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Abstract. Using variational analysis, we study vector optimization problems with objectives being closed
multifunctions on Banach spaces or in Asplund spaces. In particular, in terms of the coderivatives, we present
Fermat’s rules as necessary conditions for an optimal solution of the above problems. As applications, we also
provide some necessary conditions (in terms of Clarke’s normal cones or the limiting normal cones) for Pareto
efficient points.
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1. Introduction

The main objective of this paper is to study the following vector optimization problem

C − min
x∈X

�(x). (1.1)

Here X, Y are Banach spaces, � : X → 2Y is a closed multifunction and C ⊂ Y is
a closed convex pointed non-trivial cone, which specifies a partial order ≤C on Y as
follows: for y1, y2 ∈ Y ,

y1 ≤C y2 if and only if y2 − y1 ∈ C.

Let A be a subset of Y . Recall that ā ∈ A is said to be a Pareto efficient point if there
does not exist a ∈ A with a �= ā such that a ≤C ā, that is,

A ∩ (ā − C) = {ā}.
We use E(A, C) to denote the set of all Pareto efficient points of A. For x̄ ∈ X and
ȳ ∈ �(x̄), we say that (x̄, ȳ) is a local Pareto solution of the vector optimization prob-
lem (1.1) if there exists a neighborhood U of x̄ such that

ȳ ∈ E(�(U), C).
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Under some restricted conditions (e.g., the ordering cone has a nonempty interior, the
spaces are finite dimensional, or � is single-valued), many authors (see [7, 9, 14, 15, 26,
29] and references therein) have obtained existence results for Pareto solutions or weak
Pareto solutions, while there are only a few who address the issue of sufficient/necessary
optimality conditions (for x̄ ∈ X to provide a solution). In particular, Minami [16] stud-
ied multiobjective program on a Banach space with a single-valued objective function
and with finitely many equality/inequality constraints given by numerical functions. His
result on Kuhn-Tucker forms is closely related to one of our results in Section 4 and
we will make further comments there. Under the convexity assumptions, Gotz and Jahn
[10] studied necessary optimality conditions for weak Pareto solutions using the notion
of cotangent derivative. Very recently, Ye and Zhu [27] gave some necessary optimality
conditions for single-valued vector optimization problems with respect to an abstract
order in an Euclidean space setting. Single-valued vector optimization problems with
respect to abstract order (regardless to linear structure) have also been discussed in Zhu
[29] and Mordukhovich, Traiman and Zhu [20]. Our approach here differs from the
earlier studies mainly in two aspects: firstly � is a general closed multifunction, and
secondly our main results in Section 3 are valid for general Banach spaces.

In the special case when Y = R, C = [0, +∞) and � is given by

�(x) = [f (x), +∞) for all x ∈ X (1.2)

where f : X → R ∪ {+∞} is a proper lower semicontinuous function, it is easy to
verify that (x̄, f (x̄)) is a local Pareto solution of (1.1) if and only if x̄ is a local minimum
point of f . Note (cf. [6]) also that Clarke’s subdifferential ∂cf (x̄) and the associated
coderivative D∗

c �(x̄, f (x̄)) : Y ∗ → 2X∗
are related by

∂cf (x̄) = D∗
c �(x̄, f (x̄))(1). (1.3)

In view of the following well known result (Fermat’s rule)

f attains a local minimum at x 
⇒ 0 ∈ ∂cf (x),

it is natural to ask whether or not the following Fermat’s rule is also valid: if (x̄, ȳ) ∈
Gr(�) is a local Pareto solution of (1.1), does it follow that

0 ∈ D∗
c �(x̄, ȳ)(c∗) (1.4)

for some c∗ ∈ C+ with ‖c∗‖ = 1, where C+ := {y∗ ∈ Y ∗ : 〈c∗, c〉 ≥ 0 for all c ∈ C}
and Y ∗ denotes the dual space of Y (see Section 2 for undefined terms). Though the
answer is negative in general (cf. Example 3.1), we show in Section 3 that the follow-
ing fuzzy version is valid: If (x̄, ȳ) is a local Pareto solution of the vector optimization
problem (1.1) then for any ε > 0 there exist xε ∈ x̄ + εBX, yε ∈ �(xε) ∩ (ȳ + εBY )

and c∗ ∈ C+ with ‖c∗‖ = 1 such that

0 ∈ D∗
c �(xε, yε)(c

∗ + εBY ∗) + εBX∗ , (1.5)

where BX and BX∗ respectively denote the closed unit balls of X and X∗. Moreover we
show that (1.4) holds if (x̄, ȳ) is a local Pareto solution of (1.1) and if (at least) one of
the following conditions is satisfied.
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(i) The ordering cone C has a nonempty interior.
(ii) The ordering cone C is dually compact and Nc(Gr(�), ·) is closed at (x̄, ȳ).

(iii) There exists a vector hypertangent to Gr(�) at (x̄, ȳ).

If X and Y are assumed to be Asplund spaces, the results are strengthened in Section
4: D∗

c in (1.4) and (1.5) can be replaced by D∗
F , the Mordukhovich coderivative defined

by limiting Frechet normal cones. In the case when the objective is a closed multifunction
with the Aubin property, the corresponding results for constrained vector optimization
problems (with set-inclusion together with abstract constraints) are also reported.

In vector optimization theory, another interesting issue is to study necessary and/or
sufficient conditions for Pareto efficient points of a closed subset of a Banach space. In
Section 5, as applications of our study in earlier sections we provide some necessary
conditions for Pareto efficient points of a closed set in a Banach space or an Asplund
space.

2. Preliminaries

Throughout this section, we assume that Y is a Banach space. Let f : Y → R ∪ {+∞}
be a proper lower semicontinuous function, and let epi(f ) denote the epigraph of f , that
is,

epi(f ) := {(y, t) ∈ Y × R : f (y) ≤ t}.
Let y ∈ dom(f ) := {x ∈ X : f (x) < +∞}, h ∈ Y , and let f ◦(y, h) denote the
generalized directional derivative given by Rockafellar (cf. [6]), that is,

f ◦(y, h) := lim
ε↓0

lim sup

z
f→y,t↓0

inf
w∈h+εBY

f (z + tw) − f (z)

t
,

where the expression z
f→ y means that z → y and f (z) → f (y). It is known that

f ◦(y, h) reduces to Clarke’s directional derivative when f is locally Lipschitz (cf. [6]).
Let

∂cf (y) := {y∗ ∈ Y ∗ : 〈y∗, h〉 ≤ f ◦(y, h) ∀h ∈ Y }.
Let A be a closed subset of Y and let Nc(A, a) denote Clarke’s normal cone of A at a,
that is,

Nc(A, a) :=
{

∂cδA(a) a ∈ A

∅ a �∈ A

where δA denotes the indicator function of A: δA(y) = 0 if y ∈ A and δA(y) = +∞
otherwise. For a ∈ A, let Tc(A, a) denote Clarke’s tangent cone, namely

Tc(A, a) := {h ∈ Y : d◦
A(a, h) = 0}

where dA(·) denotes the distance function to A. It is well known that for a ∈ A,

Nc(A, a) = {y∗ ∈ Y ∗ : 〈y∗, h〉 ≤ 0 for all h ∈ Tc(A, a)}.
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The following result (cf. [6, P.52, Corollary]) presents an important necessary optimal-
ity condition in terms of Clarke’s subdiferentials and normal cones for a constrained
optimization problem.

Proposition 2.1. Let f : Y → R be a locally Lipschitz function and A be a closed subset
of Y . Suppose that f attains its minimum over A at a ∈ A. Then 0 ∈ ∂cf (a)+Nc(A, a).

