Chapter 3. Systems of
Hyperbolic Conservation Laws
and Glimm Scheme

§3.1 Introduction
We consider a general system of n equations in one space
dimension

{ u+f(u)x=0, xeR t>0,uecR", feR" feC?

u(x,t =0) = up(x) (3.1)



In this chapter, we will discuss the following five main topics:
» Riemann problem for systems of conservation laws (P. Lax)
» Wave interaction estimates

Glimm Scheme and Glimm'’s functional

v

v

Convergence of Glimm's method (Random choice method)

» Uniqueness of Glimm's solution (A. Bressen)

Glimm scheme is very important in solving the Cauchy problem. It
provides a new idea and a new approach to the nonlinear partial
differential equations.



In solving the Riemann problems for scalar case, we obtain two
kinds of basic nonlinear waves, shock waves and centered
rarefaction waves. But how can we adopt these basic waves into
systems? Lax and Glimm observed that Riemann problem is not
only important for scalar conservation laws, but also for systems,
and they provide the building blocks for systems of conservation
laws.

Before we go to the main parts, we introduce some general
concepts of conservation laws.



Definition 3.1 The system (3.1) is called hyperbolic if
(Vuf(u)),, has only real eigenvalues, namely

A(u) <-veees < An(uw). It is called strictly hyperbolic if all
eigenvalues are distinct, i.e. A\q(u) <------ < An(u).

Nonstrictly hyperbolic cases arise from some material science and
they are much complicated than the strictly hyperbolic cases, also
the Glimm scheme does not work very well there. From now on,
we will assume (3.1) is always strictly hyperbolic. Then we can
find the corresponding right and left eigenvectors



rl(u)7 r2(u)7 T rn(”)?
Il(u)a /2(U)7 Tty /n(u)v
Vi(u)-ri(u) = Xi(u) ri(u) and [i(u) - VF(u) = Xi(v) li(v).

And we denote by R(u) = (n(u),- -+, ra(u)) the n X n matrix of
right eigenvectors, L(u) = (h(u), -, Io(u))" the n x n matrix of
left eigenvectors. We normalize those eigenvectors such that

L(u) - Vf(u) - R(u) = Nu) = diag {1 (u), - s An(u)}

and



The concept of characteristic fields are very important. Consider,
for example, the movement of a elastic string, which is modelled
by the second order hyperbolic wave equation. And we know the
sound wave propagates in two different directions. On each
characteristic direction, it acts like the solution to the scalar
equation. This reminds us that we can decompose the problem
into simpler one by characteristic field. For each field, Lax propose
the following concept.



Definition 3.2 The i-th characteristic field is genuinely nonlinear if
VAi(u) - ri(u) #0, forall uveQ C R"

Otherwise, if VAj(u) - ri(u) =0 forall wueQ C R", then the
i-th characteristic field is said to be linearly degenerate.

Example 1 n=1. Then f (u) is a scalar, and

A(u) = f'(u), 1 = 1. Hence d, M\1(u) = f"(u). Then when f is
convex, it is genuinely nonlinear, and when f(u) = Au+ ¢ (A, ¢ are
constants), f (u) = 0, it is linearly degenerate.



Example 2 p-system:

{8tv—8xu—0 (3.2)

Oru+0xp(v)=0, t>0, xeR
where p <0, p” > 0. Here we let
U=(v,u), F(U)=(=up(v)),
then (3.2) can be written as
Ut + F(U)x =0,

and the Jacobian matrix is



it has real and distinct eigenvalues
AL = — —p'(v)<0<\/T(v):)\2.

The right eigenvector corresponding to, say Ao, is

n=(-1, \/T(V))t.

Then

(=P N S — P W)
Ve (wm“’) < by )> o)

Hence the second characteristic family is genuinely nonlinear. And
in a similar way, the first family is also genuinely nonlinear.



Example 3 Consider the full gas dynamics system in Eulerian
coordinates

pt+ (pu)x =0, P density
us + uuyx + px/p=0, u | = velocity |,
st +us, =0, s entropy

where p = p(p, s), p, > 0. We denote the sound speed ¢ by
c = ,/Pp- The matrix

u p 0
Po/p u ps/p
0 0 u

has eigenvalues A\ =u—c¢, Apx=u, A3=u-+c, with
corresponding right eigenvectors
n = (pa _Cao)t7 rp = (p5707 _pp)tv and 3 = (P7 Cvo)t'



Now we see that

VAi-n =(-¢c,1l —c)(p,—c, 0 =-p ¢, —Cc#0,
VX-rn =(0,1,0)(ps,0,—p,)* =0,
VAz-rs :(Cp717CS)'(p7C70)t :pCp—FC;&O.

Thus A1 < A < A3 and A1 & A3 are genuinely nonlinear, A5 is
linearly degenerate. The 2-nd family is the so-called entropy wave
family.

Now we want to give definition of three elementary waves, namely,
shock waves, centered rarefaction waves and contact discontinuity
(also called vortex sheets).



Definition 3.3 (Shock waves) The triple (uy, u,,s) is called a
p-shock if

(1) (Rankine — Hugoniot condition) s(u; — u,) = f(u) — f(uy),
(2) (Lax entropy condition) Ap(ur) <'s < Ap(uw),
)\pfl(ul) <s < )\p+1(ur).

Remark 1: Condition (2) implies that if we define the i-th
characteristic curve by

dX,'(t)
dt

= Ai(u(xi(t), t)),

then there are (n + 1) characteristic curves run into the shock and
(n — 1) ones run away from it.



Example 4 n = 1. Suppose the shock is x = st + xg, then the
characteristic curves starting from xi, x, which lies on the left and
right hand side of the shock must run into the shock and no one
leaves. See Figure 3.1.

n = 2. Consider the 1-shock x = st + xg. Then the 1-characteristic
curves starting from xi, x, must run into the shock. Then it
follows from the nonstrict hyperbolicity that the 2-characteristic
curve starting from x; no way but run into the shock and then
leaves it, and the 2-characteristic curve starting from x» must not
run into the shock. See Figure 3.2.



Remark 2: Exactly as same as for n = 1, the Lax entropy
conditions are the necessary and sufficient conditions for structural
stability of the shock wave. That is, the jump continuity will
persist under small perturbation, see A. Majda book for detail.

Definition 3.4 (Centered Rarefaction Waves) A function of the
form u = u(%) which is Lipschitz continuous for t > 0, is called
p-centered rarefaction wave if

(1) Oru+0xf(u)=0, t>0;

(2) A (u(2) =% Ap(u) <% < Ap(uy).



In other words,

N u, 3 <Xp(uo),
u(3) =19 w5 e (u) <5 <A (u),
up F = Ap(uy).

See Figure 3.3.

Remark: Clearly, if p-centered rarefaction wave exists, then
Ao(u-) < Aolu).



Definition 3.5 (Contact Discontinuity or Vortex sheets) A triple
(u—,uy,s) is called p-contact discontinuity if

(1) s(ur — u) = F(us) — (),

(2) Ap(u=) = Ap(uy) =s.

