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THE LAGRANGE MULTIPLIER RULE FOR MULTIFUNCTIONS IN
BANACH SPACES∗
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Abstract. We study general constrained multiobjective optimization problems with objectives
being closed multifunctions in Banach spaces. In terms of the coderivatives and normal cones,
we provide generalized Lagrange multiplier rules as necessary optimality conditions of the above
problems. In an Asplund space setting, sharper results are presented.
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1. Introduction. Let X be a Banach space and fi : X → R ∪ {+∞} be proper
lower semicontinuous functions (i = 0, 1, . . . ,m). Many authors (see [2, 3, 4, 16, 29,
30]) studied the following optimization problem with inequality and equality con-
straints:

min f0(x),(1.1)

fi(x) ≤ 0, i = 1, . . . , n,

fi(x) = 0, i = n + 1, . . . ,m,

x ∈ Ω.

Under some restricted conditions (e.g., each fi is locally Lipschitz), it is well known,
as the Lagrange multiplier rule, that if x̄ is a local solution of (1.1), then there exists
λi ∈ R (0 ≤ i ≤ m) such that

0 ∈
m∑
i=0

∂(λifi)(x̄) + N(Ω, x̄),(1.2)

m∑
i=0

|λi| = 1 and λi ≥ 0, 0 ≤ i ≤ n,

where ∂(λifi) and N(Ω, x̄) denote the subdifferential and the normal cone (see sec-
tion 2 for their definitions). Some authors established the so-called fuzzy Lagrange
multiplier rule (see [3, 14, 20] and the references therein). The main aim of this paper
is to establish the corresponding rules for multifunctions in Banach spaces.

Let X, Y0, Y1, . . . , Ym be Banach spaces, Ω be a closed subset of X, and Fi : X →
2Yi (i = 0, 1, . . . ,m) be closed multifunctions. Let C0 ⊂ Y0 be a closed convex cone
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LAGRANGE RULE FOR MULTIFUNCTIONS IN BANACH SPACES 1155

such that C0 	= C0 ∩−C0 (i.e, C0 is not a linear subspace), which specifies a preorder
≤C0 on Y0 as follows: for y1, y2 ∈ Y0,

y1 ≤C0 y2 if and only if y2 − y1 ∈ C0.

For i = 1, . . . ,m, let Ci be a closed convex cone in Yi. Consider the following con-
strained multiobjective optimization problem:

C0 − minF0(x),(1.3)

Fi(x) ∩ −Ci 	= ∅, i = 1, . . . ,m,

x ∈ Ω.

Recall that ā ∈ A is said to be a Pareto efficient point if ā ≤C0
a whenever a ∈ A and

a ≤C0 ā, that is,

A ∩ (ā− C0) ⊂ ā + C0 ∩ −C0.

We use E(A,C0) to denote the set of all Pareto efficient points of A. In the case when
C0 is pointed (i.e., C0 ∩ −C0 = {0}),

ā ∈ E(A,C0) ⇐⇒ A ∩ (ā− C0) = {ā}.

For x̄ ∈ X and ȳ ∈ F0(x̄), we say that (x̄, ȳ) is a local Pareto solution of the mul-
tiobjective optimization problem (1.3) if there exists a neighborhood U of x̄ such
that

ȳ ∈ E

(
F0

[
U ∩ Ω ∩

(
m⋂
i=1

F−1
i (−Ci)

)]
, C0

)
.

In the case when each Fi is single-valued, many authors have established sufficient or
necessary optimality conditions for Pareto solutions and weak Pareto solutions under
some restricted conditions; e.g., the ordering cone has a nonempty interior, the spaces
are finite dimensional, and Ci = Rn

+ (see [1, 5, 7, 9, 10, 11, 12, 13, 22, 23, 24, 26, 27]
and the references therein). In the set-valued setting, in terms of cotangent derivatives
Götz and Jahn [8] provided the Lagrange multiplier rule for (1.3) under the convexity
assumption. Ye and Zhu [25] and Mordukhovich, Treiman, and Zhu [19] gave some
necessary optimality conditions for multiobjective optimization problems with respect
to an abstract order in a Euclidean space or Asplund space setting. Recently, the
authors [28] studied a unconstrained multiobjective problem with the objective being
multifunctions in Banach spaces and, as generalizations of the Fermat rule, presented
necessary optimization conditions. In this paper, in a general setting we provide the
following fuzzy Lagrange multiplier rule for constrained multiobjective optimization
problem (1.3).

Let X,Yi be Banach spaces, Ω be a closed subset of X, and Fi : X → 2Yi be a
closed multifunction (i = 0, 1, . . . ,m). Suppose that (x̄,ȳ0) is a local Pareto solution
of the constrained multiobjective optimization problem (1.3), and let ȳi ∈ Fi(x̄)∩−Ci

(i = 1, . . . ,m). Then one of the following two assertions holds.
(i) For any ε > 0 there exist xi ∈ x̄+ εBX , w ∈ Ω∩ (x̄+ εBX), yi ∈ Fi(xi)∩ (ȳi +

εBYi), and c∗i ∈ C+
i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗
cFi(xi, yi)(c

∗
i + εBY ∗

i
) + Nc(Ω, w) + εBX∗ ,

D
ow

nl
oa

de
d 

07
/1

5/
13

 to
 1

37
.1

89
.4

9.
14

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1156 XI YIN ZHENG AND KUNG FU NG

where BX denotes the closed unit ball of X, C+
i := {y∗ ∈ Y ∗

i : 〈y∗, c〉 ≥ 0 ∀c ∈ Ci},
Nc(·, ·) denotes the Clarke normal cone, and D∗

cFi(·, ·) denotes the Mordukhovich
coderivative with respect to the Clarke normal cone.

(ii) For any ε > 0 there exist xi ∈ x̄ + εBX , w ∈ Ω ∩ (x̄ + εBX), yi ∈ Fi(xi) ∩
(ȳi + εBYi), x

∗
i ∈ D∗

cFi(xi, yi)(εBY ∗
i
), and w∗ ∈ Nc(Ω, w) + εBX∗ such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.(1.4)

Using this result, we give some exact Lagrange multiplier rules for (1.3). In the case
when X,Yi are Asplund spaces, these results are sharpened; in particular, we prove
the following result (see section 2 for terms undefined).

Let (x̄, ȳ0) be a local Pareto solution of (1.3), and let ȳi ∈ Fi(x̄) ∩ −Ci. Suppose
that each Fi is pseudo-Lipschitz around (x̄, ȳi) and that each Ci is dually compact
(e.g., Ci has a nonempty interior). Then there exists c∗i ∈ C+

i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c
∗
i ) + N(Ω, x̄),(1.5)

where D∗Fi(·, ·) denotes the Mordukhovich coderivative with respect to the limiting
normal cone (see section 2 for its definition). Under the condition that X,Yi are finite
dimensional, we provide the following necessity optimality condition of constrained
multiobjective optimization problem (1.3).

Let each Fi be a closed multifunction and each Ci be a closed convex cone.
Suppose that (x̄, ȳ0) is a local Pareto solution of (1.3). Then, for any ȳi ∈ Fi(x̄)∩−Ci,
one of the following assertions holds.

(a) There exists c∗i ∈ C+
i such that (1.5) holds.

(b) There exist x∗
i ∈ D∗Fi(x̄, ȳi)(0) and w∗ ∈ N(Ω, x̄) such that (1.4) holds.

Let f0, f1, . . . , fm be as in (1.1). In the special case when Yi = R, Ci = {0} for
0 ≤ i ≤ m, Fi(x) = [fi(x), +∞) for 0 ≤ i ≤ n, and Fi(x) = fi(x) for n + 1 ≤ i ≤ m.
The above results can be applied to (1.1). In particular, under the assumption that X
is an Asplund space and that f0, f1, ·, fn are lower semicontinuous and fn+1, . . . , fm
are continuous, we prove that if x̄ is a local solution of (1.1), then one of the following
assertions holds.

