
ε

λ
:ð4:17Þ

It follows from (4.14) that

− ~y�k ¼ c�k þ ðy�k;k − ~y�kÞ þ ðy�mþ1;k − c�kÞ þ
Xm

i¼0;i≠k
y�i;k ∈ c�k þ

ε

λ
BY �

k
; 0 ≤ k ≤ m:

By (4.14)–(4.17), one has

x�k ∈ D�
cΦkðxk; yk;kÞ

�
c�k þ

ε

λ
BY �

k

�
þ ε

λ
BX� ; k ¼ 0; 1 : : : ;m;

x�mþ1 ∈ NcðA; xmþ1Þ þ
ε

λ
BX� ; and

Xmþ1

i¼0

x�i ¼ 0:
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It remains to show (4.10). To do this, note from (4.14) that
P

m
i¼0 x

�
i ¼ −x�mþ1, and so

Xmþ1

i¼0

kx�i k ≤ 2
Xm
i¼0

kx�i k:ð4:18Þ

Similarly, by (4.14), one has −y�k;k ¼ y�mþ1;k þ
P

i¼0;i≠ky
�
i;k, and so

Xm
k¼0

ky�k;kk ≤
Xm
k¼0

ky�mþ1;kk þ
Xm

i;k¼0;i≠k
ky�i;kk;

hence

Xmþ1

i¼0

Xm
k¼0

ky�i;kk ≤
Xm
k¼0

ky�mþ1;kk þ
Xm

i;k¼0;i≠k
ky�i;kk þ

Xm
k¼0

ky�k;kk

≤ 2

�Xm
k¼0

ky�mþ1;kk þ
Xm

i;k¼0;i≠k
ky�i;kk

�
:ð4:19Þ

By adding up the estimates (4.18) and (4.19) and making use of (4.13), we have

1 ≤ 2

�Xm
i¼0

kx�i k þ
Xm
k¼0

ky�mþ1;kk þ
Xm

i;k¼0;i≠k
ky�i;kk

�
;

and so

1

2
≤

Xm
i¼0

ðkx�i k þ kc�i kÞ þ
Xm
k¼0

ky�mþ1;kk þ
Xm

i;k¼0;i≠k
ky�i;k − c�i k

<
Xm
i¼0

ðkx�i k þ kc�i kÞ þ
ε

λ

(see (4.17)). Thus the first inequality in (4.10) holds. Moreover, respectively by (4.13)
and (4.17), note that

Xm
i¼0

ðkx�i k þ ky�mþ1;ikÞ ≤ 1 and
Xm
i¼0

kc�i − y�mþ1;ik <
ε

λ
:

Thus, by the triangle inequality, we also see that the second inequality in (4.10) holds.
The proof is completed. ▯

THEOREM 4.4. Let Φ0 be bounded below on the feasible set Z with respect to the or-
dering cone K 0, and suppose that K0 has a bounded base. Then one of the following two
assertions holds:

(i) For any ε > 0, there exist x̄ ∈ Z and ȳ0 ∈ Φ0ðx̄Þ such that ðx̄; ȳ0Þ is an ε-
Pareto solution of (4.1), and there exist x0 ∈ Bðx̄; εÞ, y0 ∈ Φ0ðx0Þ ∩
Bðȳ0; εÞ, xi ∈ Bðx̄; εÞ and yi ∈ ΦiðxiÞ ∩ ð−Ki þ εBYi

Þ (1 ≤ i ≤ m), a ∈ A ∩
Bðx̄; εÞ, and c�i ∈ Kþ

i satisfying the following properties:

Xm
i¼0

kc�i k ¼ 1 and 0 ∈
Xm
i¼0

D�
cΦiðxi; yiÞðc�i þ εBY �

i
Þ þ NcðA; aÞ þ εBX� :
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(ii) For any ε > 0, there exist x̄ ∈ Z and ȳ0 ∈ Φ0ðx̄Þ such that ðx̄; ȳ0Þ is an ε-
Pareto solution of (4.1) and there exist x0 ∈ Bðx̄; εÞ, y0 ∈ Φ0ðx0Þ ∩
Bðȳ0; εÞ, xi ∈ Bðx̄; εÞ and yi ∈ ΦiðxiÞ ∩ ð−Ki þ εBYi