Recall (cf. [18]) that the Frechet subdifferential of f at y ∈ dom(f ) is defined by

∂̂f (y) :=
{
y∗ ∈ Y ∗ : lim inf

v→y

f (v) − f (y) − 〈y∗, v − y〉
‖v − y‖ ≥ 0

}
.

Let ε ≥ 0. The set of ε-normals to A at a is defined by

N̂ε(A, a) :=

y∗ ∈ Y ∗ : lim sup

y
A→a

〈y∗, y − a〉
‖y − a‖ ≤ ε


 ,

where y
A→ a means that y → a with y ∈ A. The set N̂0(A, a) is simply denoted by

N̂(A, a) and is called the Frechet normal cone to A at a. The limiting Frechet normal
cone to A at a is defined by

NF (A, a) := {y∗ ∈ Y ∗ : ∃εn → 0+, yn
A→ a, y∗

n

w∗
→ y∗ with y∗

n ∈ N̂εn(A, yn)}.
The limiting Frechet subdifferential of a proper lower semicontinuous function f : Y →
R ∪ {+∞} at y ∈ dom(f ) is defined by

∂F f (y) := {y∗ ∈ Y ∗ : (y∗, −1) ∈ NF (epi(f ), (y, f (y)))}.
Recall that a Banach space Y is called an Asplund space if every continuous convex

function defined on an open convex subset D of Y is Frechet differentiable at each point
of a dense Gδ subset of D. It is well known that Y is an Asplund space if and only if
every separable subspace of Y has a separable dual. The class of Asplund spaces is well
investigated in geometric theory of Banach spaces; see [21, 18] and references therein.
When Y is an Asplund space, it is well known that

NF (A, a) := {y∗ ∈ Y ∗ : ∃yn
A→ a, y∗

n

w∗
→ y∗ with y∗

n ∈ N̂(A, yn)} (2.1)

and that Nc(A, a) is the weak∗ closed convex hull of NF (A, a) (cf. [18]).
For � : X → 2Y a multifunction from another Banach space X to Y , let Gr(�)

denote the graph of �, that is,

Gr(�) := {(x, y) ∈ X × Y : y ∈ �(x)}.
We say that � is closed if Gr(�) is a closed subset of X × Y . For x ∈ X and y ∈ �(x),
let D̂∗�(x, y) and D∗

F �(x, y) : Y ∗ → 2X∗
respectively denote Frechet and limiting

coderivatives of � at (x, y) in Mordukhovich’s sense, that is,

D̂∗�(x, y)(y∗) := {x∗ ∈ X∗ : (x∗, −y∗) ∈ N̂(Gr(�), (x, y))} for all y∗ ∈ Y ∗ (2.2)

and
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D∗
F �(x, y)(y∗) :={x∗ ∈ X∗ : (x∗, −y∗) ∈ NF (Gr(�), (x, y))} for all y∗ ∈ Y ∗. (2.3)

Mimicking this definition, we employ Clarke’s normal cone to define another kind of
coderivative

D∗
c �(x, y)(y∗) := {x∗ ∈ X∗ : (x∗, −y∗) ∈ Nc(Gr(�), (x, y))} for all y∗ ∈ Y ∗.

When � is single-valued, we denote D̂∗�(x, �(x)), D∗
F �(x, �(x)) and D∗

c �(x, �(x))

by D̂∗�(x), D∗
F �(x) and D∗

c �(x), respectively. The following two lemmas dealing with
possibly non-convex sets in generalizing the Separation Theorem will be useful for us.
As remarked by one of the referees, it is strange that Lemma 2.1 below and the above
definition of the Clarke coderivative do not seem available in print before.

Lemma 2.1. Let A be a closed convex subset of Y with a nonempty interior and let B be
a closed (not necessarily convex) subset of Y . Suppose int(A) ∩ B = ∅ and a ∈ A ∩ B.
Then there exists a∗ ∈ Y ∗ with ‖a∗‖ = 1 such that

a∗ ∈ Nc(B, a) and 〈a∗, a〉 = inf{〈a∗, x〉 : x ∈ A}.

Proof. Let a0 ∈ int(A) and P be the Minkowski functional of A − a0, namely

P(y) := inf{t > 0 : y ∈ t (A − a0)} for all y ∈ Y.

Then by well known results in functional analysis,

int(A) − a0 = {y ∈ Y : P(y) < 1} and A − a0 = {y ∈ Y : P(y) ≤ 1}

(cf. [22]). Therefore,

1 = P(a − a0) = inf{P(y − a0) + δB(y) : y ∈ Y }.

Noting that the Minkowski functional P is Lipschitz (because it is positively homoge-
neous, subadditive and continuous), it follows from Proposition 2.1 that 0 ∈ ∂P (a −
a0)+Nc(B, a). Noting that P is convex and P(0) < P (a−a0), one has 0 �∈ ∂P (a−a0).
Hence there exist r > 0 and a∗ ∈ Nc(B, a) with ‖a∗‖ = 1 such that −ra∗ ∈ ∂P (a−a0).
Thus,

〈−ra∗, y − a〉 ≤ P(y − a0) − P(a − a0) ≤ 0 for all y ∈ A

and so 〈a∗, a〉 = inf{〈a∗, y〉 : y ∈ A}. This completes the proof. ��

Lemma 2.2. Let A and B be closed subsets of Y with A ∩ B = ∅. Let a ∈ A, b ∈ B

and ε > 0 be such that ‖a − b‖ ≤ d(A, B) + ε2, where d(A, B) := inf{‖x − y‖ :
x ∈ A and y ∈ B}. Then there exist aε ∈ A, bε ∈ B, a∗

ε ∈ Nc(A, aε) + εBY ∗ and
b∗
ε ∈ Nc(B, bε) + εBY ∗ with ‖a∗

ε ‖ = ‖b∗
ε‖ = 1 such that

a∗
ε + b∗

ε = 0 and ‖aε − a‖ + ‖bε − b‖ ≤ ε.
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Proof. Define f : Y × Y → R ∪ {+∞} by

f (x, y) := δA×B(x, y) + ‖x − y‖ for all (x, y) ∈ Y × Y.

Then inf{f (x, y) : (x, y) ∈ Y × Y } = d(A, B) and so, by assumption

f (a, b) ≤ inf{f (x, y) : (x, y) ∈ Y × Y } + ε2.

Equipping Y × Y with the norm ‖(x, y)‖ = ‖x‖ + ‖y‖, by the Ekeland Variational
Principle there exists (aε, bε) ∈ A × B such that

‖a − aε‖ + ‖b − bε‖ ≤ ε (2.4)

and

f (aε, bε) ≤ f (x, y) + ε(‖x − aε‖ + ‖y − bε‖) ∀(x, y) ∈ Y × Y.

Letting

g(x, y) := ‖x − y‖ + ε(‖x − aε‖ + ‖y − bε‖) for all (x, y) ∈ Y × Y,

this implies that g(x, y) attains its minimum over A × B at (aε, bε). It follows from
Proposition 2.1 that

(0, 0) ∈ ∂cg(aε, bε) + Nc(A × B, (aε, bε)). (2.5)

Let h(x, y) := ‖x − y‖ and T (x, y) = x − y for any (x, y) ∈ Y × Y . It follows from
[6, Theorem 2.3.10] that ∂h(aε, bε) = T ∗[∂(‖ · ‖)(aε − bε)], where T ∗ is the conjugate
operator of the bounded linear operator T . Noting that T ∗(z∗) = (z∗, −z∗) for any
z∗ ∈ Y ∗, aε − bε �= 0 (since A ∩ B = ∅ and (aε, bε) ∈ A × B) and

∂(‖ · ‖)(aε − bε) = {z∗ ∈ X∗ : ‖z∗‖ = 1 and 〈z∗, aε − bε〉 = ‖aε − bε‖},
the subdifferential of the convex function h(x, y) at (aε, bε) is equal to the set

D := {(z∗, −z∗) ∈ Y ∗ × Y ∗ : ‖z∗‖ = 1 and 〈z∗, aε − bε〉 = ‖aε − bε‖}.
Hence

∂cg(aε, bε) ⊂ D + εBY ∗ × εBY ∗ .