(i) For any ε > 0 there exist λi ∈ R \ {0}, w ∈ (x̄+ εBX) ∩Ω, and xi ∈ x̄+ εBX

with |fi(xi) − fi(x̄)| < ε such that λi ≥ 0 for 0 ≤ i ≤ n,
∑m

i=0 |λi| = 1, and

0 ∈
m∑
i=0

∂̂(λifi)(xi) ∩MBX∗ + N̂(Ω, w) ∩MBX∗ + εBX∗ ,

where M > 0 is a constant independent of ε.
(ii) For any ε > 0 there exist w ∈ (x̄+εBX)∩Ω, xi ∈ x̄+εBX with |fi(xi)−fi(x̄)| <

ε, εi ∈ (−ε, ε), w∗ ∈ N̂(Ω, w)+ εBX∗ , and x∗
i ∈ ∂̂(εifi)(xi) such that (1.4) holds and

εi > 0 for 0 ≤ i ≤ n.

2. Preliminaries. Throughout this section, we assume that Y is a Banach
space. Let f : Y → R ∪ {+∞} be a proper lower semicontinuous function, and
let epi(f) denote the epigraph of f , that is,

epi(f) := {(y, t) ∈ Y ×R : f(y) ≤ t}.
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LAGRANGE RULE FOR MULTIFUNCTIONS IN BANACH SPACES 1157

Let y ∈ dom(f), let h ∈ Y , and let f◦(y, h) denote the generalized directional deriva-
tive given by Rockafellar (see [4]), that is,

f◦(y, h) := lim
ε↓0

lim sup

z
f→y,t↓0

inf
w∈h+εBY

f(z + tw) − f(z)

t
,

where BY denotes the closed unit ball of Y , and the expression z
f→ y means z →

y and f(z) → f(y). It is known that f◦(y, h) reduces to Clarke’s directional derivative
when f is locally Lipschitzian (see [4]). Let

∂cf(y) := {y∗ ∈ Y ∗ : 〈y∗, h〉 ≤ f◦(y, h) ∀h ∈ Y }.

Let A be a closed subset of Y , and let Nc(A, a) denote Clarke’s normal cone of A at
a, that is,

Nc(A, a) :=

{
∂cδA(a), a ∈ A,
∅, a 	∈ A,

where δA denotes the indicator function of A: δA(y) = 0 if y ∈ A and δA(y) =
+∞ otherwise. The following result (see [4, Corollary, p. 52]) presents an important
necessity optimality condition in terms of Clarke’s subdifferential and normal cone for
a nonsmooth constrained optimization problem.

Proposition 2.1. Let f : Y → R be a locally Lipschitz function and A be a
closed subset of Y . Suppose that f attains its minimum over A at a ∈ A. Then
0 ∈ ∂cf(a) + Nc(A, a).

We also need the notion of Fréchet normal cones and that of limiting normal
cones. For ε ≥ 0, the set of ε-normals to A at a is defined by

N̂ε(A, a) :=

⎧⎨
⎩y∗ ∈ Y ∗ : lim sup

y
A→a

〈y∗, y − a〉
‖y − a‖ ≤ ε

⎫⎬
⎭ ,

where y
A→ a means that y → a with y ∈ A. The set N̂0(A, a) is simply denoted by

N̂(A, a) and is called the Fréchet normal cone to A at a. The limiting Fréchet normal
cone to A at a is defined by

N(A, a) := {y∗ ∈ Y ∗ : ∃εn → 0+, yn
A→ a, y∗n

w∗
→ y∗ with y∗n ∈ N̂εn(A, yn)}.

In the case when A is convex, it is well known that

Nc(A, a) = N(A, a) = N̂(A, a).

Recall that the Fréchet subdifferential ∂̂f(y) and the limiting subdifferential ∂f(y) of
f at y ∈ dom(f) are defined by

∂̂f(y) = {y∗ : (y∗,−1) ∈ N̂(epi(f), (y, f(y))}

and

∂f(y) := {y∗ ∈ Y ∗ : (y∗,−1) ∈ N(epi(f), (y, f(y)))},
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1158 XI YIN ZHENG AND KUNG FU NG

respectively. It is known (see [18]) that

∂̂f(y) :=

{
y∗ ∈ Y ∗ : lim inf

v→y

f(v) − f(y) − 〈y∗, v − y〉
‖v − y‖ ≥ 0

}
.

Let ∂̂∞f(y) and ∂∞f(y) denote, respectively, the singular Fréchet subdifferential and
the singular limiting subdifferential of f at y, that is,

∂̂∞f(y) = {y∗ : (y∗, 0) ∈ N̂(epi(f), (y, f(y))}

and

∂∞f(y) := {y∗ ∈ Y ∗ : (y∗, 0) ∈ N(epi(f), (y, f(y)))}.

Recall that a Banach space Y is called an Asplund space if every continuous
convex function defined on an open convex subset D of Y is Fréchet differentiable at
each point of a dense Gδ subset of D. It is well known that Y is an Asplund space if
and only if every separable subspace of Y has a separable dual. The class of Asplund
spaces is well investigated in geometric theory of Banach spaces; see [21] and the
references therein. In the case when Y is an Asplund space, Mordukhovich and Shao
[18] proved that ∂f(y) = lim sup

v
f→y

∂̂f(v),

N(A, a) := {y∗ ∈ Y ∗ : ∃yn
A→ a, y∗n

w∗
→ y∗ with y∗n ∈ N̂(A, yn)},(2.1)

and Nc(A, a) is the weak∗ closed convex hull of N(A, a).
In the Asplund space setting, in terms of the Fréchet subdifferential and Fréchet

normal cone one has the following necessity optimality condition similar to Proposition
2.1.

Proposition 2.2. Let Y be an Asplund space and f : Y → R a locally Lipschitz
function, and let A be a closed subset of Y . Suppose that f attains its minimum over
A at a ∈ A. Then for any ε > 0 there exist aε ∈ a + εBY and uε ∈ A ∩ (a + εBY )
such that

0 ∈ ∂̂f(aε) + N̂(A, uε) + εBY ∗ .

Proposition 2.2 is due to Fabian [6] (also see [18] for the details).
For Φ : X → 2Y , a multifunction from another Banach space X to Y , let Gr(Φ)

denote the graph of Φ, that is,

Gr(Φ) := {(x, y) ∈ X × Y : y ∈ Φ(x)}.

We say that Φ is closed if Gr(Φ) is a closed subset of X × Y and that Φ is convex if
Gr(Φ) is a convex subset of X × Y . Recall (see [15, 17]) that Φ is pseudo-Lipschitz
at (x̄, ȳ) ∈ Gr(Φ) if there exist a constant L > 0, a neighborhood U of x̄, and a
neighborhood V of ȳ such that

Φ(x1) ∩ V ⊂ Φ(x2) + ‖x1 − x2‖LBY ∀x1, x2 ∈ U.

For x ∈ X and y ∈ Φ(x), let D̂∗Φ(x, y), D∗Φ(x, y) and D∗
cΦ(x, y) : Y ∗ → 2X

∗
denote

the Mordukhovich coderivatives of Φ at (x, y) with respect to the Fréchet, limiting,
and Clarke normal cones, respectively, that is,

D̂∗Φ(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N̂(Gr(Φ), (x, y))} ∀y∗ ∈ Y ∗,(2.2)

D∗Φ(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N(Gr(Φ), (x, y))} ∀y∗ ∈ Y ∗,(2.3)
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LAGRANGE RULE FOR MULTIFUNCTIONS IN BANACH SPACES 1159

and

D∗
cΦ(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ Nc(Gr(Φ), (x, y))} ∀y∗ ∈ Y ∗

(see [17, 18]). We will need the following known result.
Proposition 2.3. Let Φ : X → 2Y be a closed multifunction. Suppose that Φ is

pseudo-Lipschitz at (x̄, ȳ) ∈ gr(Φ). Then there exist constants L, δ > 0 such that

sup{‖x∗‖ : x∗ ∈ D̂∗Φ(x, y)(y∗)} ≤ L‖y∗‖

for any (x, y) ∈ Gr(Φ) ∩ (B(x̄, δ) ×B(ȳ, δ)) and any y∗ ∈ Y ∗.
Proposition 2.3 can be found in Mordukhovich [15]. Moreover, readers can find a

simpler proof of Proposition 2.3 in Jourani and Thibault [11].
Let Si : Mi → 2Y (i = 1, . . . , n) be multifunctions from metric spaces Mi

with metrics di. Recall (see [19]) that x̄ is called an extremal point of the system
(S1, . . . , Sn) at (s̄1, . . . , s̄n), provided that x̄ ∈

⋂n
i=1 Si(s̄i) and there exists r > 0 such

that for any ε > 0 there exists (s1, . . . , sn) ∈ M1 × · · · ×Mn with

di(si, s̄i) ≤ ε, d(x̄, Si(si)) ≤ ε, i = 1, . . . , n, and

n⋂
i=1

Si(si) ∩ (x̄ + rBY ) = ∅.