Remark 1: p-characteristic field has to be linearly degenerate to
admit a contact discontinuity. See figure 3.4.

Remark 2: In view of computation, shock wave is easy to be
observed since it has structural stability; while contact
discontinuity is hard to be dealt with.



In the following, our basic assumptions are:
A. (3.1) is strictly hyperbolic;
B. Each characteristic field of (3.1) is either genuinely nonlinear
or linearly degenerate.

As first step, our goal is to solve the Riemann problem for (3.1)
with the following special initial data.

u_, x<0,

uy, X > 0. (33)

Here uyt are constant states.



Remark 1: Problem (3.1), (3.3) is called the Riemann problem
just because Riemann originally studied the following problem in
gas dynamics, which is also called shock tube problem.

Consider a long, thin, cylindrical tube containing a gas separated
by a thin membrane. Let (uy, py, pr) and (uy,, pr, pr) denote the
velocity, density and pressure on both sides of the membrane.
Suppose at initial time, uyy =u, =0, p; > p,, p; > p, are all
constants (see Figure 3.5). The problem Riemann considered is to
determine the motion of the gas after breaking the membrane at
the initial time. (See Smoller's book)



Remark 2: The importance of the Riemann Problem is that the
solutions to the Riemann Problem are scattering states both locally
and globally for general solutions of (3.1).

To solve the Riemann problem (3.1), (3.3), we will use so-called
wave curves to cover the state space Q2 C R". That is, given the
left state u_, we will look for all possible state u, which can be
connected to u_ by either a shock wave, or a centered rarefaction
wave, or a contact discontinuity.



Proposition 3.1 (Shock wave curve)

For fixed ug € R", the R-H relations s(u — ug) = f(u) — f(up) define

n-smooth curves (u,s) = (uk(e), sk(¢)) for

le| < ak,(k=1,2,---,n),a, >0, such that

(1) uk(0) = wp, sk(e=0)= A(uo);

(2) (0) = & un(e)le=o = ri(uo),  (0) = Fz (€)oo = e =
Vrk(u[)) : I‘k(UO);

(3) k-family is genuinely nonlinear and we normalize it so that

V)\k (UO) g% (UO) =1.

Then
) d 1
5 (0) = e Sk|e=0= 5
Ak (uk (6)) < Sk (6) < Ak (UO) iff e<0O.



Proof
Step 1. Existence
Consider

s(u—uo) = f(u) — f(uo) = g(u, uo) (u — wo), (3.4)

where g(u, ug) fo (up + 0 (u— wp)) db. Clearly,

limy—u, g(u, up) = V £ (up) = A(uo) and g(u, up) is a smooth

n x n matrix. By the assumption, A (ug) has n real distinct
eigenvalues. Thus when v is close to ug, g(u, ug) must have n real
distinct eigenvalues Ax(u, ug) with corresponding right (left)

eigenvector Fi(u) (I (u)).



Then (3.4) is equivalent to

(g(u,up) —sl) (u— up) =0.

So R-H condition is satisfied if and only if there exists
k,k=1,2,--- n, such that s = \¢(v) and u — up || 7«(u), which
implies B

li(u) - (u—u) =0, i+#k.
That is, u must satisfies

® (u) = L(u) - (u— ) =0,

where

L(u) = (71(U), T 77k—1(u)77k+1(u)a T 77n(u))t'



Clearly, ®(ug) =0, dd(up) = L(uo) has rank n— 1. So by
implicit function theorem, there exists a real number ¢ such that
u = uk(e) defined in a small neighborhood ] < ax(0 < ax < 1)
such that

ug(0) = wg, P(uk(e))=0
and
uk(e) = u(0) || Fic(u).
We define s = sx(e) = A (uk(e)).



Step 2. Properties of the shock locus
By step 1, we have

sk(e)(uk(e) — wo) = (f(uk(e)) — f(uo))-

By definition of the right eigenvalue, we also have

Vi (uk(e)) re(uk(e)) = Ak (uk(e)) rc(ux(e))-

From (3.5), one has

Sk (Uk — Uo) + si e = fl (uk) U,

Sk (uk — Uo) + 2 Sy Uy + Sp Uy
= V2 (ug) (i, i) + F (uge) i



From (ref3.6), one has

V2 F(uk) (ks i) + £ (i) e = (V MeCuie)ing) ric (uie) + A (ui) Fe
(3.9)
Here we omit the parameter ¢ for simplicity. Recall that if
f=(f,f, -, f), i =fi(u), and H(f;) denotes the Hessian
matrix of f;, then V2f (r;, r;) is the column vector defined by

rE H(f) r;
rt H(f) r;

V2f(ri, ) =



Notation f means the gradient of f, also denoted by V f.
Set ¢ =0 in (3.6) and (3.7), note that uk(0) = wp, it yields

/

(f (UO) — )\k(UO)/) rk(uo) = O7

and
(F (u0) — sk(0)1) i (0) = 0.

Therefore, after normalizing, we get
Sk(O) = /\k(UO)a [lk(O) = rk(uo). (310)
Then, set ¢ =0 in (3.8) and use (3.10) to give

2$k(0)rk(uo)—|—)\k(u0) Uk(O) = V? f(uo) (rk(U()), rk(uo))—kf/ (Uo) Uk(O).
(3.11)



Applying Ix(up) on both hand side of above equation, one has

2$k(0) /k(U()) rk(Uo) + >\k(UO) /k(UO) Uk(O)
= Il (u0) V* £ (uo) (rx(u0), ri(uo)) + Ak(uo) Ik (uo) ik (0).
That is,
2§k(0) = /k(UO)V2 f(UO) (rk(uo),rk(uo)). (3.12)

Noting that
\Y% f(uk) rk(uk) = )\k (uk) ri (uk),

one has

V2 f(uk) ([lk, rk(uk)) +V f(uk) 'rk(uk)
=V X (uk) . rk(uk) + Ak (uk) F (uk).



So

(1) - V£ (uo) (ri(uo), r(uo)) = le(uo) - V Aie(uo) - ric(uo) ri(uo)

and
lk(uo)V2f(uo)(rk(uo), rk(UQ)) =V )\k(uo) . rk(uo).

By our assumptions, k-family is genuinely nonlinear, and
V)\k(U()) . rk(U()) =1
Therefore, it deduces from (3.12) that

2$k(0) = V)\k(U()) . rk(uo) = 1,
$x(0)

N[



Then, the equation (3.11) becomes

r(u0) + Ak(uo) i (0) = V2 £ (uo) (rk(uo), ri(uo)) +  (uo) ik (0).
(3.13)
On the other hand, from (3.6), we have

V2 f(uo) (ri(uo), ri(wo)) + f* (uo) (o)
= (V )\k(UQ) . rk(uo)) rk(uo) + )\k(uo) . fk(UQ).

which is
v? f(uo) (re(uo), r(wo)) + f (uo) fk(uo) = ri(uo) + Mk(uo) - Fi(wo).

(3.14)
From (3.13), (3.14), it reduces

Vi (wo) (iix — #e) = Me(uo) (il — 7).