Þ (1 ≤ i ≤ m), a ∈ A ∩
Bðx̄; εÞ,

x�i ∈ D�
cΦiðxi; yiÞðεBY �

i
Þ; and a� ∈ NcðA; aÞ þ εBX�

satisfying the following properties:

Xm
i¼0

x�i þ a� ¼ 0 and
Xm
i¼0

kx�i k þ ka�k ¼ 1:

Proof. By Proposition 4.2, for any n ∈ N there exist x̄n ∈ Z and ȳn ∈ Φ0ðx̄nÞ such
that ðx̄n; ȳnÞ is a 1

n2-Pareto solution of (4.1). By Theorem 4.3 (applied to ε ¼ 1
n2 and

λ ¼ 1
n), there exist x0ðnÞ ∈ Bðx̄n; 1nÞ, y0ðnÞ ∈ Φ0ðx0ðnÞÞ ∩ Bðȳn; 1nÞ, xiðnÞ ∈ Bðx̄n; 1nÞ

and yiðnÞ ∈ ΦiðxiðnÞÞ ∩ ð−Ki þ 1
n BYi

Þ (1 ≤ i ≤ m), xmþ1ðnÞ ∈ A ∩ Bðx̄n; 1nÞ, c�i ðnÞ ∈
Kþ

i ,

x�i ðnÞ ∈ D�
cFðxiðnÞ; yiðnÞÞ

�
c�i ðnÞ þ

1

n
BY �

i

�
þ 1

n
BX� ; 0 ≤ i ≤ m;ð4:20Þ

and

x�mþ1ðnÞ ∈ NcðA; xmþ1ðnÞÞ þ
1

n
BX�ð4:21Þ

such that

Xmþ1

i¼0

x�i ðnÞ ¼ 0 and 1þ 1

n
> max

0≤i≤m
kx�i ðnÞk þ kc�i ðnÞk >

1

2
−

1

n
:ð4:22Þ

For each n ∈ N, let rn ≔
P

m
i¼0 kc�i ðnÞk. We first consider the case when frng is not con-

vergent to 0. In this case, without loss of generality, we assume that rn ≥ r for some
positive constant r and for all n ∈ N (if necessary take a subsequence). Let

~c�i ðnÞ ≔ c�i ðnÞ
rn

. Then, ~c�i ðnÞ ∈ Kþ
i ,

P
m
i¼0 k ~c�i ðnÞk ¼ 1, and it follows from (4.20)–(4.22)

that

0 ∈
Xm
i¼0

D�
cFðxiðnÞ; yiðnÞÞ

�
~c�i ðnÞ þ

1

nr
BY �

i

�
þNcðA; xmþ1ðnÞÞ þ

mþ 2

nr
BX� ∀ n ∈ N:

This implies that (i) holds. Now assume that rn → 0. In this case, by (4.22),
ln ≔

P
mþ1
i¼0 kx�i ðnÞk ≥ 1

3 for all n sufficiently large. It follows from (4.20)–(4.22) that

x�i ðnÞ
ln

∈ D�
cFðxiðnÞ; yiðnÞÞ

��
rn
ln

þ 1

nln

�
BY �

i

�
þ 1

nln
BX�; 0 ≤ i ≤ m;

x�mþ1ðnÞ
ln

∈ NcðA; xmþ1ðnÞÞ þ
1

nln
BX� ;
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Xmþ1

i¼0

x�i ðnÞ
ln

¼ 0; and
Xmþ1

i¼0





 x
�
i ðnÞ
ln





 ¼ 1:

This implies that (ii) holds. The proof is completed. ▯
In the Asplund space case, similar to the proofs of Theorems 4.3 and 4.4, we can

prove the following Theorems 4.5 and 4.6 (but with Theorem 3.4 replacing Theorem 3.1).