Mordukhovich, Treiman, and Zhu [19] proved the following extended extremal prin-
ciple.

Theorem MTZ. Let Si : Mi → 2Y be multifunctions from metric spaces
(Mi, di) to an Asplund space Y , i = 1, . . . , n. Assume that x̄ is an extremal point
of the system (S1, . . . , Sn) at (s̄1, . . . , s̄n), where each Si is closed-valued around s̄i.
Then for any σ > 0 there exist si ∈ Mi, xi ∈ Si(si), and x∗

i ∈ Y ∗, i = 1, . . . , n, such
that

di(si, s̄i) ≤ σ, ‖xi−x̄‖ ≤ σ, x∗
i ∈ N̂(Si(si), xi)+σBY ∗ ,

n∑
i=1

‖x∗
i ‖ = 1, and

n∑
i=1

x∗
i = 0.

Next we provide a slight improvement of Theorem MTZ, which will be used in the
proofs of the main results.

For a natural number n and subsets A1, . . . , An of Y , we define the nonintersection
index γ(A1, . . . , An) of A1, . . . , An as

γ(A1, . . . , An) := inf

{
n−1∑
i=1

‖ai − an‖ : (a1, . . . , an) ∈ A1 × · · · ×An

}
.

Lemma 2.1. Let Y be an Asplund space and A1, . . . , An be closed subsets of Y
with

⋂n
i=1 Ai = ∅. Let ai ∈ Ai (i = 1, . . . , n) and ε > 0 such that

n−1∑
i=1

‖ai − an‖ < γ(A1, . . . , An) + ε.

Then for any λ > 0 there exist ãi ∈ Ai and a∗i ∈ Y ∗ such that

n∑
i=1

‖ai − ãi‖ < λ, a∗i ∈ N̂(Ai, ãi) +
ε

λ
BY ∗ ,

n∑
i=1

‖a∗i ‖ = 1 and

n∑
i=1

a∗i = 0.
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1160 XI YIN ZHENG AND KUNG FU NG

Proof. Let the product Y n be equipped with the norm ‖|(x1, . . . , xn)‖| =∑n
i=1 ‖xi‖ for any xi ∈ Y (i = 1, . . . , n), and define f : Y n → R ∪ {+∞} by

f(x1, . . . , xn) :=

n−1∑
i=1

‖xi − xn‖ + δA1×···×An(x1, . . . , xn) ∀(x1, . . . , xn) ∈ Y n.

Then

inf{f(x1, . . . , xn) : (x1, . . . , xn) ∈ Y n} = γ(A1, . . . , An),

and so, by the assumption,

f(a1, . . . , an) < inf{f(x1, . . . , xn) : (x1, . . . , xn) ∈ Y n} + ε.

Take η ∈ (0, ε) and β ∈ (0, λ) such that

η

β
<

ε

λ
and f(a1, . . . , an) < inf{f(x1, . . . , xn) : (x1, . . . , xn) ∈ Y n} + η.

Then, by the Ekeland variational principle, there exists x̃i ∈ Ai such that

n∑
i=1

‖ai − x̃i‖ ≤ β(2.4)

and

f(x̃1, . . . , x̃n) ≤ f(x1, . . . , xn) +
η

β

n∑
i=1

‖xi − x̃i‖ ∀(x1, . . . , xn) ∈ Y n.(2.5)

This and the definition of f imply that (x̃1, . . . , x̃n) ∈ A1 × · · · ×An. It follows from⋂n
i=1 Ai = ∅ that

n−1∑
i=1

‖x̃i − x̃n‖ > 0.(2.6)

We define a continuous convex function ψ by

ψ(x1, . . . , xn) :=

n−1∑
i=1

‖xi − xn‖ +
η

β

n∑
i=1

‖xi − x̃i‖ ∀(x1, . . . , xn) ∈ Y n.

It follows from (2.5) that ψ attains its minimum over A1 × · · · × An at (x̃1, . . . , x̃n).
By (2.6) and Proposition 2.2, there exist x̄i ∈ Y and ãi ∈ Ai (i = 1, . . . , n) such that

n−1∑
i=1

‖x̄i − x̄n‖ > 0,

n∑
i=1

‖ãi − x̃i‖ < λ− β

and

0 ∈ ∂ψ(x̄1, . . . , x̄n) + N̂(A1 × · · · ×An, (ã1, . . . , ãn)) +

(
ε

λ
− η

β

)
Bn

Y ∗ .(2.7)
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LAGRANGE RULE FOR MULTIFUNCTIONS IN BANACH SPACES 1161

It follows from (2.4) that
∑n

i=1 ‖ãi − ai‖ ≤
∑n

i=1 ‖ãi − x̃i‖+
∑n

i=1 ‖x̃i − ai‖ < λ. Let

φ(x1, . . . , xn) :=

n−1∑
i=1

‖xi − xn‖ ∀(x1, . . . , xn) ∈ Y n.

Then

∂ψ(x̄1, . . . , x̄n) ⊂ ∂φ(x̄1, . . . , x̄n) +
η

β
B(Y n)∗ .

This and (2.7) imply that

0 ∈ ∂φ(x̄1, . . . , x̄n) + N̂(A1 × · · · ×An, (ã1, . . . , ãn)) +
ε

λ
B(Y n)∗ .(2.8)

We claim that

∂φ(x̄1, . . . , x̄n) ⊂
{

(x∗
1, . . . , x

∗
n) ∈ (Y ∗)n :

n∑
i=1

x∗
i = 0 and

n∑
i=1

‖x∗
i ‖ ≥ 1

}
.(2.9)

Granting this and noting that

N̂(A1 × · · · ×An, (ã1, . . . , ã)) = N̂(A1, ã1) × · · · × N̂(An, ãn)

is a cone, it follows from (2.8) that there exists (a∗1, . . . , a
∗
n) ∈ (Y ∗)n such that

a∗i ∈ N̂(Ai, ãi) +
ε

λ
BY ∗ ,

n∑
i=1

‖a∗i ‖ = 1, and

n∑
i=1

a∗i = 0.

It remains to show that (2.9) holds. Let (x∗
1, . . . , x

∗
n) ∈ ∂φ(x̄1, . . . , x̄n). It follows from

the convexity of φ that for any h ∈ Y ,

n∑
i=1

〈x∗
i , h〉 ≤ φ(x̄1 + h, . . . , x̄n + h) − φ(x̄1, . . . , x̄n) = 0.

This means that
∑n

i=1 x
∗
i = 0. On the other hand,

−
n−1∑
i=1

〈x∗
i , x̄i − x̄n〉 =

n∑
i=1

〈x∗
i ,−x̄i〉 ≤ φ(0, . . . , 0) − φ(x̄1, . . . , x̄n) = −

n−1∑
i=1

‖x̄i − x̄n‖.

Since, as in (2.6),
∑n−1

i=1 ‖x̄i− x̄n‖ > 0, it follows that
∑n

i=1 ‖x∗
i ‖ ≥ 1. This completes

the proof.
Remark. Lemma 2.1 recaptures Theorem MTZ. Indeed, by the assumption of

Theorem MTZ, there exists r > 0 such that for any σ ∈ (0, min{ r
2 , r

1
2 }) there exists

(s1, . . . , sn) ∈ M1 × · · · ×Mn such that each Si(si) is closed,

di(si, s̄i) < σ, d(x̄, Si(si)) <
σ2

2n
, i = 1, . . . , n, and

n⋂
i=1

Si(si) ∩ (x̄ + rBY ) = ∅.