Therefore,
iy — e || rie(wo),
uk = i’k + crk(uo),
where ¢ is a constant. After reparameterizing the curve again, we

get
Uy = ry.

Until now, we have gotten n-smooth curves (uk(e), sk(e)) for
le| < ax satisfying properties (1), (2) of the proposition, and

In the following, we will prove the entropy conditions as stated in
(3) of the proposition.



Step 3. Entropy condition
Set ®(e) = sk(e) — Ak(uo).
Then ¢(0) = 0.

. _ 1
®()le=0 = S(e)le=0 = 5
Consequently, one has

d(e) <0
if and only if € < 0.

Now set 1(e) = Ak(uk(e)) — sk(e). Then, clearly,

$(0) =0

P(E)e=o = V Mi(uk(e)) itle=0 — $kle—o = 1 —

So ¢(g) < 0 if and only if € < 0.



Thus, we have obtained

)\k(uk(s)) < Sk(e) < )\k(uo)

if and only if € < 0, as required by our proposition.

So far, for fixed uge R", we have constructed n-smooth curves
(uk(e), sk(e)) connecting ug in the neighborhood of ug, and
satisfying entropy conditions for ¢ < 0. This is called shock curve
connecting ug. The following is about rarefaction wave curve
connecting ug in the neighborhood of wug.



Define uf () to be the vector field associated with r(u), i.e.

{ Suf(e) = e (uf(e)),

The local existence of uf(a) on ¢ is clear. The we have



Proposition 3.2 (Rarefaction Wave Curve)

(1) If k-characteristic field is genuinely nonlinear, define

x o X < Mk(uo),
e <?) =9 g (5 = Mlw0)) s Aelwo) < 5 < A(wo) + €,
Ui (). 5> A(uo) + £

where 0 < £ <« 1. Then uf is the k - centered rarefaction
wave connecting up to uff(£);



(2) If k-characteristic field is linearly degenerate, define

u” (%) - { Z%’(g),

Then uf (%) gives the k-contact discontinuity connecting ug
to uf¥(e).

< )\k(uo),
> )\k(uo).

X+ X



Proof
(1) Let e = ¥ — Ai(uo). Then we have

M (uBE) = M (uf(0)) + 2 = Meluo) + % ~ (o)

H-_\ X



Denote u(x,t) = uff (¥ — Ax(ug)). Then

8{-”"‘8}( f(U) = 7Uk

Therefore uf is the k-centered rarefaction wave.



(2) By definition, we need to prove
Me(to) = Mk (uf(a)> (3.15)
and
M(wo) (uf() = w) = £ (uf(e)) — Flw).  (3.16)
Since k-characteristic field is linearly degenerate, one has
2 (o) = e (@) = V() (o)

= —V\ (uf(s)) < Ik (uf(a)) =0.



Therefore,
Me(to) — Ak (uf(e)) = Me(uo) — Mk (uf(e -

This is (3.15).

Set ®(g) = Mk (wo) (uf(a) — uo) — (f(uf(a)) — f(uo)).

Then



Noticing that
®(0) = 0.

we obtain ®(g) = 0, which is (3.16).

Now for fixed ug €2, we can find a neighborhood N of ug in Q so
that there is a shock wave curve v} (¢) through g in N satisfying
the Lax entropy condition on € < 0, and a rarefaction wave curve
uf(e) going through ug in N, provided that each characteristic
field is either genuinely nonlinear or linearly degenerate. We define
a k-wave curve by combining one sided branches of wave curves.



Definition 3.6 (Wave curve) A k-wave curve through ug is a C>!
curve TX(g)up defined to be

(1) If k-field is genuinely nonlinear,

up(e), <0
u= Tk(e)uo = Tk(e,wp) =
uf(e), €>0

(2) If k-field is linearly degenerate, u = Tk(e)up = uf (¢), where
ukC denotes the k-contact discontinuity wave.

We show that we can connect two nearby states by combination of
k-wave curves. The theorem is stated as follows.



Theorem 3.1 (Lax) Let the system is strictly hyperbolic, and each
field is either genuinely nonlinear or linearly degenerate on a region
Q C R". Assume u_€S). Then there is a small neighborhood N of
u_ €£2 such that for any uy € N, the Riemann problem

3tu—|-(9xf(u)20

u_, x<20
u(x,t:O):{ U x>0

has a solution. Further, this solution consists of at most (n+ 1)
constant states separated by shock, centered rarefaction wave and
contact discontinuity. There is precisely one such solution.



The proof of this theorem follows simply from inverse function
theorem.

Proof: By Proposition 3.1 and 3.2, there exists a neighborhood N
and a > 0 such that Tekk :N — R" for |ex| <a, k=1,2,---,n,
are well defined and C%! with the property that for any ue N, u
can be joint to Tekk u on the right by either a k-shock or a
k-centered rarefaction wave or k-contact discontinuity.

Now let u; e N be fixed. Define

U={e=(e1,""",en) € R":|ex] <a,1 <k <n}. Let

T : U — R" be defined as

T(e) = To(TL (- (TA(T () -+ )) = ThoTh to -0 T2 uy

En—1



Our goal is to show that for any u, € Q sufficiently close to uy,

|ur — uy| < 0, there is € = £(0) € U such that T(&) uy = u,. To see
this, define F(¢) = T(e) uy — u;. Since F(0) = 0 and rank

dF(0) = rank (ri(w), r2(uy), -+ -, ra(uy)) = n, by inverse function
theorem, there is § > 0 such that, for any u, € Q with |u, — uyj| < 9,
there exists ¢ € U such that F(¢) = u, — uy, that is,

T2 o---o0 TL(u) = uy. So the theorem follows.



Remark:

1. We may not solve the Riemann problem in two general
constant states. However, for gas dynamics, the Riemann
problem can be solved globally. For details see the book of
Joel Smoller, Shock Waves and Reaction - Diffusion Equation,
Springer - Verlag, Chapter 18.

2. Similar results can be obtained for system without assuming
that the field is genuinely nonlinear. For instance, see Liu, Tai
Ping, Admissible solutions of hyperbolic conservation laws,
Memoirs of the American Mathematical Society, 30 (1981),
no. 240 iv +78pp.



§3.2 Estimates on Wave Interactions
In scalar conservation laws, for any initial data consisting of
three constant states (uy, um, u,), we have discussed all
possible wave interaction in Chapter 1. It becomes a shock for
interaction of two shocks, a rarefaction wave for those of two
rarefaction waves, a weak shock if the shock is stronger than
the rarefaction wave, and a weak rarefaction wave if the shock
is weaker than the rarefaction wave. For systems of
conservation laws, one should imagine that there are
difficulties for wave interaction. Fortunately, because any two
waves do not interact each other again after they have
interacted, the Riemann solution should determine the long
time asymptotics of a general solution just as in the scalar
case.



Lemma 3.1 Let (u_, uy) be solved with = (p1,- -, pn), i-e.,
up =T,u =Tj] o0 T/il u_,
then
n 1 n
up = u7+2 Wi r,-+§Z pE Vriri+ Z pi iy Vrjrito(|ul?)
i=1 i=1 1<i<j<n

(3.18)
here all rj, Vr; - r; are evaluated at u_.