THEOREM 4.5. Let X;Y 0; : : : ; Ym be Asplund spaces. Let ε > 0 and ðx̄; ȳ0Þ be a weak
ε-Pareto solution of (4.1). Let ȳi ∈ Φiðx̄Þ ∩ −Ki (i ¼ 1; : : : ;m). Then, for any λ > 0,
there exist xi ∈ Bðx̄; λÞ, yi ∈ ΦiðxiÞ ∩ Bðȳi; λÞ, xmþ1 ∈ A ∩ Bðx̄; λÞ, c�i ∈ Kþ

i ,

x�i ∈ D̂�Φiðxi; yiÞ
�
c�i þ

ε

λ
BY �

i

�
þ ε

λ
BX� ; 0 ≤ i ≤ m; and

x�mþ1 ∈ N̂ðA; xmþ1Þ þ
ε

λ
BX�

such that

Xmþ1

i¼0

x�i ¼ 0 and
1

2
−

ε

λ
<

Xm
i¼0

ðkx�i k þ kc�i kÞ < 1þ ε

λ
:

THEOREM 4.6. LetX;Y 0; : : : ; Ym be Asplund spaces. LetΦ0 be bounded below on the
feasible set Z with respect to the ordering cone K 0, and suppose that K 0 has a bounded
base. Then, one of the following two assertions holds:

(i) For any ε > 0, there exist x̄ ∈ Z and ȳ0 ∈ Φ0ðx̄Þ such that ðx̄; ȳ0Þ is an ε-
Pareto solution of (4.1) and there exist x0 ∈ Bðx̄; εÞ, y0 ∈ Φ0ðx0Þ ∩
Bðȳ0; εÞ, xi ∈ Bðx̄; εÞ and yi ∈ ΦiðxiÞ ∩ ð−Ki þ εBYi

Þ (1 ≤ i ≤ m), a ∈
A ∩ Bðx̄; εÞ, and c�i ∈ Kþ

i satisfying the following properties:

Xm
i¼0

kc�i k ¼ 1 and 0 ∈
Xm
i¼0

D̂�Φiðxi; yiÞðc�i þ εBY �
i
Þ þ N̂ðA; aÞ þ εBX� :

(ii) For any ε > 0, there exist x̄ ∈ Z and ȳ0 ∈ Φ0ðx̄Þ such that ðx̄; ȳ0Þ is an ε-
Pareto solution of (4.1) and there exist x0 ∈ Bðx̄; εÞ, y0 ∈ Φðx0Þ ∩ Bðȳ0; εÞ,
xi ∈ Bðx̄; εÞ and yi ∈ ΦiðxiÞ ∩ ð−Ki þ εBYi

Þ (1 ≤ i ≤ m), a ∈ A ∩ Bðx̄; εÞ,

x�i ∈ D̂�Φiðxi; yiÞðεBY �
i
Þ; and a� ∈ N̂ðA; aÞ þ εBX�

satisfying the following properties:

Xm
i¼0

x�i þ a� ¼ 0 and
Xm
i¼0

kx�i k þ ka�k ¼ 1:

Under the Lipschitz assumption, we have the following sharper result.
THEOREM 4.7. LetX;Y 0; : : : ; Ym be Asplund spaces andΦ0 be bounded below on the

feasible set Z with respect to the ordering cone K0. Suppose that K0 has a bounded base
and that each Φi is Lipschitz. Then part (i) of Theorem 4.6 holds.