Hence, there exists ui ∈ Si(si) such that ‖ui − x̄‖ < σ2

2n . This implies that

n−1∑
i=1

‖ui − un‖ ≤
n−1∑
i=1

(‖ui − x̄‖ + ‖x̄− un‖) < σ2,
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1162 XI YIN ZHENG AND KUNG FU NG

and so

n−1∑
i=1

‖ui − un‖ < γ(S1(s1) ∩ (x̄ + rBY ), . . . , Sn(sn) ∩ (x̄ + rBY )) + σ2.

Now with Ai = Si(si) ∩ (x̄ + rBY ), ai = ui, ε = σ2, and λ = σ, there exist ãi ∈ Ai

and a∗i ∈ Y ∗ satisfying the properties as stated in Lemma 2.1. Note that ãi lies in

the interior of x̄ + rBY , and it follows that a∗i ∈ N̂(Si(si), ãi). Thus Theorem MTZ
is seen to hold.

Similar to the proof of Lemma 2.1 but applying Proposition 2.1 in place of Propo-
sition 2.2, we have the following result applicable to the case when Y is a general
Banach space.

Lemma 2.2. Let Y be a Banach space and A1, . . . , An be closed subsets of Y with⋂n
i=1 Ai = ∅. Let ai ∈ Ai (i = 1, . . . , n) and ε > 0 such that

n−1∑
i=1

‖ai − an‖ ≤ γ(A1, . . . , An) + ε.

Then for any λ > 0 there exist ãi ∈ Ai and a∗i ∈ Y ∗ such that

n∑
i=1

‖ai − ãi‖ < λ, a∗i ∈ Nc(Ai, ãi) +
ε

λ
BY ∗ ,

n∑
i=1

‖a∗i ‖ = 1 and

n∑
i=1

a∗i = 0.

3. Fuzzy Lagrange multiplier rules. In this section, we always assume that
X,Yi are Banach spaces (unless stated otherwise), that Ci ⊂ Yi is a closed convex
cone, and that each multifunction Fi : X → 2Yi is closed. Further we assume that the
ordering cone C0 in Y0 is nontrivial (i.e., C0 is not a linear subspace). For convenience
we define the norm on the product X ×

∏m
i=0 Yi by

‖(x, y0, y1, . . . , ym)‖ = ‖x‖ +

m∑
i=0

‖yi‖.

In this section we present three fuzzy Lagrange multiplier rules. The first one works
on general Banach spaces, while the last two work on Asplund spaces dealing, respec-
tively, with the set-valued and the numeral-valued functions.

Theorem 3.1. Let (x̄, ȳ0) be a local Pareto solution of the constrained multiob-
jective optimization problem (1.3) and ȳi be a point in Fi(x̄) ∩ −Ci (i = 1, . . . ,m).
Then one of the following assertions holds.

(i) For any ε > 0 there exist xi ∈ x̄ + εBX , w ∈ Ω ∩ (x̄ + εBX), yi ∈ Fi(xi) ∩
(ȳi + εBYi), and c∗i ∈ C+

i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗
cFi(xi, yi)(c

∗
i +εBY ∗

i
)∩MBX∗+Nc(Ω, w)∩MBX∗+εBX∗ ,

where M > 0 is a constant independent of ε.
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LAGRANGE RULE FOR MULTIFUNCTIONS IN BANACH SPACES 1163

(ii) For any ε > 0 there exist xi ∈ x̄ + εBX , w ∈ Ω ∩ (x̄ + εBX), yi ∈ Fi(xi) ∩
(ȳi + εBYi), x

∗
i ∈ D∗

cFi(xi, yi)(εBY ∗
i
), and w∗ ∈ Nc(Ω, w) + εBX∗ such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.

Proof. By the assumption there exists δ > 0 such that

ȳ0 ∈ E

(
F0

[
(x̄ + δBX) ∩ Ω ∩

(
m⋂
i=1

F−1
i (−Ci)

)]
, C0

)
.(3.1)

Since the ordering cone C0 is not a subspace of Y0, there exists c0 ∈ C0 with ‖c0‖ = 1
such that

c0 	∈ −C0.(3.2)

For any natural number k, let sk := 1
(m+2)k2 , and consider the following sets in the

product space X ×
∏m

j=0 Yj :

Ai :=

⎧⎨
⎩(x, y0, y1, . . . , ym) ∈ X ×

m∏
j=0

Yj : (x, yi) ∈ Gr(Fi)

⎫⎬
⎭ , i = 0, 1, . . . ,m,

and

Am+1 := ((x̄ + δBX) ∩ Ω) × (ȳ0 − skc0 − C0) ×
m∏
i=1

(ȳi − Ci).

Then
⋂m+1

i=0 Ai = ∅. Indeed, if this is not the case, then there exist x′ ∈ X and
y′i ∈ Fi(x

′) (i = 0, 1, . . . ,m) such that

x′ ∈ (x̄ + δBX) ∩ Ω, y′0 ≤C0
ȳ0 − skc0, and y′i ∈ ȳi − Ci(⊂ −Ci), i = 1, . . . ,m.

Hence, x′ ∈ (x̄ + δBX) ∩ Ω ∩
(⋂m

i=1 F
−1
i (−Ci)

)
, and so

y′0 ∈ F0

[
(x̄ + δBX) ∩ Ω ∩

(
m⋂
i=1

F−1
i (−Ci)

)]
.

It follows from (3.1) that ȳ0 ≤C0
y′0, and so ȳ0 ≤C0

ȳ0 − skc0. This implies that
c0 ∈ −C0, contradicting (3.2). Let

a0 = a1 = · · · = am = (x̄, ȳ0, ȳ1, . . . , ȳm) and am+1 = (x̄, ȳ0 − skc0, ȳ1, . . . , ȳm).

Then

m∑
i=0

‖ai − am+1‖ = (m + 1)sk <
1

k2
≤ γ(A0, A1, . . . , Am+1) +

1

k2
.

By Lemma 2.2 (applied to the family {A0, A1, . . . , Am+1} and the constants ε = 1
k2 ,

λ = 1
k ), there exist

ãi(k) := (xi(k), yi,0(k), yi,1(k), . . . , yi,m(k)) ∈ X ×
m∏
j=0

Yj

D
ow

nl
oa

de
d 

07
/1

5/
13

 to
 1

37
.1

89
.4

9.
14

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1164 XI YIN ZHENG AND KUNG FU NG

and

(x∗
i (k), y∗i,0(k), y∗i,1(k), . . . , y∗i,m(k)) ∈ X∗ ×

m∏
j=0

Y ∗
j

(i = 0, 1, . . . ,m + 1) such that

m+1∑
i=0

‖ãi(k) − ai‖ =

m∑
i=0

⎛
⎝‖xi(k) − x̄‖ +

m∑
j=0

‖yi,j(k) − ȳj‖

⎞
⎠(3.3)

+ ‖xm+1(k) − x̄‖ + ‖ym+1,0(k) − (ȳ0 − skc0)‖ +

m∑
j=1

‖ym+1,j(k) − ȳj‖ <
1

k
,

(x∗
i (k), y∗i,0(k), . . . , y∗i,m(k)) ∈ Nc(Ai, ãi(k)) +

1

k

⎛
⎝BX∗ ×

m∏
j=0

BY ∗
j

⎞
⎠ ,(3.4)

m+1∑
i=0

max{‖x∗
i (k)‖, max{‖y∗i,j(k)‖ : j = 0, 1, . . . ,m}} = 1,(3.5)

and

m+1∑
i=0

(x∗
i (k), y∗i,0(k), y∗i,1(k), . . . , y∗i,m(k)) = 0.(3.6)

By the definitions of Am+1 and ãm+1(k), we see that Nc(Am+1, ãm+1(k)) is equal to
the following product:

Nc((x̄+δBX)∩Ω, xm+1(k))×Nc(ȳ0−skc0−C0, ym+1,0(k))×
m∏
j=1

Nc(ȳj−Cj , ym+1,j(k)).

By well-known relations

Nc(ȳ0 − skc0 −C0, ym+1,0(k)) ⊂ C+
0 and Nc(ȳj −Cj , ym+1,j(k)) ⊂ C+

j (1 ≤ j ≤ m),

it follows that

Nc(Am+1, ãm+1(k)) ⊂ Nc((x̄ + δBX) ∩ Ω, xm+1(k)) ×
m∏
j=0

C+
j .