Proof: Set u; = Tl’;‘, ui—1, i=12---.n up=u_, U= Ujt.
From Proposition 3.1 & 3.2,

up = T;i,- ui—1
= wuji1+pirn(ui-1)+ %M,z Vri - ri(ui1) + o(|ul®)
= wi—1+ piri(u=) + pi(ri(ui-1) — ri(u-))
FSR 5 () + o)



since

i—1
ri(ui-1) —ri(u-) = Z ri(uj) — ri(uj-1)
j=1
i—1
= Z Vri - ri(uj-1) 1 + o(|pl?)
j—l

= ji: pj Vri - ri(u +’O(U4 )

hence
i—1
_ 3
i = w4 R V(S i V() o(uf)
j=1

(3.19)



By induction of (3.19) we get

1
Uy = u_—i-z wiri(u_)+ Z L [ Vrj-r,-—i-i Z u? Vr,--r,-—i—o(]u]?’)
i<k i<j<k i<k

for k=1,2,---,n. This gives the lemma.

Lemma 3.2 (Rough Estimate of Wave Interaction)

For any fixed u; €€, the result of interaction of two adjacent
Riemann solution a((us, um)), B((um, ur)) is a simple Riemann
solution £((uy, u,)). Then € = e(a, B) is C>1, that is, each second
partial derivatives are Lipschitz continuous, and satisfies



Z =3 (et Byt X e B (Vre—Vr)-+o(lal + [81)?
i=1 i>k
' (3.20)

In particular, & = a; + § + O (|a\ 18]+ (Jof + |B|)3). If we
define R = r; - V, then (3.20) can be written as

Z SR =3 (o + )R+ S a3 B[R Rid + O(1)[a] + )
i=1 jzk

where [R;, Ri] = Rj Rk — Rk R;j denotes the Lie bracket of two
vector fields.



Proof: By Lemma 3.1,

. 1
Um = uy+ Z a;j i+ 3 Z Q2Vri-r+ Z o Vr-ri+0(laf®)  (3.21)
i=1 i<j

U o= um+ Y Bir(um)+ % > B2 Vri(um) - ri(um)
i=1

+ 37 Bi B Vri(um) - ri(um) + O(laf) (3.22)

i<j

where r;, Vr; are evaluated at u; for convenience.



Substitute (3.21) into (3.22), by the fact
rilum) = ri(uw) + 2}7:1 ajVri-r+ O(|ef?), we have

n 1 n 2 n
u = u,+Za,vr,v+—Zain,v~r,v+Z&,-cijrj<r,-+ZB/rf(um)
i=1 253 i<j i=1
13 3
+3 ST BV > BBV i+ Ol +B])
i=1 i<j

n 1o
= u+y (ei+Biri+ EZ (i + B Vriri+ > (oo + BiB) Vi r
=1 i=1 i<j

+3° @i B; Ve - i+ Ol + 18])° (3.23)
i#j

Since € = £(a, B) is a smooth function C?1, by the wave curve
definition, £(0,0), |e| = O(1)(|a| + |5]) and
le]" = 0(1)(|a] +|B])". On the other hand, ¢ solves (u/, u,), hence

u,—u/+25,r,+ Ze Vri-ri+ ZE,EJVQ ri+ O(le]?)

i<j
(3.24)



Compare (3.23), (3.24) with ¢; = a; + 8; + O(1)(|a| + |8])?, we
obtain

Doeiio= D i+B)ri+y (iaj+ BBV rit Yy aifiVrri+Y> aiBiVi-r
i< i<i i~
=" (ai + B)ey + B)) Vi - r; + O(la] + |8])°
i<j

= Do+ B)r+ Y aiB V=Y a;Bi Ve + 0(la| + 181)3
i>j i<j

= Sai+B)n+ Y. aiBi(Vrr—Vr-n)+0(al+(8])°
i<j

This shows (3.20).



Remark: This is not the optimal estimate. For example,

a = (a1,0), 8 =(0,52) with a1 <0, 82 <0, then € = (aq, 52)
and ¢; = «; + Bi, i = 1,2. This example illustrates that we may
get better estimate on the third order term. From the same idea of
the second order term, we need only to compute those waves
which will produce interaction.

Definition 3.7 (Approaching Waves) Elementary waves a; and [y

are said to be approaching if

(1) if j # k, then j > k.

(2) if j = k, then one of them must be a shock wave, i.e., either
aj < 0 or Bk < 0.



Lemma 3.3 Under the same conditions as in Lemma 3.2, then

D eiRi=> (ai+B) R+ aj B[R, Ri+D(a, 8) O(S(e, B))
>k
’ (3.25)
where S(a, 8) = max {|a;l,|Bil}, D(a, B) = |oy| - |Bk|, the

’
summation > is taken over all approaching waves.

Proof: Define F : R*" — R" by

Fla,B) = ei(a, B) Ri— (Z(Oﬁ +B) R+ ajBlR;, Rk]) :

>k

We claim that |F(a, 8)| < C D(«, ) - S(av, B). It can be realized
by the following two steps.



Step 1: If D(«, B) =0, then F(a,8) = 0.
To see this, if either « = 0 or 5 =0, then clearly F(a, 3) = 0.
If aj # 0 for some i, then by D(«, 8) =0, 5; =0 for all j <,
and either a; - 8 =0 or «; > 0, B; > 0. If i is chosen to be
maximum number so that «; # 0, for the case o; > 0, 5; > 0,
then the interaction wave ¢; is simply combining the
rarefaction waves into one. Hence ¢; = «; + 3; and
F(a, 8) = 0. It finishes step 1.

Step 2: By definition, F e C%!. So by Lemma 3.2,
F(0,0) = F(a,0) = F(0,8) =0, F,(0,0) = 0, F4(0,0) =0,
F"(0,0) = 0. It follows that F(a, 8) = 3 a; B; ;i (e, B),
here ®;; (o, 8) is Lipschitz continuous function. In fact,



(,B) = D [Flar,--- @0,
i
7F(a17"'aai—1707"'a )

1
— . F
O AT
1)
1
—B: F e
ﬁ,/o Bj(al
1 1 1"
= s [ [ s e
1)
and

= [ [ o

®;; satisfies ®;;(0,0) =0, |®;

0, Bjy -t

N

s 01,0,

1 Bn) — Fle, - -+ @, 0,0+ ,0, Bjg, -+, Bn)
<, Bn) + Flag, -+ aj—1,0, -+ ,0,Bj41, -+, Bn)]
,0,tBj, Biy1s -+, Bn)dt
,0,t 8, Biy, - 75n)df]
yo—1,50,0,- -, 0,8}, By1, -+, Ba) dsdt
70[,'_1,5@,‘,0,"' 70atﬁj76j+1a"' 75") ds dt.

j (@, B)] < O(1)(la] + 151).