Proof. Let L > 0 be the Lipschitz constant of each Φi. Then, by [14, Theorem 3.2],
one has
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supfkx�k∶x� ∈ D̂�Φiðxi; yiÞðy�i Þg ≤ Lky�i kð4:23Þ

for all ðxi; yiÞ ∈ GrðΦiÞ and y�i ∈ Y �
i . By Theorem 4.6, we need only show that

Theorem 4.6(ii) does not hold for ε ∈ ð0; 1
3ðmþ1ÞLÞ. Let xi ∈ X , yi ∈ ΦiðxiÞ, a ∈ A,

x�i ∈ D̂�Φiðxi; yiÞð 1
3ðmþ1ÞL BY �

i
Þ, and a� ∈ NcðA; aÞ þ 1

3ðmþ1ÞL BX� satisfy
P

m
i¼0 x

�
i þ

a� ¼ 0. It suffices to show that
P

m
i¼0 kx�i k þ ka�k ≠ 1. By (4.23), one has

kx�i k ≤ L 1
3ðmþ1ÞL ¼ 1

3ðmþ1Þ. Hence
P

m
i¼0 kx�i k ≤ 1

3 and ka�k ¼ kPm
i¼0 x

�
i k ≤ 1

3. SoP
m
i¼0 kx�i k þ ka�k ≤ 2

3. This completes the proof. ▯
Remark. Let f∶X → R ∪ fþ∞g be a proper lower semicontinuous function, and

define

FðxÞ ¼ ½f ðxÞ;þ∞Þ and GðxÞ ¼ ffðxÞg ∀ x ∈ X:

Recall (cf. [14], [23]) the following known properties:
(i) If ðx�;−λÞ ∈ N̂ðGrðFÞ; ðx; tÞÞ, then λ ≥ 0.
(ii) If λ > 0 and ðx�;−λÞ ∈ N̂ðGrðFÞ; ðx; tÞÞ, then t ¼ f ðxÞ and D̂�Fðx; f ðxÞÞðλÞ

¼ λ∂̂f ðxÞ.
(iii) For any ðx; tÞ ∈ GrðFÞ, D̂�Fðx; tÞð0Þ ¼ D̂�Fðx; f ðxÞÞð0Þ ¼ ∂̂∞f ðxÞ.
(iv) If f is locally Lipschitz, then ∂̂∞f ðxÞ ¼ f0g.
(v) For any λ ≠ 0, D̂�Gðx; f ðxÞÞðλÞ ¼ ∂̂ðλf ÞðxÞ.
(vi) D̂�Gðx; f ðxÞÞð0Þ ¼ ∂̂∞f ðxÞ.

Let ϕi∶X → R be lower semicontinuous functions (i ¼ 0; 1; : : : ;m),
ΦiðxÞ ¼ ½ϕiðxÞ;þ∞Þ for 0 ≤ i ≤ n, andΦiðxÞ ¼ fϕiðxÞg for n < i ≤ m. In the case when
Y 0 ¼ Y 1 ¼ · · ·¼ Ym ¼ R, K0 ¼ · · ·¼ Kn ¼ Rþ, and Knþ1 ¼ · · ·¼ Km ¼ f0g, (4.1) re-
duces to the usual numerical constraint optimization problem. Thus, in this special case,
the coderivatives appearing in Theorems 4.5, 4.6, and 4.7 can be represented in terms of
the Fréchet subdifferential of Φi; in particular, Theorem 4.7 recaptures Mordukhovich
and Wang’s result mentioned in section 1.

Remark. Let G∶X → 2Y 1× · · ·×Ym be such that

GðxÞ ≔ Φ1ðxÞ× · · · ×ΦmðxÞ ∀ x ∈ X

and K ≔ K 1× · · · ×Km. Then vector optimization problem (4.1) can rewritten as

K 0 −min Φ0ðxÞ;
GðxÞ ∩ −K ≠ ∅;

x ∈ A:ð4:24Þ

It is clear that the feasible set of (4.1) and the one of (4.24) are identical. Hence ðx̄; ȳ0Þ is
an ε-Pareto solution (resp., a weak ε-Pareto solution) of (4.1) if and only if it is an ε-
Pareto solution (resp., a weak ε-Pareto solution) of (4.24). Note that