We do the above for every natural number k, and by (3.3) we assume without loss
of generality that x̄ + δBX is a neighborhood of xm+1(k), and so Nc((x̄ + δBX) ∩
Ω, xm+1(k)) = Nc(Ω, xm+1(k)). Hence,

Nc(Am+1, ãm+1(k)) ⊂ Nc(Ω, xm+1(k)) ×
m∏
j=0

C+
j .

This and (3.4) imply that there exists (c∗0(k), c∗1(k), . . . , c∗m(k)) ∈
∏m

j=0 C
+
j such that

x∗
m+1(k) ∈ Nc(Ω, xm+1(k)) +

1

k
BX∗(3.7)
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LAGRANGE RULE FOR MULTIFUNCTIONS IN BANACH SPACES 1165

and

‖y∗m+1,j(k) − c∗j (k)‖ ≤ 1

k
, j = 0, 1, . . . ,m.(3.8)

Moreover, for 0 ≤ i ≤ m, we have by the definition of Ai and ãi(k) that

(3.9)

Nc(Ai, ãi(k))

= {(x∗, y∗0 , . . . , y
∗
m) : (x∗, y∗i ) ∈ Nc(Gr(Fi), (xi(k), yi,i(k))) and y∗j = 0 ∀j 	= i}.

This and (3.4) imply that for 0 ≤ i ≤ m,

x∗
i (k) ∈ D∗

cFi(xi(k), yi,i(k))

(
−y∗i,i(k) +

1

k
BY ∗

i

)
+

1

k
BX∗(3.10)

and

‖y∗i,j(k)‖ ≤ 1

k
, 0 ≤ j ≤ m and j 	= i.(3.11)

By (3.6), (3.8), and (3.11), one has

−y∗i,i(k) = y∗m+1,i(k) +

m∑
l=0,l 
=i

y∗l,i(k) ∈ c∗i (k) +
m + 1

k
BY ∗

i
, i = 0, 1, . . . ,m.(3.12)

This and (3.10) imply that for i = 0, 1, . . . ,m,

x∗
i (k) ∈ D∗

cFi(xi(k), yi,i(k))

(
c∗i (k) +

m + 2

k
BY ∗

i

)
+

1

k
BX∗ .(3.13)

In the case when {
∑m

j=0 ‖c∗j (k)‖} does not converge to 0, without loss of generality

we assume that there exists r > 0 such that
∑m

j=0 ‖c∗j (k)‖ > r for all k (passing to
subsequences if necessary). It follows from (3.13), (3.7), and (3.6) that

x∗
i (k)

m∑
j=0

‖c∗j (k)‖
∈ D∗

cFi(xi(k), yi,i(k))

⎛
⎜⎜⎝ c∗i (k)

m∑
j=0

‖c∗j (k)‖
+

m + 2

rk
BY ∗

i

⎞
⎟⎟⎠+

1

rk
BX∗ , 0 ≤ i ≤ m,

x∗
m+1(k)

m∑
j=0

‖c∗j (k)‖
∈ Nc(Ω, xm+1(k)) +

1

rk
BX∗ and

m+1∑
i=0

x∗
i (k)

m∑
j=0

‖c∗j (k)‖
= 0.

By virtue of (3.3) and (3.5) and by considering large enough k, it follows that (i)
holds with M = m+2

r .
Next we consider the case when tk :=

∑m
j=0 ‖c∗j (k)‖ → 0. In this case, (3.8)

implies that

y∗m+1,j(k) → 0 for j = 0, 1, . . . ,m.

It follows from (3.11), (3.12), and (3.5) that
∑m+1

i=0 ‖x∗
i (k)‖ → 1. Thus, by (3.13),

(3.7), and (3.6), there exist

x̃∗
i (k) ∈ D∗

cFi(xi(k), yi,i(k))

(
c∗i (k) +

m + 2

k
BY ∗

i

)
for i = 0, 1, . . . ,m
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1166 XI YIN ZHENG AND KUNG FU NG

and

x̃∗
m+1(k) ∈ Nc(Ω, xm+1(k)) +

m + 2

k
BX∗

such that

rk :=

m+1∑
i=0

‖x̃∗
i (k)‖ → 1 and

m+1∑
i=0

x̃∗
i (k) = 0.

Therefore, for all k large enough,

x̃∗
i (k)

rk
∈ D∗

cFi(xi(k), yi,i(k))

((
c∗i (k)

rk
+

m + 2

krk

)
BY ∗

i

)
,

x̃∗
m+1(k)

rk
∈ Nc(Ω, xm+1(k)) +

m + 2

krk
BX∗ ,

m+1∑
i=0

∥∥∥∥ x̃∗
i (k)

rk

∥∥∥∥ = 1 and

m+1∑
i=0

x̃∗
i (k)

rk
= 0.

Noting that rk → 1 and ‖c∗i (k)‖ ≤ tk → 0, this implies that (ii) holds, and the proof
is completed.

In the special case when Fi(x) = 0 for all x ∈ X and i = 1, . . . ,m, (1.3) reduces
to the following problem:

C0 − minF0(x),(3.14)

x ∈ Ω,

and D∗
cFi(x, 0)(y∗i ) = 0 for all (x, y∗i ) ∈ X×Y ∗

i and i = 1, . . . ,m. Thus, the following
corollary is an immediate consequence of Theorem 3.1 and recaptures [28, Theorem
3.1] by putting our Ω = X.

Corollary 3.1. Let (x̄, ȳ) be a local Pareto solution of the constrained multiob-
jective optimization problem (3.14). Then one of the following two assertions holds.

(i) For any ε > 0 there exist u ∈ x̄+εBX , w ∈ Ω∩(x̄+εBX), y ∈ F0(u)∩(ȳ+εBY ),
and c∗ ∈ C+ with ‖c∗‖ = 1 such that

0 ∈ D∗
cF0(u, y)(c

∗ + εBY ∗) ∩MBX∗ + Nc(Ω, w) ∩MBX∗ + εBX∗ ,

where M > 0 is a constant independent of ε.
(ii) For any ε > 0 there exist u ∈ x̄+εBX , w ∈ Ω∩(x̄+εBX), y ∈ F0(u)∩(ȳ+εBY ),

and x∗ ∈ X∗ with ‖x∗‖ = 1 such that

x∗ ∈ D∗
cF0(u, y)(εBY ∗) ∩ (−Nc(Ω, w) + εBX∗).

When X and each Yi are Asplund spaces, Theorem 3.1 can be strengthened to the
following theorem, Theorem 3.2, in which D∗

c and Nc(Ω, ·) are replaced, respectively,
by the Fréchet coderivative D̂∗ and the Fréchet normal cone N̂(Ω, ·) (recall that
N̂(A, a) ⊂ N(A, a) and Nc(A, a) is the weak∗-closed convex hull of N(A, a)). The
proof is the same as the proof of Theorem 3.1, but use Lemma 2.1 in place of Lemma
2.2.

Theorem 3.2. Let (x̄, ȳ0) be a local Pareto solution of the constrained multiob-
jective optimization problem (1.3) and ȳi be a point in Fi(x̄) ∩ −Ci (i = 1, . . . ,m).
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LAGRANGE RULE FOR MULTIFUNCTIONS IN BANACH SPACES 1167

Suppose that X and Yi (i = 0, 1, . . . ,m) are Asplund spaces. Then one of the following
assertions holds.

(i) For any ε > 0 there exist xi ∈ x̄ + εBX , w ∈ Ω ∩ (x̄ + εBX), yi ∈ Fi(xi) ∩
(ȳi + εBYi), and c∗i ∈ C+

i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D̂∗Fi(xi, yi)(c
∗
i +εBY ∗

i
)∩MBX∗+N̂(Ω, w)∩MBX∗+εBX∗ ,

where M > 0 is a constant independent of ε.
(ii) For any ε > 0 there exist xi ∈ x̄ + εBX , w ∈ Ω ∩ (x̄ + εBX), yi ∈ Fi(xi) ∩

(ȳi + εBYi), x
∗
i ∈ D̂∗Fi(xi, yi)(εBY ∗

i
), and w∗ ∈ N̂(Ω, w) + εBX∗ such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.