Note that if o, 5; are not approaching, i.e., i < j and either
aj-fBi=0o0ra; >0, >0, then &; (o, ) = 0 since

Flag, -+ a0, ,0,68, -, Bn) =F(at, - ,a;,0,---, 0,811, , Bn)
z ([):(al,.uYal._lyo,..4,o,5j,4..’5n) =Flar, -, ai—1,0,-+,0,Bj41, -, Bn)
Therefore
[F(a, B)] = Z ai/qu)fj(avﬁ)
Approaching
< O(1) D(e, B) - (lexl, [BI)-



§3.3 Glimm Scheme and its Stability
In this section we give a description of the Glimm scheme to
solve the following general Cauchy problem

Oru+ 0y f(u) =0, (3.26)
u(x,t =0) = up(x) (3.27)

We suppose that (3.26) is strictly hyperbolic and each
characteristic field is either genuinely nonlinear or linearly
degenerate.

Before Glimm, people only worked on special initial data for
special systems. But for very general initial data, the break
through is really due to J. Glimm (1966).



We have known that for Riemann data

u_, x<0
u(x,t =0) = uf(x) = ’

uy, x>0,
the Riemann problem has a unique solution which is the
superposition of constant states separated by k-elementary waves,
k=1,2,---,n, as long as |uy —u_| < 1.

In the space of functions of bounded total variation, Glimm uses
the Riemann solution as the building blocks of general solution.
The essential idea is his realization of wave interactions. The
success of Glimm scheme is mainly due to two elements: 1) Glimm
functional; 2) idea of random choice.



(1) Random choice method
To make thing easy going, we introduce the method step by
step.
1. Let U; be a neighborhood of 0. First choose a neighborhood
Us (bounded open set), such that for any uy, u, € U3 C Uy, the
Riemann problem (uy, u,) has a solution with intermediate
states uy, tp, -+, Up_q1 € U with U C Us. (See Figure 3.6)

Here we do not have maximum principle, so the Riemann
solution generally lies in a slightly bigger set than Us;. Only for
special systems, (uy, u,) is in the same region as Us.



2. Now choose positive constants C so large that CFL (Courant
- Friedrichs - lewy) condition holds

Ax

N =sup{|Aa(u)], uelh,1<i<n}<C= NL

(3.28)
where Ax, At are the space step and time step, respectively.
In the construction of the sequence of approximate solutions,
we will let Ax tend to zero.

3. Let a sequence 6 = {0;}7°; be a equally distributed sequence
of random numbers in (-1,1).
A sequence is equally distributed means that given any length,
the probability that a number is to be in any interval of this
length is the same, just like the Brownian motion.



4. For convenience of description, we give some notations. The
lattice is defined to be

Yt ={(m,n)eZ x Z,m+ n=0(mod2),n>0}.
The mesh points are chosen to be

am € =Ilmney+l(m—1)Ax, (m+ 1)Ax] x {nAt},
al = ((m+06,) Ax, nAt).

m

(See Figure 3.7)



5 Approximate solution
This is constructed by induction on ne Z* for each strip
R x [n At, (n+1) At]. Inductively, if we have already defined
u(x,t), t < (n—1)At, then one can define u(x, t) on
t < nAt as follows:

for n+ m = 0(mod2), set
n—1
B _Jou (am_l) , (m—=1)Ax < x < mAx,
vix (n=1)At) = { u(alh ), mAx<x<(m+1)Ax,
then let u(x, t), (n— 1) At <t < nAt, be the solution to

{ Orv+0xf(v) =0,
v(x,t = (n—1)At) = v(x,(n — 1)At).



So u(x, t) is the Riemann solution in the boxes
[(m—1)Ax,(m+ 1)Ax] x [(n — 1)At, n At].

Viewing the above construction, one may worry about several
things:

One thing is that it is possible that this induction may fail at a
stage NV and the solution will defined only on R x (0, N At). That
is, at stage N, ‘u (a"mill) —u (a”mjrll)‘ may become so large that
we cannot solve the Riemann problem uniquely. Even in each strip,
is the solution well-defined?



The other one is that if the induction can be carried on to infinity,
do we have the convergence of the sequence of approximate
solutions? i.e. Can we have the stability of the scheme?

The third one is about the consistency of the scheme, i.e. if the
approximate solutions converge, can the limit function be the weak
entropy solution of the Cauchy problem?



Actually, Glimm solves these problems in his scheme:

a. In the space of functions of bounded total variation on R!,
the well-definedness and the stability are proved at the same
time for suitably small initial data. So the BV norm estimate
allows us to solve the Riemann problems step by step.

However, no other satisfactory function space has been
suggested until now to study weak solutions.



b. The stability estimate of Glimm gives strong compactness in
Lh (R x RL),

c. By the CFL condition, Glimm's approximate solution solves
the equation exactly on each strip R! x ((n — 1)At, nAt).
Thus for consistency, one has only to assess the error across
t = nAt. It is for this point that we require the randomness
of mesh points.



(2) Glimm Functional and the stability of the scheme
Our first goal is to obtain the “BV" norm estimate on the
approximate solutions.

For convenience of presentation, we need some terminologies.
a. "Diamond". For m+ n = odd (with n > 0), the unique
diamond centered at (xm, t,) is the region enclosed by the
segments joining af,_; to af! and aff! to a7, ;. Here
Xm = mAx, t, = nAt. (See Figure 3.8)

The advantage of using the notation of “diamond”, is that the
estimate on “Diamond” is easier to get. Then we can use it to
approximate the “TV" estimate on the whole x-axis.



b.

“Mesh curve”, [-curve

- A mesh curve, [-curve, is an unbounded continuous, space like

curve which consists of piecewise linear segments joining the

mesh points a7, to al’; or al.} (but not both). (See Figure
3.9)

For each n > 0, there is a unique /-curve, called J, which
connects all a7, to a”"L; so that all the waves between t, and
tpy1 cross J,.

In particular, Jy is the unique mesh curve which connects all
the mesh points at t = 0. (See Figure 3.10)



- All the /-curves admit partial ordering: we say that J’
precedes J, J' < J, if J lies toward later time.

Two [-curves J_ < Ji, we say that J; is an “immediate
successor” of J_ if the symmetric difference is a diamond.
(See Figure 3.11)



c. Approaching waves on J

- Two elementary waves «;, 3; across a mesh curve J (we
denote this by «j, 8 €J), they are approaching if the waves on
the left, say «;, is the faster family compared with 3;, on the
right, i.e. i > j; or if they are in the same family, then one of
them has to be a shock. Denote the set of all pairs of
approaching waves on J by App(J) and set

N = D il 1Bil-

App(J)

Then N(J) takes into account of all the possible approaching
waves in the future.



- Let A be a diamond, we say that two elementary waves «;
and 3; are approaching in A, if a;, 8; € J_ but not on J;, the
immediate successor of J_, and «;, f3; are approaching on J_.
See Figure 3.12.

Then we set
D(A)= > lail-|5l.
App(A)
D(A) will be used to measure the change of N(J) from J_ to
Ji.



d. Glimm’'s Functional
For a given I-curve J, we define a functional which is
equivalent to the total variation of u across J as follows

L) =" Iyl,
l/jeJ
where the sum is taken over all the elementary waves across J.