Since Nc(A × B, (aε, bε)) = Nc(A, aε) × Nc(B, bε), it follows from (2.5) that there
exists z∗ ∈ Y ∗ with ‖z∗‖ = 1 such that

(0, 0) ∈ (z∗, −z∗) + εBY ∗ × εBY ∗ + Nc(A, aε) × Nc(B, bε).

Note then that

−z∗ ∈ εBY ∗ + Nc(A, aε) and z∗ ∈ εBY ∗ + Nc(B, bε).

Together with (2.4), the lemma is established by letting a∗
ε = −z∗ and b∗

ε = z∗. ��
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Remark. Suppose that A∩B = ∅ and that (a, b) ∈ A×B satisfies d(A, B) = ‖a −b‖.
From the proof of Lemma 2.2, one can see that there exist a∗ ∈ Nc(A, a) and b∗ ∈
Nc(B, b) such that

a∗ + b∗ = 0 and ‖a∗‖ = ‖b∗‖ = 1.

In contrast to Proposition 2.1, the following result (valid for Asplund spaces) is given
in terms of Frechet normal cones and subdifferentials; see [5] and references therein for
the detail.

Proposition 2.2. Let Y be an Asplund space and f : Y → R a locally Lipschitz func-
tion, and let A be a closed subset of Y . Suppose that f attains its minimum over A at
a ∈ A. Then for any ε > 0 there exist aε ∈ a + εBY and uε ∈ A ∩ (a + εBY ) such that

0 ∈ ∂̂f (aε) + N̂(A, uε) + εBY ∗ .

Similar to the proof of Lemma 2.2 but applying Proposition 2.2 in place of Prop-
osition 2.1, we have the following result applicable to the case when Y is an Asplund
space.

Lemma 2.2′. Let Y, A, B, a, b and ε > 0 be as in Lemma 2.2 then there exist
aε ∈ A, bε ∈ B, a∗

ε ∈ N̂(A, aε) + 2εBY ∗ and b∗
ε ∈ N̂(B, bε) + 2εBY ∗ with ‖a∗

ε ‖ =
‖b∗

ε‖ = 1 such that

a∗
ε + b∗

ε = 0 and ‖aε − a‖ + ‖bε − b‖ < 2ε.

Remark. Similar to Lemma 2.2′, one can establish a result corresponding to Lemma 2.1
in the Asplund space setting. Since this is not needed for our further works here, we omit
the details.

Lemma 2.3. Let X, Y, Z be Asplund spaces, � : X → 2Y be a closed multifunction
and φ : X → Z be a locally Lipschitz single-valued mapping. Let

(�, φ)(x) := {(y, φ(x)) ∈ Y × Z : y ∈ �(x)} for all x ∈ X.

Then

D∗
F (�, φ)(x, (y, φ(x)))(y∗, z∗) ⊂ D∗

F �(x, y)(y∗) + D∗
F φ(x)(z∗) (2.6)

for any (x, y) ∈ Gr(�) and (y∗, z∗) ∈ Y ∗ × Z∗.

Proof. Let x∗ be any element in the set on the left-hand side of (2.6). Then there exist
sequences {(x∗

k , y∗
k , z∗

k)} in X∗ × Y ∗ × Z∗ and {(xk, yk)} in Gr(�) such that

xk → x, yk → y, x∗
k

w∗
→ x∗, y∗

k

w∗
→ y∗, z∗

k

w∗
→ z∗ (2.7)

and

x∗
k ∈ D̂∗(�, φ)(xk, yk, φ(xk))(y

∗
k , z∗

k) for any natural number k.
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Hence for each k there exists δk > 0 such that for any (u, v) ∈ Gr(�) with ‖u − xk‖ +
‖v − yk‖ < δk ,

0 ≤ −〈x∗
k , u − xk〉 + 〈y∗

k , v − yk〉 + 〈z∗
k, φ(u) − φ(xk)〉

+1

k
(‖u − xk‖ + ‖v − yk‖ + ‖φ(u) − φ(xk)‖).

Since φ is locally Lipschitz at x, by (2.7) we can assume without loss of generality that
there exists a constant L > 1 such that for any k and u ∈ X with ‖u − xk‖ < δk ,

‖u − xk‖ + ‖φ(u) − φ(xk)‖ ≤ L‖u − xk‖.

Let us fix k and define f : X × Y → R by

f (u, v) := −〈x∗
k , u − xk〉 + 〈y∗

k , v − yk〉 + 〈z∗
k, φ(u) − φ(xk)〉

+L

k
(‖u − xk‖ + ‖v − yk‖)

for any (u, v) ∈ X × Y . Then f (xk, yk) = 0 ≤ f (u, v) for any (u, v) ∈ Gr(�) with
‖u − xk‖ + ‖v − yk‖ < δk . It follows from [30, Theorem 2.12] that there exist uk ∈ X

and (u′
k, v

′
k) ∈ Gr(�) such that

‖uk − xk‖ + ‖u′
k − xk‖ + ‖v′

k − yk‖ < min{1

k
, δk}

and

(0, 0) ∈ (−x∗
k , y∗

k )+∂̂(z∗
k ◦ φ)(uk) × {0}+N̂(Gr(�), (u′

k, v
′
k)) + L + 1

k
(BX∗ × BY ∗).

Noting that ∂̂(z∗
k ◦ φ)(uk) ⊂ D̂∗φ(uk)(z

∗
k), it follows that

(0, 0)∈(−x∗
k , y∗

k ) + D̂∗φ(uk)(z
∗
k) × {0} + N̂(Gr(�), (u′

k, v
′
k)) + L + 1

k
(BX∗ × BY ∗).

Letting k → ∞ and noting that sup{‖u∗‖ : u∗ ∈ D̂∗φ(uk)(z
∗
k)} ≤ L‖z∗

k‖, by (2.7) one
has

(0, 0) ∈ (−x∗, y∗) + D∗
F φ(x)(z∗) × {0} + NF (Gr(�), (x, y)),

that is,

x∗ ∈ D∗
F φ(x)(z∗) + D∗

F �(x, y)(y∗).

This shows that (2.6) holds. ��
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3. Fermat Rules for multifunctions in Banach spaces

In this section, we always assume that X and Y are Banach spaces. For convenience we
define the norm on X × Y by ‖(x, y)‖ = ‖x‖ + ‖y‖. First we provide a fuzzy version
of Fermat Rule for multifunctions in a general setting.