Next we prove that (ii) in Theorem 3.2 cannot happen when each Fi is pseudo-
Lipschitz at (x̄, ȳi).

Corollary 3.2. Let (x̄, ȳ0) be a local Pareto solution of the constrained multi-
objective optimization problem (1.3) and ȳi be a point in Fi(x̄) ∩ −Ci (i = 1, . . . ,m).
Suppose that X and Yi (i = 0, 1, . . . ,m) are Asplund spaces and that each Fi is pseudo-
Lipschitz at (x̄, ȳi). Then for any ε > 0 there exist xi ∈ x̄+ εBX , w ∈ Ω∩ (x̄+ εBX),
yi ∈ Fi(xi) ∩ (ȳi + εBYi), and c∗i ∈ C+

i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D̂∗Fi(xi, yi)(c
∗
i +εBY ∗

i
)∩MBX∗+N̂(Ω, w)∩MBX∗+εBX∗ ,

where M > 0 is a constant independent of ε.
Proof. Since each Fi is pseudo-Lipschitz at (x̄, ȳi), Proposition 2.3 implies that

there exist constants L, δ > 0 such that for any (x, yi) ∈ Gr(Fi)∩ (B(x̄, δ)×B(ȳi, δ))
and y∗i ∈ Y ∗,

sup{‖x∗‖ : x∗ ∈ D̂∗Fi(x, yi)(y
∗
i )} ≤ L‖y∗i ‖.(3.15)

We need only show that (i) of Theorem 3.2 holds. If this is not the case, Theorem 3.2
implies that there exist

xi ∈ B(x̄, δ), w ∈ Ω ∩B(x̄, δ), yi ∈ Fi(xi) ∩B(ȳi, δ),(3.16)

x∗
i ∈ D̂∗Fi(xi, yi)

(
BY ∗

i

4(m + 1)L

)
and w∗ ∈ N̂(Ω, w) + BX∗(3.17)

such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.(3.18)

By (3.15), (3.16), and (3.17), one has∥∥∥∥∥
m∑
i=0

x∗
i

∥∥∥∥∥ ≤
m∑
i=0

‖x∗
i ‖ ≤ 1

4
,

contradicting (3.18). This completes the proof.
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1168 XI YIN ZHENG AND KUNG FU NG

Let f : X → R ∪ {+∞} be a proper lower semicontinuous function and F (x) =
[f(x), +∞) for all x ∈ X. Then F is closed and Gr(F ) = epi(f). Recall (see [14,
Lemma 2.2]) that if r ∈ F (x̄) and X is an Asplund space, then the following assertions
hold.

(α) λ 	= 0 and x∗ ∈ D̂∗F (x̄, r)(λ) ⇐⇒ λ > 0, r = f(x̄), and x∗ ∈ ∂̂(λf)(x̄).
(β) For any x∗ ∈ D̂∗F (x̄, r)(0) there exist sequences {xk}, {x∗

k}, and {λk} such
that

x∗
k ∈ ∂̂(λkf)(xk), (xk, f(xk)) → (x̄, f(x̄)), λk ↓ 0, and ‖x∗

k − x∗‖ → 0.

Let g : X → R be a continuous function and G(x) = {g(x)} for all x ∈ X. The
following assertions are known (see [14, Lemma 2.3]).

(α′) D̂∗G(x, g(x))(λ) = ∂(λg)(x) for any λ 	= 0.
(β′) x∗ ∈ D̂∗G(x, g(x))(0) if and only if there exist sequences {xk}, {x∗

k}, and
{tk} such that

x∗
k ∈ ∂̂(tkg)(xk) ∪ ∂̂(−tkg)(xk), (xk, g(xk)) → (x̄, g(x̄)), tk ↓ 0, and ‖x∗

k − x∗‖ → 0.

As an application of Theorem 3.2, now we can establish fuzzy necessary optimality
conditions for scalar-objective optimization problem (1.1).

Theorem 3.3. Let X be an Asplund space and Ω be a closed subset of X. Let
f0, f1, . . . , fn : X → R ∪ {+∞} be proper lower semicontinuous and fn+1, . . . , fm :
X → R be continuous. Suppose that x̄ is a local solution of (1.1). Then one of the
following assertions hold.

(i) For any ε > 0 there exist λi ∈ R \ {0}, w ∈ (x̄+ εBX)∩Ω, and xi ∈ x̄+ εBX

with |fi(xi) − fi(x̄)| < ε such that λi > 0 for 0 ≤ i ≤ n,
∑m

i=0 |λi| = 1, and

0 ∈
m∑
i=0

∂̂(λifi)(xi) ∩MBX∗ + N̂(Ω, w) ∩MBX∗ + εBX∗ ,

where M > 0 is a constant independent of ε.
(ii) For any ε > 0 there exist w ∈ (x̄ + εBX) ∩ Ω, xi ∈ x̄ + εBX with |fi(xi) −

fi(x̄)| < ε, εi ∈ (−ε, ε) \ {0}, w∗ ∈ N̂(Ω, w) + εBX∗ , and x∗
i ∈ ∂̂(εifi)(xi) such that

εi > 0 for 0 ≤ i ≤ n,

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.

Proof. Let ε be an arbitrary positive number. By the lower semicontinuity as-
sumption, there exists δ ∈ (0, 1

2 ) such that

fi(x̄) − ε < fi(x) for any x ∈ x̄ + δBX and i = 0, 1, . . . , n.(3.19)

Let Y0 = Y1 = · · · = Ym = R. Let Ci = R+, Fi(x) = [fi(x), +∞) for i = 0, 1, . . . , n
and Ci = {0}, Fi(x) = {fi(x)} for i = n+ 1, . . . ,m. Then, each Fi is closed, (x̄, ȳ0) is
a local Pareto solution of (1.3), and ȳi := fi(x̄) ∈ Fi(x̄)∩−Ci for i = 1, . . . ,m. Hence,
one of the assertions (i) and (ii) in Theorem 3.2 holds. It suffices to show that (i) in
Theorem 3.2=⇒(i) and (ii) in Theorem 3.2=⇒(ii). As the arguments are similar, we
shall prove only that the implication (i) in Theorem 3.2=⇒(i). Suppose that (i) in
Theorem 3.2 holds. Let σ ∈ (0, min{ ε

4 , δ}), and take (α) into account. Then there
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LAGRANGE RULE FOR MULTIFUNCTIONS IN BANACH SPACES 1169

exist w ∈ (x̄ + σBX) ∩ Ω, (ui, ri) ∈ (x̄ + σBX) × (fi(x̄) − σ, fi(x̄) + σ), and si ∈ R
such that

ri ≥ fi(ui) for 0 ≤ i ≤ n, ri = fi(ui) for n + 1 ≤ i ≤ m,

si ≥ 0 for i = 0, 1, . . . , n,

m∑
i=0

|si| ≥ 1 − σ,(3.20)

and

0 ∈
m∑
i=0

D̂∗Fi(ui, ri)(si) ∩KBX∗ + N̂(Ω, w) ∩KBX∗ + σBX∗ ,(3.21)

where K > 0 is a constant. By (3.19), one has

fi(x̄) − ε < f(ui) ≤ ri < fi(x̄) + σ < fi(x̄) + ε for i = 0, 1, . . . , n.(3.22)

Take u∗
i ∈ D̂Fi(ui, ri)(si) ∩KBX∗ (by (3.21)) such that

−
m∑
i=0

u∗
i ∈ N̂(Ω, w) ∩KBX∗ + σBX∗ .(3.23)

Let I0 := {0 ≤ i ≤ m : si = 0}. It follows from (α) and (α′) that

u∗
i ⊂ ∂̂(sifi)(ui) ∩KBX∗ for any i ∈ {0, 1, . . . ,m} \ I0.(3.24)

For any i ∈ {0, 1, . . . , n} ∩ I0, (3.22) and (β) imply that there exist ũi ∈ ui + σBX

with |fi(ũi) − fi(ui)| < ε − |fi(ui) − fi(x̄)|, ti > 0, and x∗
i ∈ ∂̂(tifi)(ũi) such that