In fact, this L(J) might increase for later time. The increase is
produced by wave interactions. However, if waves interact,
they will not interact later. So the potential wave interaction
functional N(J) is decreasing.



Our aim is to choose a positive constant C large enough so that a
new functional G(J),

G(J)=L(J)+ CN(J),
is decreasing.

Theorem 3.2 (Glimm) Assume that the Glimm scheme is defined
up to mesh curve J_. Then there exists a §g > 0, independent of
J_ and At, such that as long as L(J_) < dg, then

G(Jy) < G(J-),

where J1 > J_ is an immediate successor of J_.



Proof Let A be the diamond between J_ and J;. Let « and 3 be
the left and right incoming waves to A. The ending waves leaving
A is denoted by €. Let

Jo=bUJt, J =JulJ.
We have

L(J)
L(Jy) =

L(Jo) + L(J-) = L(Jo) + D2ty (Jeil + 18il)
L(Jo) + L(J}) = L(Jo) + 2274 il



By the wave interaction estimates (Lemma 3.3), we have
€ = @ +Bl + D(Oé,ﬁ) (]' + 5(04,,8)),

where D(a, 8) = > || |Bk| and the summation is over all
approaching waves. S(«, ) = max {|ajl, |5i|}.

Therefore, it follows that

n

L(Jy) = L(J-) = Z (leil = (leil + 18:1))

> (il + 181 = (|l + i) + D(A) (1 + S(a, 8)))

;(A) 0(1).

IN

IN



On the other hand, we have
N(J;) = N(Jb) + N(Jo,Jﬁr),

where N(Jp, J,) is the sum of the products of two approaching
waves, one crossing Jo and the other crossing J, . And

N(J_) = N(Jo) + N(J") + N(Jo, J).



Note that

N(Jo, J%) Z leil vl

where v is any wave crossing Jo such that v, €; are approaching
waves. Using Lemma 3.3 again, we claim that

Y leillvl <7 (lail +18i1) vl + O(1) D(A) L(J-).  (3.29)



Actually, there is no problem for those terms that o;, v and 5;, v
are approaching waves. If ; and v have the same index, and v is a
rarefaction wave, and if a; (or f3;) is also a rarefaction wave, then
it will not approach v. However, in this case, we have ¢; < 0,

aj > 0 (or B; > 0). So from

gi = aj + Bi + O(1) D(a, B)
it yields

leil < |Bi+ O(1) D(a, B)|
(or leil < |ai+ O(1) D(a,B)[)



If aj, B; are both rarefaction wave, then a; > 0, 3; > 0, one has

leil <10(1) D(«, B

Thus the claim (3.29) holds. So

1
N(do, 1) < > (lail +[8i]) [v] + O(1) D(A) L(J-)
< N(Jo,J")+ O(1) D(A) L(J-).

N(Jy) — N(J-) —N(J_) + O(1) D(A) L(J-)

—D(A) + O(1) D(A) L(J-).

A



By definition,

therefore, one has

G(Us) ~ G(U) = L(Js)— L) + C(N(L) — N(J-))

; O(1) D(A) — C D(A) + C O(1) D(A) L(J-)

= CD(A) —1+O(Cl)+0(1)L(J) .

Choose do, C such that O(1) & < 3, O < 1 one has

-bh—t

C
G(Jy) - G(J-) <0.



Theorem 3.3 There exists a positive constant d; > 0 such that if
L(Jo) < 01. Then the Glimm scheme can be defined for all time
and for any /-curve J. Furthermore, we have

L(J) < 261

Proof From Theorem 3.2, we know that if Ja“ is an immediate
successor of Jy, then there exists a C > 0 such that

L(Jg) + CN(JJ) < L(Jo) + C N(Jo) < L(Jo) + C L2 (Jo).
So if L(Jp) < min {1, %}, then
L(J3) + C N(Jg) < 2L(%)

Thus if L(Jo) is small, the Glimm scheme can be defined on J; .



Now, by induction, for any /-curve J > Jy, we can start from Jy to
J by immediate successors and we have

L(J) + C N(J) < L(Jo) + C N(Jo) < 2L(Jp).

Hence, there exists a small positive constant d; > 0 such that if
L(Jo) < 01, which is equivalent to the fact that the total variation
of ug is small, then

L(J) <261, VJ> . (3.30)

At the same time, the inequality (3.30) guarantees the Glimm
scheme can be defined for all time and for any /-curve J.

The proof of the theorem is finished.



We denote the approximate solutions constructed through Glimm
Scheme by uaAt or ueAX. Then as a consequence of Theorem 3.2
and Theorem 3.3, we have shown that

Corollary 3.1 There exists a 6 > 0 such that if TV ug < 4, then
(1) OSCuft < TV upt < G TV w;
(2) sup ueAt < G,

where C; and (; are some constants.



Corollary 3.2 (Temperal estimates) Under the same assumption in
Theorem 3.3, one has that for any t,t’ > 0,

+oo A A
/ B (x, £) — Ul (x, )] dx < G |t — ],

—00

where C3 is independent of t and t'.

Proof For any fixed t, t/, we assume t' > t without loss of
generality. Let

Ax

D) = {0y —xl < Fx (¢ -}

(See Figure 3.14)



Due to CFL conditions (3.28), it concludes that D(x, t) contain
the domain of dependence of (x,t’). Now define

ug™ (), . (y, t)eDgx, '),
\/(y7 t) = uy = ||myﬁ(x+%(t,7t))7 uO ><(y7 t), y Z X + ﬁi);(t/ _ t)’
o =limy ey up(yit), ¥y <x—FF({ —t).

Denote by VQAX(y, t) the Glimm approximate solution with Cauchy
data V/(y,t). Then, it is clear that

UGAX(Xv t) = VGAX(X7 t)
and since D(x, t') contain the domain of depence of (x, t’), one has

UQAX(X7 tl) = VGAX(X7 tl)



Furthermore, one has

. A . A =
yﬁ)r:ir-]oo V9 X(ya t) - yﬂ:r-]oo V9 X(Y? t/) = Uy,

lim VA(y,t)= lim VA¥(y,t)=1_.

y——o00 y——00

It follows that

UGAX(X7 tl) - UGAX(Xa t)‘ = ‘VGAX(Xa t/) - VGAX(Xa t)‘
VAX(x, t') — iy | + | VA (x, t) — Ty |

TV VAX(-, t') + TV VAX(-, t)

O(1) TV VAX(-, t) (by Theorem 3.3)
O(l) v UQAX(" t)|D(x,t’)

A IAIA



Consequently,

IA

oo 2 |uf(x, t) = uf(x, 1.‘)’dx<(:4f+;oC T.V.us(,
G oy 14 0)) ox

t'—t)
+00 (1) (t'—1t)
G J12 (00 o |4 up(x t- ) ) o
O@)(t'—t) p+oo X
Ca Lou)(tut) J2 o Id ug™(x 4+, t)] dx
Ot — t| TV ug™ (-, t)
Clt' —t| TV up (by Corollary 3.1)

|Dxt’) dx



Theorem 3.4 (Compactness of Glimm Solution)

There exists a subsequence of {ugAX : ed, At > 0}, which
converges in L} _ to a function u(x, t). Furthermore, u(x, t)
satisfies

() fuC, Ol < G
(ii) T.V. U(-, t) < CQ;
(i) llo( ) ~ u(, &)l < Gslta — ],

where C; (i = 1,2, 3) are constants.