Theorem 3.1. Let � : X → 2Y be a closed multifunction and (x̄, ȳ) be a local Pa-
reto solution of the vector optimization problem (1.1). Then for any ε > 0 there exist
xε ∈ x̄ + εBX, yε ∈ �(xε) ∩ (ȳ + εBY ) and c∗ ∈ C+ with ‖c∗‖ = 1 such that

0 ∈ D∗
c �(xε, yε)(c

∗ + εBY ∗) + εBX∗ . (3.1)

Proof. We will prove the following equivalent form of the result: there exist a sequence
{(xn, yn)} in Gr(�) and a sequence {c∗

n} in C+ with ‖c∗
n‖ = 1 (for all n) such that

(xn, yn) → (x̄, ȳ) and

d((0, −c∗
n), Nc(Gr(�), (xn, yn))) → 0. (3.2)

By assumption there exists δ > 0 such that ȳ ∈ E(�(x̄ + δBX), C). Let

A := {(x, y) ∈ Gr(�) : x ∈ x̄ + δBX}
and take c0 ∈ C \ −C with ‖c0‖ = 1 (such an element exists because the ordering cone
C is pointed and non-trivial). For simplicity, let Bn := ȳ − 1

n2 c0 − C. We claim that for
all natural number n large enough,

A ∩ [X × Bn] = ∅. (3.3)

Indeed if this is not the case, then there exists y′ ∈ �(x̄+δBX) such that y′ ≤C ȳ− 1
n2 c0,

contradicting ȳ ∈ E(�(x̄ + δBX), C). Hence (3.3) holds. By Lemma 2.2 (applied to
a = (x̄, ȳ) and b = (x̄, ȳ − 1

n2 c0)), there exist

(xn, yn) ∈ A, (un, vn) ∈ X × Bn,

(x∗
n, y∗

n) ∈ Nc(A, (xn, yn)) + 1

n
(BX∗ × BY ∗) (3.4)

and

(u∗
n, v

∗
n) ∈ Nc(X × Bn, (un, vn)) + 1

n
(BX∗ × BY ∗)

with ‖(x∗
n, y∗

n)‖ = ‖(u∗
n, v

∗
n)‖ = 1 such that (x∗

n, y∗
n) + (u∗

n, v
∗
n) = 0,

‖(xn, yn) − (x̄, ȳ)‖ ≤ 1

n
and ‖(un, vn) − (x̄, ȳ − 1

n2 c0)‖ ≤ 1

n
.

Then by the following well known relation on normal cones

Nc(X × Bn, (un, vn)) = {0} × Nc(Bn, vn) ⊂ {0} × C+,
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there exist rn ∈ [1 − 1
n
, 1 + 1

n
] and c∗

n ∈ C+ with ‖c∗
n‖ = 1 such that

(u∗
n, v

∗
n) ∈ rn(0, c∗

n) + 1

n
(BX∗ × BY ∗),

namely

−(x∗
n, y∗

n) ∈ rn(0, c∗
n) + 1

n
(BX∗ × BY ∗).

This and (3.4) imply that

(0, −c∗
n) ∈ 1

rn
(x∗

n, y∗
n) + 1

nrn
(BX∗ × BY ∗)

⊂ Nc(A, (xn, yn)) + 2

nrn
(BX∗ × BY ∗).

= Nc(Gr(�), (xn, yn)) + 2

nrn
(BX∗ × BY ∗)

where the last equality holds because A = Gr(�)∩((x̄+δBX)×Y ) and (x̄+δBX)×Y is a
neighborhood of (xn, yn) (for n large enough). Thus (3.2) holds. The proof is completed.

��
The following example shows that ε > 0 in Theorem 3.1 cannot be replaced by

ε = 0.

Example 3.1. Let X be an infinite dimensional separable Banach space and {xn} be a
countable dense subset of X with each xn �= 0. Let D = {− xn

n‖xn‖ } and A be the closed
convex hull of D ∪ −D. Then A is a compact subset of X and A = −A. Moreover, it is
easy to verify that

X = cl(span(A)) and span(A) =
∞⋃

n=1

nA, (3.5)

where span(A) denotes the linear subspace of X generated by A. By Baire Category
Theorem, it follows that X �= span(A). Let � : X → 2X be defined by �(x) = {x} if
x ∈ A and �(x) = ∅ otherwise. Then Gr(�) is a compact convex subset of X×X. Take
e ∈ X \ span(A) and consider the ordering cone C defined by C := {te : t ≥ 0}. By the
choice of e, it is easy to verify that (0, 0) is a global solution of the vector optimization
C-min

x∈X
�(x). We claim that

0 �∈ D∗
c �(0, 0)(y∗) for all y∗ ∈ X∗ \ {0}. (3.6)

Indeed let y∗ ∈ X∗ satisfy 0 ∈ D∗
c �(0, 0)(y∗). By definition and convexity of �, one

has that 〈y∗, y〉 ≤ 0 for all y ∈ A. It follows from (3.5) that 〈y∗, x〉 ≤ 0 for all x ∈ X

and hence y∗ = 0. This shows that (3.6) holds.

Next we provide results showing that, in many interesting cases, one can indeed
take ε = 0 in (3.1). For each of Theorems 3.2, 3.3 and 3.4, we will make the following
blanket assumptions:



The Fermat rule for multifunctions on Banach spaces 79

Assumption 3.1. � : X → 2Y is a closed multifunction.

Assumption 3.2. (x̄, ȳ) ∈ Gr(�) is a local Pareto solution of the vector optimization
problem (1.1).

Theorem 3.2. Let Assumptions 3.1 and 3.2 hold. Suppose that the ordering cone C

in Y has a nonempty interior. Then there exists c∗ ∈ C+ with ‖c∗‖ = 1 such that
0 ∈ D∗

c �(x̄, ȳ)(c∗).

Proof. Take δ > 0 such that ȳ ∈ E(�(x̄ + δBX), C). Letting

A := Gr(�) ∩ ((x̄ + δBX) × Y ),

it follows that A∩ int(X×(ȳ−C)) = ∅. By Lemma 2.1 there exists (x∗, y∗) ∈ X∗ ×Y ∗
with ‖(x∗, y∗)‖ = 1 such that −(x∗, y∗) ∈ Nc(A, (x̄, ȳ)) and

〈x∗, x̄〉 + 〈y∗, ȳ〉 = sup{〈x∗, x〉 + 〈y∗, y〉 : (x, y) ∈ X × (ȳ − C)}.
It follows that x∗ = 0 and y∗ ∈ C+. Moreover

(0, −y∗) ∈ Nc(A, (x̄, ȳ)) = Nc(Gr(�), (x̄, ȳ)).

This shows that 0 ∈ D∗
c �(x̄, ȳ)(y∗). Thus one can take c∗ := y∗. ��

Remark. In the case when int(C) �= ∅, many authors consider, in addition to Pareto
solution, weak Pareto solutions of (1.1). Let A be a subset of Y . Recall that a ∈ A

is called a weak Pareto efficient point of A if A ∩ (a − int(C)) = ∅. Let WE(A, C)

denote the set of all weak Pareto efficient points of A. We say that (x̄, ȳ) ∈ Gr(�) is
a local weak Pareto solution of (1.1) if there exists a neighborhoond U of x̄ such that
ȳ ∈ WE(�(U), C). From the proof of Theorems 3.1 and 3.2 (taking c0 ∈ int(C) in the
proof of Theorem 3.1), one sees that if int(C) �= ∅ and (x̄, ȳ) is a local weak Pareto
solution of (1.1) then there exists c∗ ∈ C+ with ‖c∗‖ = 1 such that 0 ∈ D∗

c �(x̄, ȳ)(c∗).
Thus Theorem 3.2 remains true if Assumption 3.2 is replaced by:

Assumption 3.2∗. int(C) �= ∅, and (x̄, ȳ) ∈ Gr(�) is a local weak Pareto solution of
(1.1).

For a subset K of Y , let

W(K) := {y∗ ∈ Y ∗ : ‖y∗‖ ≤ sup{〈y∗, y〉 : y ∈ K}}.
If c ∈ int(C) then c + δBY ⊂ C for some δ > 0; thus, for any c∗ ∈ C+,

0 ≤ inf{〈c∗, x〉 : x ∈ c + δBY } = 〈c∗, c〉 − δ‖c∗‖
and so ‖c∗‖ ≤ 〈c∗, c

δ
〉. Therefore,

c ∈ int(C) ⇒ C+ ⊂ W({rc}) for some r > 0

(recalling that C+ is called a Bishop-Phelps cone if there exists a singleton K such that
C+ ⊂ W(K), and so int(C) �= ∅ ⇒ C+ is a Bishop-Phelps cone). Thus the following
concept extends the condition that int(C) �= ∅.
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Definition 3.1. A closed convex cone C ⊂ Y is said to be dually compact if there exists
a compact subset K of Y such that

C+ ⊂ W(K). (3.7)

There are two important types of cones C in Y satisfying this property:

(a) Y is finite dimensional (because one can then take K = BY ).
(b) int(C) �= ∅.