‖x∗
i − u∗

i ‖ < σ
m . Hence, for any i ∈ {0, 1, . . . , n} ∩ I0,

‖ũi − x̄‖ ≤ ‖ũi − ui‖ + ‖ui − x̄‖ ≤ 2σ < ε, |fi(ũi) − fi(x̄)| < ε(3.25)

and

u∗
i ⊂ ∂̂(tifi)(ũi) ∩

(
K +

1

m

)
BX∗ +

σ

m
BX∗ .(3.26)

Moreover, for any j ∈ {n+1, . . . ,m}∩ I0, (β′) implies that there exist ũj ∈ uj +σBX

with |fj(ũj)−fj(uj)| < σ, tj ∈ R\{0}, and x∗
j ∈ ∂̂(tjfj)(ũj) such that ‖x∗

j−u∗
j‖ < σ

m .
Hence, for any j ∈ {n + 1, . . . ,m} ∩ I0,

‖ũj − x̄‖ < 2σ < ε, |fj(ũj) − fj(x̄)| < 2σ < ε(3.27)

and

u∗
j ⊂ ∂̂(tjfj)(ũj) ∩

(
K +

1

m

)
BX∗ +

σ

m
BX∗ .(3.28)

Let η :=
∑m

i=0 |si|+
∑

i∈I0
|ti|, λi := si

η if i ∈ {0, 1, . . . ,m} \ I0, and λi := ti
η if i ∈ I0,

and let xi := ui if i ∈ {0, 1, . . . ,m} \ I0 and xi := ũi if i ∈ I0. Then

η ≥ 1 − σ >
1

2
, λi > 0 for 0 ≤ i ≤ n,

m∑
i=0

|λi| = 1,

and dividing (3.23), (3.24), (3.26), and (3.28) by η, it follows that

0 ∈
m∑
i=0

∂̂(λifi)(ui) ∩
(

2K +
2

m

)
BX∗ + N̂(Ω, w) ∩ 2KBX∗ + εBX∗ .

It follows from (3.25) and (3.27) that (i) holds with M = 2K + 2
m . The proof is

completed.
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1170 XI YIN ZHENG AND KUNG FU NG

4. Lagrange multiplier rules. In this section, we provide some exact Lagrange
multiplier rules for the constrained multiobjective optimization problem (1.3). We will
need the following notions. Recall (see [28]) that a closed convex cone C in X is dually
compact if there exists a compact subset K of X such that

C+ ⊂ {x∗ ∈ X∗ : ‖x∗‖ ≤ max{〈x∗, x〉 : x ∈ K}}.(4.1)

This condition is trivially satisfied if X is finite dimensional (because one can then
take K = BX). Note that if C has a nonempty interior, then there exists c0 ∈ C such
that

C+ ⊂ {x∗ ∈ X∗ : ‖x∗‖ ≤ 〈x∗, c0〉}.

Thus,

int(C) 	= ∅ =⇒ C is dually compact.

It is known that if C is dually compact, then

c∗n ∈ C+ and c∗n
w∗
→ 0 =⇒ c∗n → 0.(4.2)

The concept C being dually compact is closely related to the locally compact concept
introduced in Loewen [12] (see [28, Proposition 3.1] for the details).

Following Mordukhovich [15] and Mordukhovich and Shao [17], we say that a
multifunction Φ from X to another Banach space Y is partially sequentially nor-
mally compact at (x, y) ∈ Gr(Φ) if for any (generalized) sequence {(xn, yn, x

∗
n, y

∗
n)}

satisfying

x∗
n ∈ D̂∗Φ(xn, yn)(y∗n), (xn, yn) → (x, y), ‖y∗n‖ → 0, and x∗

n
w∗
→ 0

one has ‖x∗
n‖ → 0.

Clearly, Φ is automatically partially sequentially normally compact at each point
of Gr(Φ) if X is finite dimensional. Moreover, Proposition 2.3 implies that Φ is
partially sequentially normally compact at (x, y) ∈ Gr(Φ) if Φ is pseudo-Lipschitz at
(x, y).

In the remainder of this paper, we make the following blanket assumptions.
Assumption 4.1. Each Fi is a closed multifunction.
Assumption 4.2. (x̄, ȳ0) ∈ Gr(F0) is a local Pareto solution of the constrained

multiobjective optimization problem (1.3) and ȳi ∈ Fi(x̄) ∩ −Ci (1 ≤ i ≤ m).
We first consider the case when X,Yi are Asplund spaces (thus, in particular (2.1)

is valid in these spaces).
Theorem 4.1. Let Assumptions 4.1 and 4.2 hold and X,Yi be Asplund spaces.

Suppose that each Ci is dually compact and that each Fi is partially sequentially nor-
mally compact at (x̄, ȳi). Then one of the following assertions holds.

(i) There exists c∗i ∈ C+
i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c
∗
i ) + N(Ω, x̄).

(ii) There exist x∗
i ∈ D∗Fi(x̄, ȳi)(0) and w∗ ∈ N(Ω, x̄) such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.
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LAGRANGE RULE FOR MULTIFUNCTIONS IN BANACH SPACES 1171

Proof. Since X,Yi are Asplund spaces, Assumptions 4.1 and 4.2 imply that one
of the assertions (i) and (ii) in Theorem 3.2 holds. Suppose that the assertion (i) in
Theorem 3.2 holds. Then, for any natural number k there exist

(xi(k), yi(k)) ∈ Gr(Fi) ∩
((

x̄ +
1

k
BX

)
×
(
ȳi +

1

k
BYi

))
,(4.3)

w(k) ∈
(
x̄ +

1

k
BX

)
∩ Ω and c∗i (k) ∈ C+

i(4.4)

such that
m∑
i=0

‖c∗i (k)‖ = 1(4.5)

and

0 ∈
m∑
i=0

D̂∗Fi(xi(k), yi(k))

(
c∗i (k) +

1

k
BY ∗

i

)
∩MBX∗(4.6)

+ N̂(Ω, w(k)) ∩MBX∗ +
1

k
BX∗ ,

where M > 0 is a constant independent of k. Hence there exist bounded sequences
{x∗

i (k)} and {x∗(k)} such that

x∗
i (k) ∈ D̂∗Fi(xi(k), yi(k))

(
c∗i (k) +

1

k
BY ∗

i

)
,

x∗(k) ∈ N̂(Ω, w(k)) and x∗(k) +

m∑
i=0

x∗
i (k) → 0.

Since a bounded set in a dual space is relatively weak∗ compact, without loss of
generality we can assume that

x∗
i (k)

w∗
→ x∗

i and c∗i (k)
w∗
→ c∗i (i = 0, 1, . . . ,m).

It follows from (2.1), (4.3), and (4.4) that

0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c
∗
i ) + N(Ω, x̄).

Noting that
∑m

i=0 ‖c∗i ‖ 	= 0 by (4.2) and (4.5), this implies that (i) is true.
Next suppose that assertion (ii) in Theorem 3.2 holds. Then for any natural

number k there exist

(4.7)

(xi(k), yi(k)) ∈ Gr(Fi) ∩
((

x̄ +
1

k
BX

)
×
(
ȳi +

1

k
BYi

))
, w(k) ∈

(
x̄ +

1

k
BX

)
∩ Ω,

x∗
i (k) ∈ D̂∗Fi(xi(k), yi(k))

(
1

k
BY ∗

i

)
and x∗(k) ∈ N̂(Ω, w(k))(4.8)

such that

‖x∗(k)‖ +

m∑
i=0

‖x∗
i (k)‖ → 1 and x∗(k) +

m∑
i=0

x∗
i (k) → 0.(4.9)
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1172 XI YIN ZHENG AND KUNG FU NG

Without loss of generality we assume that

x∗(k)
w∗
→ x∗ and x∗

i (k)
w∗
→ x∗

i (i = 0, 1, . . . ,m),

and hence it follows from (2.1) that

x∗
i ∈ D∗Fi(x̄, ȳi)(0), x∗ ∈ N(Ω, x̄), and x∗ +

m∑
i=0

x∗
i = 0.