Proof By our previous estimates, we have
(H1) Nug™ ¢ )l < G,

(H2) TV.ug™(-t) < G,

(F) 11§ (- t2) = ™ (1), < ol — 1

By (H1) and (Hz), use Helley principle to get a countable set
{tm} C [0, T], where {tn} is dense in [0, T], such that

{ueAX" (x,t)} converges at any point on each line t = tp,
(m=1,2,---)as Ax; — 0" (At; — 0", by CFL). We still denote
ueAX" by u;. It is noted that Ax; — 0T as i — +o00. We will show
that u; converges in L1 _(R' x RL) or LL_(R' x (0, T)) for all

T > 0. For this purpose, we will show that for any X > 0,



X
lij (t) = / |uj(x, t)—uj(x, t)|dx — 0 as i,j — 400 for a.e. te[0, T],
-X

i.e. uj(x,t) forms a Cauchy sequence in L1(|x| < X).

For any given te(0, T], there exists a {t,y} C {tm} such that
toy — tasm — +oo . Then

X X
() < / 05, £) — (%, ta )| + / 156, tn) — (3, )|
—-X X

X
+/ |ui(x, tm) — ui(x, t)|dx
-X

IN

X
[ 1wt t) = st + 2Galtr ] (by ()
-X



Note that {u;(x, t,y)} is a Cauchy sequence in L1(|x| < X), we
obtain that for any € > 0, we first choose m’ large enough such
that 2G3|t,y — t| < 5, then choose i, large enough such that

X €
/ |”j(X7 tr) — Ui(X, ty )| dx < =.
X 2

This proves that
li(t) = 0 as i,j — +o0.



We have that {u;(x,t)} is a Cauchy sequence in LL _(R' x RL).
We denote the limit by u(x, t). Then there exists a subsequence of

{uij(x, t)} still denoted by itself such that
ui(x, t) = u(x, t) a.e. (x,t) € R x RL.

And (i), (ii), (iii) of the theorem can be obtained from (Hi), (H>)
and (Hs). The proof of the theorem is finished.



§3.4 Consistency of Glimm scheme

Up to now, we have proved all the things except that u(x, t)
is a weak solution. To show that u(x, t) gives a weak solution,
we have to assess the error due to u; = ueAX"(X, t). Recall that
the approximate sequence {us"*(x,t)} has the following
properties:

(i) lug™ (1)l oo < My

(II) TV UOAX(-, t) S M2 = C1 - TV Up

(i) fiq<r 8¢ t01) —up*(n)ldx < Cr- o —ti|  VR>0

Then uf(x, t) — u(x, t) a.e. as Ax — 0 for any
0e® =]][-1,1], t > 0. Let



Ep (u, f(u)) = //Rl Rlﬁtgo-u—i—axtp-f(u)dxdt

+/R1 ©(x,0) u(x,0) dx

The ideal situation in the proof is that for any @€ C! (R' x RL),
6 €©, we want to get E,(uj, f(u;)) = ESO(UQAX", f(uQAX")) — 0 as
Ax; — 07. Unfortunately, this ideal situation is false for some
several 0 ¢ ©. Readers can see the example in the book of Smoller.

To conquer this, we may take over all 6 to be random in ©.

We compute E,(ug™, f(us>)) directly. From the construction by
Glimm scheme, on each time interval ((n — 1) At, n At), uf™
solves the Riemann problem. Hence



Ep(ug™, F(ug™))
g(ueAxa f(UGAX)7 90)

3 // (O ¢ - U + 0 o - F(UB))dx dt
= R x((n—1)At,nAt)
+/ o(x,t = 0) up™(x,t = 0) dx
R
e N t=nAt—
Z /Rl (x, ) ug™(x, t)|t:(n—1)At+ dx
n=1
+/RSa(xvt:O)UQAX(thz O)dX

- Z J/(05X7 QD)
I=1



where
Ji= 50, Dx,0) = / (o1 Dt+) — uf*(x, [ AL-)) - o(x, | At)dx

= / (x, /At o(x, I At)dx

[UQAX(X,/At} U (x, | At+) — uB(x, | At—)

We denote

J(0, Ax,0) = = 32721 (6, Bx, @) = € (uf™, F(uf™), ). First,
we start with a rough estimate on J(0, Ax, p).



Lemma 3.4 There exist M, M; > 0 independent of ¢, Ax, 6 such
that

(@) M0, A%, ) < MAx-|lgllje ¥V [=1,2,--

(b) [4(8, Ax, p)| < My diam(suppy) ||| o

here diam (supp ) = sup {|x — y| + [t — 7| : (x, t), (y, T) e supp ¢}
Proof: (b) is a consequence of (a). Let D > 0 be such that

o(x,t)=0VxeR, t>D,and A= % < C by CFL condition.
Then



(6, 8%,9)] < >[40, Ax, )|
=1

D/At
= > 48, 8x,9)]
=1
D
< MA ot —
< MAx]lpll e 5
M
= 5 Dligll

So it suffices to prove (a). To do this, since uf**(x, t) solve the
Riemann problem in the region
((m—1)Ax,(m+1)Ax) x ((I — 1) At, | At) with m + | = even,

we have



[1(8, &x, )|

< [ (e ran)l - Lot 1A
(m+1)Ax
- / I (e 1200 - (1 80
m+I=even *
(m+1)Ax Ax
= > lo(x, TAL)] - |uh™ (x, | At+) — ub™ (x, | At—)|dx
mi—even ¥ (M—1)Ax
(m+1)Dx
- / oG, I AL - (U2 (m+ 0)Ax, | At—) — ud (x, 1 At—)|dx
mti=even ’ (M—=1)Ax
(m+1)A
< el Y0 / I ((m 018, 1 A=) = U (x, 1 A=)
m-+I=even
A
< el D0 TVim—nax,(mit)ax Yo (1 At=) -2 Ax
m+I=even

= 28x-|lplliee TV g™ (-, 1 At—)
< 2My - Axllplljeo

where Mj is stated in (ii).



The estimate is too rough to show J(6, Ax, ) — 0 as Ax — 0.
Now we regard 6 ¢ © as a random variable. To describe this
precisely, we set © = [1[—1,1] = ][0, 1] so that © becomes a
probability space. Our goal is to show that there is a null set

N C © (meas(N) = 0) such that for any § e ©\N, and pe C},
J(,Ax,p) — 0 as Ax — 0", To this end, we need one more
lemma.



Lemma 3.5 Suppose ¢ is piecewise constant on each segment
[(m—1)Ax,(m+ 1)Ax] x {I At},m+ | = even. Then

In (5, Ax, ) LI (-, Ax, ) on L2(O) if h # h

Proof: The main idea is that independent random variable with
zero mean are orthogonal, that is, we go to prove that

(1) If h < b, then Jj, is independent of 6.
(2) [o Ji1dé =0.