Recall that a set A in Y ∗ is a weakly (resp. weak∗) locally compact if every point

of A lies in a weakly (resp. weak∗ ) open set V such that V
w ∩ A (resp. V

w∗
∩ A) is

weakly (resp. weak∗) compact (cf. [15]), where V
w

(resp. V
w∗

) denotes the closure of
V with respect to the weak (resp. weak∗) topology of Y ∗. Loewen [15] proved that if Y

is reflexive and K is a compact subset of Y then W(K) is weakly locally compact ([15,
Proposition 3.5]). Since a set in a reflexive Banach space is weakly compact if and only
if it is bounded and weakly closed, the implication (i)⇒(iii) of the following proposition
for the reflexive case implies the result of Loewen.

Proposition 3.1. Let C be a closed convex cone in a Banach space Y . Then the following
properties are equivalent.

(i) C is dually compact.
(ii) There exists a weak∗ open set V containing 0 such that V ∩ C+ is bounded.

(iii) C+ is weak∗ locally compact.

Proof. (i)⇒(iii). By (i) there exists a compact subset K of Y such that (3.7) holds. By

compactness of K there exist y1, · · · , ym ∈ K such that K ⊂
m⋃

i=1
(yi + 1

2BY ). Therefore,

for any z∗ ∈ C+, (3.7) implies that

‖z∗‖ ≤ max{〈z∗, y〉 : y ∈
m⋃

i=1

(yi + 1

2
BY )}

= max{〈z∗, yi〉 : i = 1, · · · , m} + 1

2
‖z∗‖.

Hence

‖z∗‖ ≤ 2 max{〈z∗, yi〉 : i = 1, · · · , m} for all z∗ ∈ C+. (3.8)

Let V := {y∗ ∈ Y ∗ : 〈y∗, yi〉 < 1, i = 1, · · · , n}. Then, for any c∗ ∈ C+, c∗ + V is a
weak∗ open set containing c∗ and

c∗ + V
w∗ = c∗ + {y∗ ∈ Y ∗ : 〈y∗, yi〉 ≤ 1, i = 1, · · · , n}.

It follows from (3.8) that for any z∗ ∈ c∗ + V
w∗ ∩ C+,

‖z∗‖ ≤ 2 max{〈c∗, yi〉 : i = 1, · · · , n} + 2.

Therefore, c∗ + V
w∗ ∩C+ is weak∗ compact (because it is weak∗ closed and bounded).

This shows that (iii) holds.
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(iii) ⇒(ii) is trivial.
(ii) ⇒(i). By (ii) there exists a weak∗ open set V containing 0 and a constant M > 0

such that

‖y∗‖ ≤ M for all y∗ ∈ V ∩ C+.

Take z1, · · · , zn ∈ Y such that

V ⊃ {y∗ ∈ Y ∗ : 〈y∗, zi〉 ≤ 1, i = 1, · · · , n}.
Let z∗ ∈ C+ and r := max{〈z∗, zi〉 : i = 1, · · · , n}. In the case when r ≤ 0,
tz∗ ∈ V ∩ C+ and hence t‖z∗‖ ≤ M for any t > 0. This implies that z∗ = 0. In the
case when r > 0, z∗

r
∈ V ∩ C+ and hence

‖z∗‖ ≤ max{〈z∗, Mzi〉 : i = 1, · · · , n}.
This shows that (3.7) holds with K = {Mz1, · · · , Mzn}. The proof is completed. ��
Remark. It is known (cf. [13, Theorem 3.8.6]) that the ordering cone C has a nonempty
interior if and only if C+ has a weak∗-compact base (i.e., there exists a weak∗-compact
convex set � such that 0 �∈ � and C = {tθ : θ ∈ � and t ≥ 0}). Therefore,

C+ has a weak∗-compact base ⇒ C+ is weak∗ locally compact.

In general, the converse implication is not true. For example, let Y = R2 and C =
{0}×R+. Clearly, C+ is weak∗ locally compact, but C+ = R ×R+ has no weak∗-com-
pact base. However, under the condition that C+ is pointed, the converse implication
is true (cf [8, Theorem 3]). Song [23] gave some interesting equivalence results for a
number of classes of cones used in vector optimization.

By (3.8), one has that if C is dually compact then

y∗
n

w∗
→ 0 ⇔ y∗

n → 0 for any (generalized) sequence {y∗
n} in C+. (3.9)

Let A be a closed subset of Y . Recall that A is said to be epi-Lipschizian at a (cf.
[3]) if there exist a neighborhood V of a, a nonempty open set U and λ > 0 such that

A ∩ V + (0, λ)U ⊂ A.

In this case, any non-zero vector in U is said to be hypertangent to A at a. We say that
A is epi-Lipschitz-like at a (cf. [3, 14]) if there exist λ > 0, a neighborhood V of a and
a convex set S with its polar S◦ being weak∗ locally compact such that

A ∩ V + (0, λ)S ⊂ A.

Mimicking Mordukhovich’s idea in defining partially sequentially normal compact-
ness (cf. [17–19]) by virtue of the coderivative D̂∗�, we employ the Clarke coderivative
D∗

c to define that the multifunction � is partially sequentially normal compact at (x̄, ȳ)
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with respect to D∗
c � if following implication holds for any (generalized) sequence

{(xn, yn, x
∗
n, y∗

n)}:

x∗
n ∈ D∗

c �(xn, yn)(y
∗
n), (xn, yn) → (x̄, ȳ), x∗

n → 0 and y∗
n

w∗
→ 0 
⇒ y∗

n → 0.

Using similar arguments as in [17–19] , one can show that the above implication holds
if Gr(�) is epi-Lipschitz-like at (x̄, ȳ).

We say that Nc(A, ·) is closed at a ∈ A if for (generalized) sequences

an → a, a∗
n ∈ Nc(A, an), a∗

n

w∗
→ a∗ 
⇒ a∗ ∈ Nc(A, a)

(cf. [6, P.58, Corollary]). It is well known that Nc(A, ·) is closed at every point of A if A

is convex. It is easy to verify that Nc(A, ·) is also closed at a if a is a smooth boundary
point of A in the sense that there exist a neighborhood V of a and a continuously Frechet
differentiable function f such that f ′(a) �= 0 and V ∩ A = V ∩ {x ∈ X : f (x) ≤ 0}.
Theorem 3.3. Let Assumptions 3.1 and 3.2 hold. Suppose that Nc(Gr(�), ·) is closed
at (x̄, ȳ) (this condition is automatically satisfied if � is assumed to be a closed convex
multifunction). Further suppose that one of the following two conditions holds.

(i) The ordering cone C in Y is dually compact.
(ii) � is partially sequentially normal compact at (x̄, ȳ) with respect to D∗

c �. Then
there exists c∗ ∈ C+ with ‖c∗‖ = 1 such that 0 ∈ D∗

c �(x̄, ȳ)(c∗).

Proof. By Theorem 3.1 there exists a sequence (xn, yn, x
∗
n, y∗

n, c∗
n) with each (xn, yn) ∈

Gr(�), c∗
n ∈ C+, ‖c∗

n‖ = 1 and x∗
n ∈ D∗

c �(xn, yn)(y
∗
n) such that

(xn, yn) → (x̄, ȳ), x∗
n → 0 and ‖y∗

n − c∗
n‖ → 0.