Xm
i¼1

D̂�Φiðx; yiÞðy�i Þ ⊂ D̂�Gðx; ðy1; : : : ; ymÞÞðy�1; : : : ; y�mÞð�Þ

for any x ∈ X , yi ∈ ΦiðxÞ, and y�i ∈ Y �
i (i ¼ 1; : : : ;m). But, even in the special case

when ΦiðxÞ ¼ ½ðϕiðxÞ;þ∞ÞÞ for 1 ≤ i ≤ n and ΦiðxÞ ¼ fϕiðxÞg for n < i ≤ m, one
cannot establish the converse inclusion of (*). As for the coderivatives with respect
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to the Clarke normal cones, the relationship between
P

m
i¼1 D

�
cΦiðx; yiÞðy�i Þ and

D�
cGðx; ðy1; : : : ; ymÞÞðy�1; : : : ; y�mÞ is more complicated; we don’t even know whether

or not the following inclusion (*′) is true:

Xm
i¼1

D�
cΦiðx; yiÞðy�i Þ ⊂ D�

cGðx; ðy1; : : : ; ymÞÞðy�1; : : : ; y�mÞ:ð�0Þ

Hence, we cannot establish Theorems 4.3–4.7in terms of the corresponding necessary or
sufficient conditions for a weak ε-Pareto solution (or an ε-Pareto solution) of (4.24).

Unfortunately, Theorems 4.3–4.7 cannot cover Chou, Ng, and Pang’s result men-
tioned in section 1 (because the ε-minimizer of ϕ over A appearing in their result is itself
an “ε-critical point” of ϕ over A). For the rest of this paper, let us consider the following
problem (which is a special case of (4.1)):

K0 −min Φ0ðxÞ subject to x ∈ A;ð4:25Þ

where Φ0∶X → Y 0 is a single-valued function and A is a nonempty closed subset of X .
The absence of functional constraint would allow us to draw some stronger conclusions
and thereby extend the corresponding numerical result of Chou, Ng, and Pang.

For ε > 0, we say that x̄ ∈ A is an ε-Pareto solution of (4.25) if

diamððΦ0ðAÞ þK0Þ ∩ ðΦ0ðx̄Þ−K0ÞÞ < ε:

Let epiK0
ðΦ0Þ denote the epi-gragh of Φ0 with respect to K 0 and be defined by

epiK 0
≔ fðx; yÞ ∈ X × Y 0∶y ∈ Φ0ðxÞ þK 0g:

Imitating subdifferential formula (CF) of a scalar-valued function, we adopt the follow-
ing coderivative D�

eΦ0ðxÞ∶Y �
0 ⇉ X� defined by

D�
eΦ0ðxÞðy�Þ ≔ fx� ∈ X�∶ðx�;−y�Þ ∈ NcðepiK 0

ðΦ0Þ; ðx;Φ0ðxÞÞÞg ∀ y� ∈ Y �
0:

Noting that

TcðepiK0
ðΦ0Þ; ðx;Φ0ðxÞÞÞ ¼ TcðepiK 0

ðΦ0Þ; ðx;Φ0ðxÞÞÞ þ f0g×K 0;

it is easy to verify that

domðD�
eΦ0ðxÞÞ ⊂ Kþ

0 :

We will need the following lemma, which is of some interest by itself.
LEMMA 4.8. Let x ∈ X and y� ∈ Kþ

0 . Suppose that Φ0∶X → Y 0 is locally Lipschitz.
Then

∂cðy� ∘ Φ0ÞðxÞ ⊂ D�
eΦ0ðxÞðy�Þ:

Proof. The version holds trivially if y� ¼ 0. Next assume that y� ∈ Kþ
0 \ f0g. Then,

there exists c0 ∈ K0 such that hy�; c0i > 0. Let

S ≔ fðu; hy�; viÞ∶ðu; vÞ ∈ TcðepiK0
ðΦ0Þ; ðx;Φ0ðxÞÞÞg:

By (CF), we only need to show that
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S ⊂ Tcðepiðy� ∘ Φ0ÞðxÞ; ðx; hy�;Φ0ðxÞiÞÞ:ð4:26Þ

To do this, let ðu; rÞ ∈ S . Then there exists v ∈ Y 0 such that

ðu; vÞ ∈ TcðepiK0
ðΦ0Þ; ðx;Φ0ðxÞÞÞ and r ¼ hy�; vi:

Consider any sequences fðxn; tnÞg ⊂ epiðy� ∘ Φ0Þ converging to ðx; hy�;Φ0ðxÞiÞ and
fsng ⊂ Rþ converging to 0. It is clear that fðxn;Φ0ðxnÞ þ tn−hy�;Φ0ðxnÞi

hy�;c0i c0Þg is a sequence
in epiK0

ðΦ0Þ converging to ðx;Φ0ðxÞÞ. Hence there exists a sequence fðun; vnÞg conver-
ging to ðu; vÞ such that

�
xn;Φ0ðxnÞ þ

tn − hy�;Φ0ðxnÞi
hy�; c0i

c0

�
þ snðun; vnÞ ∈ epiK 0

ðΦ0Þ ∀ n ∈ N:

This implies that

ðxn; tnÞ þ snðun; hy�; vniÞ ∈ epiðy� ∘ Φ0Þ ∀ n ∈ N:

Since ðun; hy�; vniÞ → ðu; rÞ, it follows that ðu; rÞ ∈ Tcðepiðy� ∘ Φ0Þ; ðx; hy�;Φ0ðxÞiÞÞ.
This shows that (4.26) holds. ▯

In the special case when ðY 0; K0Þ ¼ ðR;RþÞ, the following theorem recaptures
Chou, Ng, and Pang’s result. For the vector case, we need the condition that
intðKþ

0 Þ is nonempty. This condition is equivalent to that K 0 has a bounded base;
in this case, fc ∈ C∶hy�; ci ¼ 1g is a bounded base of C for any y� ∈ intðCþÞ.

THEOREM 4.9. Let y� ∈ intðKþ
0 Þ and suppose that Φ0∶X → Y 0 is a locally Lipschtiz

function such that Φ0 is bounded below on A with respect to K 0. Then, for any ε > 0,
there exists xε ∈ A such that xε is an ε-Pareto solution of (4.25) and

dð0; D�
eΦ0ðxεÞðy�Þ þ NcðA; xεÞÞ < ε:ð4:27Þ

Proof. Let Θ ≔ fc ∈ K0∶hy�; ci ¼ 1g. Then Θ is a bounded base of K0. Since Φ0 is
bounded below on A with respect to K0, y� ∘ Φ0 is bounded below on A. By Lemma 4.8
and Chou, Ng, and Pang’s result, there exists xε ∈ A such that

hy�;Φ0ðxεÞi < inf
x∈A

hy�;Φ0ðxÞi þ
ε

M þ 1
ð4:28Þ

and (4.27) holds, where M ≔ supθ∈Θkθk. It remains to show that xε is an ε-Pareto
solution of (4.25). We only need to show that

ðΦ0ðAÞ þK0Þ ∩ ðΦ0ðxεÞ−K0Þ ⊂ −
	
0;

ε

M þ 1

�
ΘþΦ0ðxεÞð4:29Þ

(as diamð½0; ε
Mþ1�ΘÞ < ε). To do this, let y ¼ Φ0ðxεÞ− tθ ≥K 0

Φ0ðaÞ for some
t ∈ ½0;þ∞Þ, θ ∈ Θ, and a ∈ A. Since y� ∈ intðKþ

0 Þ, it follows from (4.28) that

t ¼ hy�; tθi ≤ hy�;Φ0ðxεÞ−Φ0ðaÞi <
ε

M þ 1
:

Therefore (4.29) is shown. ▯
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