Further ‖x∗‖+
∑m

i=0 ‖x∗
i ‖ 	= 0 by (4.9) and thanks to the assumption that each Fi is

partially sequentially normally compact at (x̄, ȳi). Thus (ii) holds, and the proof is
completed.

As already noted, every closed multifunction between two finite dimensional
spaces is partially sequentially normally compact at each point in its graph, and
every closed convex cone in a finite dimensional space is dually compact. Thus, the
following corollary is a consequence of Theorem 4.1.

Corollary 4.1. Let Assumptions 4.1 and 4.2 hold, and suppose that X,Yi are
finite dimensional. Then one of (i) and (ii) in Theorem 4.1 holds.

In the case when each Fi is pseudo-Lipschitz, we have the following sharp Lagrange
multiplier rule.

Theorem 4.2. Let Assumptions 4.1 and 4.2 hold and X,Yi be Asplund spaces.
Suppose that each Ci is dually compact and that each Fi is pseudo-Lipschitz at (x̄, ȳi).
Then there exists c∗i ∈ C+

i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c
∗
i ) + N(Ω, x̄).(4.10)

Proof. By Corollary 3.2, for any natural number k there exist xi(k) ∈ x̄ + 1
kBX ,

w(k) ∈ Ω ∩ (x̄ + 1
kBX), yi(k) ∈ Fi(xi) ∩ (ȳi + 1

kBYi
), and c∗i (k) ∈ C+

i such that

m∑
i=0

‖c∗i (k)‖ = 1(4.11)

and

0 ∈
m∑
i=0

D̂∗Fi(xi(k), yi(k))

(
c∗i (k) +

1

k
BY ∗

i

)
∩MBX∗ + N̂(Ω, w(k))∩MBX∗ +

1

k
BX∗ ,

where M > 0 is a constant independent of k. Hence there exist

x∗
i (k) ∈ D̂∗Fi(xi(k), yi(k))

(
c∗i (k) +

1

k
BY ∗

i

)
and x∗(k) ∈ N̂(Ω, w(k))

such that

max{‖x∗(k)‖, max{‖x∗
i (k)‖ : 0 ≤ i ≤ m}} ≤ M and x∗(k) +

m∑
i=0

x∗
i (k) → 0.

Without loss of generality, we can assume that

x∗(k)
w∗
→ x∗, x∗

i (k)
w∗
→ x∗

i , and c∗i (k)
w∗
→ c̃∗i for i = 0, 1, . . . ,m.(4.12)

Hence,

x∗ ∈ N(Ω, x̄), x∗
i ∈ D∗Fi(x̄, ȳi)(c̃

∗
i ) (i = 0, 1, . . . ,m), and x∗ +

m∑
i=0

x∗
i = 0,
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LAGRANGE RULE FOR MULTIFUNCTIONS IN BANACH SPACES 1173

and so

0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c̃
∗
i ) + N(Ω, x̄).(4.13)

Since each Ci is dually compact, (4.11), (4.12), and (4.2) imply that
∑m

i=0 ‖c̃∗i ‖ 	= 0.

It follows from (4.13) that (4.10) holds with c∗i =
c̃∗i∑m

j=0
‖c̃∗

j
‖ . The proof is com-

pleted.
Let x̄ be a local solution of single-objective optimization problem (1.1), and sup-

pose that each fi is locally Lipschitz at x̄. Let Fi and Ci be as in the proof of Theorem
3.3. Then x̄ is a local Pareto solution of (1.3), and each Fi is pseudo-Lipschitz at
(x̄, fi(x̄)). It is routine to verify that

D∗Fi(x̄, fi(x̄))(s) = ∂(sfi)(x̄) for 0 ≤ i ≤ n, s ≥ 0,

and

D∗Fi(x̄, fi(x̄))(t) = ∂(tfi)(x̄) for n + 1 ≤ i ≤ m, t ∈ R.

Thus, (4.10) reduces to (1.2).
In the remainder of this section, we consider the case when X,Yi are general

Banach spaces. In this case we need the notion of the normal closedness.
We say that Ω is normally closed at x ∈ Ω if for (generalized) sequences

xn → x, x∗
n ∈ Nc(Ω, xn), x∗

n
w∗
→ x∗ implies x∗ ∈ Nc(Ω, x)

(see [4, Corollary, p. 58]).
It is known that Ω is normally closed at each point of Ω if Ω is convex. Moreover,

if Ω is epi-Lipschitz around x ∈ Ω, then Ω is normally closed at x. We say that a
closed multifunction Φ : X → 2Y is normally closed at (x, y) ∈ Gr(Φ) if Gr(Φ) is
normally closed at (x, y) (see [28]).

Mimicking a corresponding notion introduced in [17], we say that Φ : X → 2Y is
partially sequentially normally compact at (x, y) ∈ Gr(Φ) in the Clarke sense if for
any (generalized) sequence {(xn, yn, x

∗
n, y

∗
n)} satisfying

x∗
n ∈ D∗

cΦ(xn, yn)(y∗n), (xn, yn) → (x, y), ‖y∗n‖ → 0, and x∗
n

w∗
→ 0

one has ‖x∗
n‖ → 0.

The following result can be proved in the same way as for Theorem 4.1 (but apply
Theorem 3.2 in place of Theorem 3.1).

Theorem 4.3. Let Assumptions 4.1 and 4.2 hold, and suppose that each Ci is
dually compact. Suppose that each Fi is partially sequentially normally compact at
(x̄, ȳi) in the Clarke sense and that Ω and Fi are normally closed at x̄ and (x̄, ȳi),
respectively. Then one of the following assertions holds.

(i) There exist c∗i ∈ C+
i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗
cFi(x̄, ȳi)(c

∗
i ) + Nc(Ω, x̄).

(ii) There exist x∗
i ∈ D∗

cFi(x̄, ȳi)(0) and w∗ ∈ Nc(Ω, x̄) such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.
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As in many classical situations, one can also provide a sufficient condition for
(x̄, ȳ0) to be a Pareto solution of (1.3), provided that a suitable convexity assumption
is made.

Proposition 4.1. Let each Fi be a closed convex multifunction and Ω be a closed
convex subset of X. Let ȳ0 ∈ F0(x̄) and ȳi ∈ Fi(x̄) ∩ −Ci for i = 1, . . . ,m. Assume
that there exists c∗i ∈ C+

i such that

〈c∗0, c〉 > 0 ∀c ∈ C0 \ {0},
m∑
i=1

〈c∗i , ȳi〉 = 0(4.14)

and

0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c
∗
i ) + N(Ω, x̄).(4.15)

Then (x̄, ȳ0) is a Pareto solution of the constrained multiobjective optimization prob-
lem (1.3).

Proof. By (4.15) there exists x∗
i ∈ X∗ such that

x∗
i ∈ D∗Fi(x̄, ȳi)(c

∗
i ) and −

m∑
i=0

x∗
i ∈ N(Ω, x̄).

It follows from the convexity of Fi and Ω that

(4.16)

〈x∗
i , x〉 − 〈c∗i , yi〉 ≤ 〈x∗

i , x̄〉 − 〈c∗i , ȳi〉 ∀(x, yi) ∈ Gr(Fi) and i = 0, 1, . . . ,m

and 〈
−

m∑
i=0

x∗
i , x

〉
≤
〈
−

m∑
i=0

x∗
i , x̄

〉
∀x ∈ Ω.(4.17)

Summing up (4.16) over all i and making use of (4.17) and (4.14) we have

〈c∗0, ȳ0〉 ≤
m∑
i=0

〈c∗i , yi〉 for any x ∈ Ω, yi ∈ Fi(x), and i = 0, 1, . . . ,m.

Since c∗i ∈ C+
i , it follows that

〈c∗0, ȳ0〉 ≤ 〈c∗0, y0〉 ∀y0 ∈ F0

(
Ω ∩

m⋂
i=1

F−1
i (−Ci)

)
.

This and the inequality in (4.14) imply that ȳ0 ∈ E
(
F0

(
Ω ∩

⋂m
i=1 F

−1
i (−Ci)

)
, C0

)
.

The proof is completed.

Acknowledgment. We thank the referee for his helpful comments and for [6,
11, 12].
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