Since the unit ball of Y ∗ is weak∗ compact, without loss of generality we can assume

that c∗
n

w∗
→ c∗

0 ∈ C+ (and hence y∗
n

w∗
→ c∗

0). Since Nc(Gr(�), ·) is closed at (x̄, ȳ),

0 ∈ D∗
c �(x̄, ȳ)(c∗

0). (3.10)

Thus the proof will be completed provided that c∗
0 �= 0. This is certainly the case if (ii)

holds because ‖y∗
n‖ → 1 and y∗

n

w∗
→ c∗

0. Next suppose that (i) holds. Then, we must also
have c∗

0 �= 0, in view of (3.9). The proof is completed. ��

Recall (cf. [6, P.58, Corollary]) that if a closed set A is epi-Lipschitzian at a then
Nc(A, ·) is closed at a ∈ A. The following corollary is a consequence of Theorem 3.3
((ii) is automatically satisfied thanks to the epi-Lipschitz assumption).

Corollary 3.1. Let Assumptions 3.1 and 3.2 hold. Suppose that Gr(�) is epi-Lipschitz-
ian at (x̄, ȳ). Then there exists c∗ ∈ C+ with ‖c∗‖ = 1 such that 0 ∈ D∗

c �(x̄, ȳ)(c∗).
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4. Asplund space setting

Throughout this section, let X and Y denote Asplund spaces (thus X × Y is also an
Asplund space). In this setting Theorems 3.1, 3.2 and 3.3 can be strengthened to fol-
lowing Theorems 4.1 and 4.2 in which D∗

c is replaced by the Mordukhovich derivative
D∗

F (recall that N̂(A, a) ⊂ NF (A, a) and Nc(A, a) is the weak∗-closed convex hull of
NF (A, a)). The proofs are the same as before but use Lemma 2.2′ in place of Lemma 2.2.

Theorem 4.1. Let X and Y be Asplund spaces and � : X → 2Y be a closed multifunc-
tion. Suppose that (x̄, ȳ) is a local Pareto solution of (1.1). Then for any ε > 0 there
exist xε ∈ x̄ + εBX, yε ∈ �(xε) ∩ (ȳ + εBY ) and c∗ ∈ C+ with ‖c∗‖ = 1 such that

0 ∈ D̂∗�(xε, yε)(c
∗ + εBY ∗) + εBX∗

(where the notion D̂∗ is defined by (2.2)).

Remark. From the proof of Theorem 3.1, one sees that if (x̄, ȳ) is a local Pareto solution
of (1.1) then it is a local extremal point of the system {Gr(�), ȳ−C} (cf. [18]). Thus one
can also prove Theorem 4.1 by using the extremal principle (cf. [14]) instead of Lemma
2.2′. Lemma 2.2′ in general implies the extremal principle but clearly its converse is not
true.

Following Mordukhovich and Shao [18, 19], we say that the multifunction � is par-
tially sequentially normally compact with respect to Y at (x, y) ∈ Gr(�) if any sequence
(xn, yn, x

∗
n, y∗

n) satisfying x∗
n ∈ D∗

F �(xn, yn)(y
∗
n), (xn, yn) → (x, y), ‖x∗

n‖ → 0 and

y∗
n

w∗
→ 0 as n → ∞ contains a subsequence with ‖y∗

nk
‖ → 0 as k → ∞.

Theorem 4.2. Let X and Y be Asplund spaces. Suppose that Assumptions 3.1 and 3.2
hold. Then there exists c∗ ∈ C+ with ‖c∗‖ = 1 such that 0 ∈ D∗

F �(x̄, ȳ)(c∗) provided
that one of the following conditions is satisfied.

(a) � is partially sequentially normally compact with respect to Y at (x̄, ȳ).
(b) The ordering cone C is dually compact.
(c) int(C) �= ∅ or Y is finite dimensional.

Proof. Since (c)
⇒(b), we need only to deal with (a) and (b). By Theorem 4.1 there
exists a sequence (xn, yn, x

∗
n, y∗

n) such that

x∗
n ∈ D̂∗�(xn, yn)(y

∗
n), ‖y∗

n‖ = 1, (xn, yn) → (x̄, ȳ), ‖x∗
n‖ → 0 and d(y∗

n, C+) → 0.

Without loss of generality we can assume that y∗
n

w∗
→ c∗

0 ∈ C+. It follows from (2.1) that
0 ∈ D∗

F �(x̄, ȳ)(c∗
0). It remains to show that c∗

0 �= 0. However this can be done exactly
as in the proof of Theorem 3.3. ��

Let 
 be a closed subset of X and consider the following constrained vector optimi-
zation problem.

C − min
x∈


�(x). (4.1)



84 X.Y. Zheng, K.F. Ng

We say that (x̄, ȳ) is a local solution of (4.1) if there exists a neighborhood U of x̄ such
that ȳ ∈ E(�(U ∩ 
), C). With � defined by (1.2), we note that x̄ is a local minimum
point of f on 
 if and only if (x̄, f (x̄)) is a local solution of (4.1). Recall [5] that if
f : X → R is assumed to be locally Lipschitz then the following Fermat’s rule is valid:

f attains a local mimimum at x̄ over 
 
⇒ 0 ∈ ∂F f (x̄) + NF (
, x̄).

Thus it is reasonable for us to make a similar provision (of local Lipschitz property) in
our multifunction setting. Recall [1] that a multifunction � : X → 2Y is said to have
the Aubin property (or pseudo-Lipschitzian property) at x̄ for ȳ ∈ �(x̄) if there exist a
constant l > 0, neighborhoods U of x̄ and V of ȳ such that

�(x) ∩ V ⊂ �(u) + l‖x − u‖BY for any x, u ∈ U.

We shall need the following known result (cf. [17, Theorem 3.2]).

Proposition 4.1. Let � : X → 2Y be a closed multifunction with the Aubin property at
x̄ ∈ X for ȳ ∈ �(x̄). Then there exist L, δ > 0 such that

sup{‖x∗‖ : x∗ ∈ D̂∗�(x, y)(y∗)} ≤ L‖y∗‖
for any (x, y) ∈ Gr(�) ∩ (B(x̄, δ) × B(ȳ, δ)) and any y∗ ∈ Y ∗.

In the remainder of this section, we always assume that X, Y, Z are Asplund spaces,

 is a closed subset of X, � : X → 2Y is a closed multifunction with theAubin property,
and that φ : X → Z is a locally Lipschitz single-valued mapping. Let CZ be a closed
convex cone in Z and let ≤CZ

denote the preorder induced by CZ . Next consider the
following vector optimization problem with more general constraint:

C − min �(x) (4.2)

φ(x) ≤CZ
0

x ∈ 
.

We say that (x̄, ȳ) is a local Pareto solution of (4.2) if x̄ ∈ 
, φ(x̄) ≤CZ
0 and there

exists a neighborhood U of x̄ such that ȳ ∈ E(�(U ∩ 
 ∩ φ−1(−CZ)), C).

Theorem 4.3. Let (x̄, ȳ) be a local Pareto solution of the constrained vector optimiza-
tion problem (4.2). Suppose that both C and CZ are dually compact. Then there exist
c∗ ∈ C+ and c∗

Z ∈ C+
Z with ‖c∗‖ + ‖c∗

Z‖ = 1 such that

0 ∈ D∗
F �(x̄, ȳ)(c∗) + D∗

F φ(x̄)(c∗
Z) + NF (
, x̄). (4.3)

Proof. By assumption there exists δ > 0 such that

ȳ ∈ E(�[(x̄ + δBX) ∩ 
 ∩ φ−1(−CZ)], C). (4.4)

Let

A := {(x, y, φ(x)) ∈ X × Y × Z : y ∈ �(x) and x ∈ x̄ + δBX}
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and take c0 ∈ C with ‖c0‖ = 1. For all natural number n large enough, let

Bn := 
 × (ȳ − 1

n2 c0 − C) × (φ(x̄) − CZ).

Then A ∩ Bn = ∅. Indeed, if this is not the case then there exist x′ ∈ x̄ + δBX and
y′ ∈ �(x′) such that x′ ∈ 
, y′ ≤ ȳ − 1

n2 c0 and φ(x′) ≤CZ
φ(x̄) ≤CZ

0. This contra-

dicts (4.4). By Lemma 2.2′ (applied to a = (x̄, ȳ, φ(x̄)) and b = (x̄, ȳ − 1
n2 c0, φ(x̄))),

there exists a sequence (xn, yn, x
∗
n, y∗

n, z∗
n, un, vn, wn, u

∗
n, v

∗
n, w∗

n) with each

(xn, yn, φ(xn)) ∈ A, (un, vn, wn) ∈ Bn,

(x∗
n, y∗

n, z∗
n) ∈ N̂(A, (xn, yn, φ(xn))) (4.5)

and

(u∗
n, v

∗
n, w∗

n) ∈ N̂(Bn, (un, vn, wn)) (4.6)

such that

lim
n→∞(‖(xn, yn, φ(xn))−(x̄, ȳ, φ(x̄))‖ + ‖(un, vn, wn) − (x̄, ȳ − 1

n2 c0, φ(x̄))‖)=0,

lim
n→∞ ‖(x∗

n, y∗
n, z∗

n)‖ = lim
n→∞ ‖(u∗

n, v
∗
n, w∗

n)‖ = 1 (4.7)

and

lim
n→∞ ‖(x∗

n, y∗
n, z∗

n) + (u∗
n, v

∗
n, w∗

n)‖ = 0. (4.8)

By (4.6) and (4.7), and making use of the following well-known relation

N̂(Bn, (un, vn, wn)) = N̂(
, un) × N̂(ȳ − 1

n2 c0 − C, vn) × N̂(φ(x̄) − CZ, wn)

⊂ N̂(
, un) × C+ × C+
Z ,

we can assume without loss of generality that

(u∗
n, v

∗
n, w∗

n)
w∗
→ (u∗, c̃∗, c̃∗

Z) ∈ NF (
, x̄) × C+ × C+
Z . (4.9)

Noting that A = Gr(�, φ) ∩ [(x̄ + δBX) × Y × Z] and since (x̄ + δBX) × Y × Z is a
neighborhood of (xn, yn, φ(xn)) (for all large enough n), (4.5) can be rewritten as

(x∗
n, y∗

n, z∗
n) ∈ N̂(Gr(�, φ), (xn, yn, φ(xn)),

that is,

x∗
n ∈ D̂∗(�, φ)(xn, yn, φ(xn))(−y∗

n, −z∗
n). (4.10)

It follows from (4.8) and (4.9) that that

x∗
n

w∗
→ −u∗, y∗

n

w∗
→ −c̃∗, z∗

n

w∗
→ −c̃∗

Z
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and

−u∗ ∈ D∗
F (�, φ)(x̄, ȳ, φ(x̄))(c̃∗, c̃∗

Z).

This and Lemma 2.3 imply that

−u∗ ∈ D∗
F �(x̄, ȳ)(c̃∗) + D∗

F φ(x̄)(c̃∗
Z).

Thus (4.3) holds with c∗ = c̃∗
‖c̃∗‖+‖c̃∗

Z‖ and c∗
Z = c̃∗

Z

‖c̃∗‖+‖c̃∗
Z‖ provided that (c̃∗, c̃∗

Z) �=
(0, 0). Suppose for contradiction that c̃∗ = 0 and c̃∗

Z = 0. Then v∗
n

w∗
→ 0 and w∗

n

w∗
→ 0.

It follows from the dual compactness of C and CZ that

‖v∗
n‖ → 0 and ‖w∗

n‖ → 0. (4.11)

But on the other hand, since � and φ have respectively the Aubin property and local
Lipschitz property at (x̄, ȳ) and x̄, one can apply Proposition 4.1 and (4.10) to conclude
that there exists a constant L > 0 such that ‖x∗

n‖ ≤ L(‖y∗
n‖+‖z∗

n‖) for all large enough
n. It follows from (4.7) that there exists r > 0 such that 2r ≤ ‖y∗

n‖ + ‖z∗
n‖ for all large

enough n. Therefore, by (4.8), r ≤ ‖v∗
n‖+‖w∗

n‖ for all large enough n. This contradicts
(4.11). The proof is completed. ��

Setting φ(x) := 0 for all x ∈ X, the following corollary is an immediate consequence
of Theorem 4.3.

Corollary 4.1. Let (x̄, ȳ) be a local Pareto solution of the constrained vector optimiza-
tion problem (4.1). Suppose that C is dually compact. Then there exists c∗ ∈ C+ with
‖c∗‖ = 1 such that

0 ∈ D∗
F �(x̄, ȳ)(c∗) + NF (
, x̄). (4.12)

Remark. In the case when � is a Lipschitz single-valued mapping and Y is finite dimen-
sional, by [18, Theorem 5.7] one has that

D∗
F �(x̄)(y∗) = ∂F (y∗ ◦ �)(x̄) for any y∗ ∈ Y ∗, (4.13)

and hence (4.12) is reduced to

0 ∈ ∂F (c∗ ◦ �)(x̄) + NF (
, x̄).

Recall that a Lipschitz single-valued mapping φ is strictly differentiable at x with
a strict derivative φ′(x), a bounded linear operator from X to Y , provided that for each
h ∈ X,

lim
z→x t↓0

φ(z + th) − φ(z)

t
= φ′(x)(h).

It is known that D∗
F φ(x)(y∗) = (φ′(x))∗(y∗) for all y∗ ∈ Y ∗ if φ is strictly differentiable

at x, where (φ′(x))∗ denotes the conjugate operator of φ′(x) (cf. [19, Theorem 3.5]).
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Thus, in the the case when the objective function � in (4.1) is a Lipschitz single-valued
mapping φ which is strictly differentiable at x̄, (4.12) is the same as

0 ∈ (φ′(x̄))∗(c∗) + NF (
, x̄).

Let Z := Rn+m, CZ := Rn+ × {0m} and φ : X → Z be defined by

φ(x) := (g1(x), · · · , gn(x), h1(x), · · · , hm(x)) for all x ∈ X,

where 0m is the zero element of Rm and gi, hj : X → R are locally Lipschitz functions
(i = 1, · · · , n and j = 1, · · · , m). Thus (4.2) is reduced to the following problem:

C − min �(x) (4.14)

gi(x) ≤ 0, i = 1, · · · , n

hj (x) = 0, j = 1, · · · , m

x ∈ 
 .

Corollary 4.2. Let (x̄, ȳ) be a local Pareto solution of (4.14). Suppose that C is dually
compact. Then there exist c∗ ∈ C+,λi ∈ R+ (i = 1, · · · , n) andµj ∈ R (j = 1, · · · , m)
such that

(i) 0 ∈ D∗
F �(x̄, ȳ)(c∗) +

n∑
i=1

λi∂F gi(x̄) +
m∑

j=1
∂F (µjhj )(x̄) + NF (
, x̄),

(ii) λigi(x̄) = 0 (i = 1, · · · , n),

(iii) ‖c∗‖ +
n∑

i=1
λi +

m∑
j=1

|µj | = 1.

Proof. Let I := {1 ≤ i ≤ n : gi(x̄) = 0}, Z := R|I |+m and CZ := R
|I |
+ × {0m}. Let

φ(x) := ((gi(x))i∈I , h1(x), · · · , hm(x)) for all x ∈ X. By assumption, it is clear that
(x̄, ȳ) is a local Pareto solution of the following problem:

C − min �(x)

φ(x) ≤CZ
0

x ∈ 
 .

By Theorem 4.3 there exist c∗ ∈ C+, λi ∈ R+ (i ∈ I ) and µj ∈ R (j = 1, · · · , m)

such that ‖c∗‖ + ∑
i∈I

λi +
m∑

j=1
|µj | = 1 and

0 ∈ D∗�(x̄, ȳ)(c∗) + D∗
F φ(x̄)((λi)i∈I , µ1, · · · , µm)) + NF (
, x̄).

It follows from (4.13) and [18, Corollary 4.3] that (i), (ii) and (iii) hold with λi = 0 if
i �∈ I . ��
Remark. In the special case when Y = Rk , C = Rk+ and � is a Lipschitz single-valued
mapping, (4.14) is reduced to the multiobjective program problem studied by Minami
in [16]; noting that ∂F (µjhj )(x̄) ⊂ ∂c(µjhj )(x̄) = µj∂chj (x̄), (i), (ii) and (iii) in
Corollary 4.2 respectively imply (a), (b) and (c) in [16, Theorem 3.1] (but, on the other
hand, the said result in [16] is applicable to a general Banach space).

In the case when X is a reflexive Banach space, Y = R, C = R+ and � is a sin-
gle-valued Lipschitz function, Corollary 4.2 implies [4, Corollary 2.5]; if, in addition,

 = X then Corollary 4.1 implies [4, Corollary 2.3].



88 X.Y. Zheng, K.F. Ng

5. Necessary conditions for Pareto efficient points

Throughout this section, we assume that A is a closed subset of a Banach space Y . We
shall consider necessary conditions for a ∈ A to be a Pareto efficient point of A with
respect to the ordering cone C. Let �A : Y → 2Y be defined by �A(x) = {x} if x ∈ A

and �A(x) = ∅ otherwise. Thus Gr(�A) = {(x, x) : x ∈ A}. It is also clear that

a ∈ E(A, C) ⇔ (a, a) is a solution of vector optimization problem C − min
x∈Y

�A(x).

(5.1)

Lemma 5.1. Let Y be a Banach space and a ∈ A. Then

D∗
c �A(a, a)(y∗) = y∗ + Nc(A, a) for all y∗ ∈ Y ∗. (5.2)

Proof. Let Tc(Gr(�A), (a, a)) and Tc(A, a) denote respectively Clarke’s tangent cones
of Gr(�A) at (a, a) and ofA ata. Recall [6,Theorem 2.4.5] that (u, v) ∈ Tc(Gr(�A), (a, a))

if and only if for every sequence {(xn, yn)} in Gr(�A) converging to (a, a) and sequence
{tn} in (0, +∞) decreasing to 0 there exists a sequence {(un, vn)} in Y × Y converging
to (u, v) such that (xn, yn)+ tn(un, vn) ∈ Gr(�A) for every natural number n. This and
the definition of �A imply that (u, v) ∈ Tc(Gr(�A), (a, a)) if and only if u = v and
for every sequence {an} in A converging to a and sequence {tn} in (0, +∞) decreasing
to 0 there exists a sequence {vn} in Y converging to v such that an + tnvn ∈ A. Thus
Tc(Gr(�A), (a, a)) = {(v, v) : v ∈ Tc(A, a)}. Noting that

x∗ ∈ D∗
c �A(a, a)(y∗) ⇔ 〈x∗, u〉 − 〈y∗, v〉 ≤ 0 ∀(u, v) ∈ Tc(Gr(�A), (a, a)),

it follows that

x∗ ∈ D∗
c �A(a, a)(y∗) ⇔ 〈x∗, v〉 − 〈y∗, v〉 ≤ 0 ∀v ∈ Tc(A, a)

⇔ x∗ − y∗ ∈ Nc(A, a).

This shows that (5.2) holds. ��
Lemma 5.2. Let Y be an Asplund space and a ∈ A. Then

D∗
F �A(a, a)(y∗) = y∗ + NF (A, a) for all y∗ ∈ Y ∗. (5.3)

Proof. Let x be an arbitrary point in A. Note that

(x∗, y∗) ∈ N̂(Gr(�A), (x, x)) ⇔ lim sup

(u,v)
Gr(�A)−→ (x,x)

〈x∗, u − x〉 + 〈y∗, v − x〉
‖u − x‖ + ‖v − x‖ ≤ 0

⇔ lim sup
v

A→x

〈x∗, v − x〉 + 〈y∗, v − x〉
‖v − x‖ ≤ 0

⇔ x∗ + y∗ ∈ N̂(A, x),

that is,

N̂(Gr(�A), (x, x)) = {(x∗, y∗) : x∗ + y∗ ∈ N̂(A, x)}.
Since Y is an Asplund space, it follows from (2.1) that (5.3) holds. ��
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We shall apply results in Section 3 to the multifunction �A and thereby provide
necessary conditions for a to be a Pareto efficient point of a set A.

Theorem 5.1. Let Y be a Banach space and a ∈ E(A, C). Then for any ε > 0 there
exist aε ∈ A ∩ B(a, ε) and a∗

ε ∈ C+ with ‖a∗
ε ‖ = 1 such that

−a∗
ε ∈ Nc(A, aε) + εBY ∗ .

Proof. By (5.1) and Theorem 3.1 there exist aε ∈ B(a, ε) and c∗ ∈ C+ with ‖c∗‖ = 1
such that

0 ∈ D∗
c �A(aε, aε)(c

∗ + ε

2
BY ∗) + ε

2
BY ∗ .

It follows from (5.2) that 0 ∈ Nc(A, aε) + c∗ + εBY ∗ . Thus, the theorem is established
by setting a∗

ε = c∗. ��
Using Theorems 3.2-3.4 instead of Theorem 3.1 in the above proof, we can show

similarly the following results.

Theorem 5.2. Let Y be a Banach space and a ∈ E(A, C). Suppose that one of the
following conditions is satisfied.

(a) C has a nonempty interior.
(b) C is dually compact and Nc(A, ·) is closed at a.
(c) There exists a vector in Y hypertangent to A at a ∈ A. Then there exists c∗ ∈ C+

with ‖c∗‖ = 1 such that −c∗ ∈ Nc(A, a).

If Y is assumed to be an Asplund space, then the preceding two theorems can be
strengthened to following theorems 5.3 and 5.4 where N̂(A, ·) or NF (A, ·) is used in
place of Nc(A, ·). The proofs are similar as before but one applies (5.3) and results in
Section 4 in place of (5.2) and results in Section 3.

Theorem 5.3. Let Y be an Asplund space and a ∈ E(A, C). Then for any ε > 0 there
exist aε ∈ A ∩ B(a, ε) and a∗

ε ∈ C+ with ‖a∗
ε ‖ = 1 such that

−a∗
ε ∈ N̂(A, aε) + εBY ∗ .

Recall [17, 18] that A is said to be sequentially normally compact at a ∈ A if any

sequence (xn, x
∗
n) satisfying x∗

n ∈ NF (A, xn), xn → a and x∗
n

w∗
→ 0 contains a subse-

quence with ‖x∗
nk

‖ → 0. It is easy to verify that �A is partially sequentially normally
compact at (a, a) with respect to Y if A is sequentially normally compact at a.

Theorem 5.4. Let Y be an Asplund space and a ∈ E(A, C). Suppose that one of the
following conditions is satisfied.

(a) C be dually compact.
(b) A is sequentially normally compact at a. Then there exists c∗ ∈ C+ with ‖c∗‖ = 1

such that −c∗ ∈ Nc(A, a).
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