Indeed, (1) follows by definition of the Glimm scheme. For f, Jj,
depends only on the construction before time, and does not
depend on the random variable 6, after time. To show (2), from

/e Ji (6, Ax, @) df = / < / Ji(8, Ax, @) d9,> dé

here df = [ 1z d0;. 1t suffices to compute [ Jy(6, Ax, p) dO).
From similar computation as before,



1
| at0.8x0) 0

(m+1)A
/ > / o(x, I At) (uf™ ((m + 0))Ax, | At—)

m+I=even

_Ug (X | At— ))dng/

(m+1)A
Z C,ml/ / m—l—@;)AX | At— )

m+I=even —1)Ax
_u9 (Xa/At—)dX d9/ (331)



Now we claim that the right hand side of (3.31) is zero. To do
this, since ugAX (x,! At—) depends only on 0;, i =0,1,--- ;[ —1,
and does not depend on 6,;, we have

(m+1)A (m+1)Ax
/ / GAX (x,/At—)dxde,:z/ ug™ (x, | At—)dx

(m—1)Ax

also,

(m+1)A
/ SX((m+ 0)Ax, | At—)dx db,

- / AX((m + 6))Ax, | At—) df) - 2Ax
1
(m+1)Ax
2 | WX (y, | At-)dy
(m—1)Ax



Hence the claim holds and | Jj(6, Ax,¢) df = 0. Now for h # b,
say h < b, by (1) and (2), we deduce that

<Jy,dp, > = / Iy (0, Ax, @) - I, (0, Ax, )db
©

= / (/ J,1(9, AX,QO) . J/2(9,AX, (p)d9/2> n/?gb d9/

= / J/1 . (/ J/2 d9/2) |_|/7g/2 dG,

=0

This proves Lemma 3.5.



Lemma 3.5 means merely that we can ignore all the intersection
terms Jj, - Jj, for i # h. We can ready to state the main
consistency theorem. This theorem completes the theory of Glimm
scheme.

Theorem 3.5 There exists a null set N C © and a sequence
Ax; — 0 such that for any e ®\ N and any pe CL(t > 0),

J(0, Axi, ) — 0 as Ax; — 0



Proof:
Step 1: Let ¢ satisfies the condition in Lemma 3.5. Then

1, A%, )10y = D 140 A%, 9)[720)
=1

D 8%, 0|2 o)
=1

M2 (8%)? [[l[Fo
1eN

IN

IN

IN

M Ax; diam (supp ¢) ||~



where A = {/: R* x {I At} N suppp # ¢}. The first equality is
due to Lemma 3.5, the second line is due to the probability
measure on ©, the third line comes by Lemma 3.4. Thus

J(-, Ax;, ) — 0 as Ax; — 0% in L2(©). Therefore, there is a null
set N, depending on ¢ with meas(N,,) = 0 such that

J(-, Axi, ) = 0 as Ax; — 0 for all e © \ N,,.

Step 2: For any ¢ e L2, by Lemma 3.4 (b), we have

HJ('7AX7()0)HL2(@) HJ(UAXﬂD)HL‘X’(@)

<
< Cllgllpe



Step 3: Let ¢, be a sequence of piecewise constant function with
compact support which is L% and dense in C!. For each ¢, by
step 1, there is a null set N, C © and a subsequence Ax; — 0
such that J(0, Ax;,p,) = 0as Ax;, -0 VOec©\N,. Set

N = US2; N, and choose a subsequence Ax; (by diagonal process)
such that for any v, J(0, Axj,¢,) — 0as Ax; -0 V0eO\N.



For any ¢ e C}, choose a sequence of piecewise constant function
@y, €L as above such that ||, — ¢||;c — 0 as v — +o0.
Hence

‘J(Q, AXI" 90)| |J(97 AXI" ¥ — SOVk)| + |J(9a Ax;, SDVk)|

<
< C”SO - (kaHLOO + ‘J(H’Axivcpl/k”

and tends to zero by first choosing ¢,, so that
Clle = ¢ullje < 5, then choosing Ax; small such that
|J(0, Axi, oy, )| < 5. This proves the theorem.



§3.5 Front Tracking Method

{ Oru+0xf(u)=0, ueR", xeR, t>0 (3.32)

u(x,t =0) = up(x)

Assumption:

(i) f is smooth in Q.
(ii) each characteristic family is either genuinely nonlinear or
linearly degenerate.



Approximate solution by front tracking:

Step 1: Construct ug such that
1. ug is piecewise constant with finite many jumps.
2. TV.u§ < T.V.ug
3. [|u§ — wldx — 0 as §— 0t



Step 2: Resolving the initial jump by solving Riemann problems

Caution If one uses this Riemann solver, one might find the
number of interactions could go to infinity at finite time, so that
one cannot extend the solution globally (due to the complexity of
the wave interaction in system).

Idea If the scheme is stable in BV, the most of the new waves are
extremely small, thus, can be ignored.



Simplified Riemann Solver
Case 1 i>j

un = T;




Case2i=j

um = Ti(aj, uy)
u = T/( ;; Um)
ug = 7—I(a: + ﬂ,/, U/)




Case 3 In case of a front with a pseudo shock

ug = Ti(ov, ur)
(ug, ur) forms a pseudo shock with speed A .

(1.) t =0. Accurate Riemann Solver (ARS).
(2.) at an interaction > 0, the two incoming fronts, «, 3
if |a||B] >0, useARS;
otherwise |a||B] <o, use SRS.
(3.) at the interaction time t which involves pseudo shocks, use
SRS.




§3.6 A Front Tracking Algorithm

1. Accurate Riemann Solver

Let « interact with [ to produce a solution & = (e1,--- ,&p).
If all €; is either shock or contact discontinuity, leave it alone.
Otherwise ; > 0, as the i-th wave is center rarefaction wave.
Then we divide this rarefaction wave into small fan of
discontinuity in the following way:

For given 6 >0, let v= {%}



Assume the /-wave is

ur = Ti(ev,u-) = Ri(gj,u_), € >0

Let u®=u_, W= Ri(jo,u_), j=1,--,v

v+1 __
u = uy

ue(x,t) = o/ when Ai(W) < X < Aj(W)



2. Simplified Riemann Solver (SRS)

3. Implement

Step 1: Let ug be a piecewise constant approximation of wg(x)
with N-jumps (N < o0) such that

T.V.u) < T.V.u
[luo — udldx < &8

Then apply ARS to ug.



Step 2: When they interact, we first specify a constant o > 0. Let
the interacting fronts be « and 3. Then we will use

ARS if |a|-|B| >0
SRS if |of-|B <o

(Here and from now on, front mean either shocks or rarefaction
front or contact discontinuity.)

If one of the incoming waves is a pseudo shock, then we will use
SRS always. Since we will show that total amount of pseudo shock
is small.



Order of waves:

Definition 3.8 The generation order of a wave is the maximum
number of collisions predating its birth.

Remark: All the waves presenting at t = 0 has order = 0. All
the new waves produced by wave interactions, say € is a new wave
which is produced by interaction of o and 8 with order w1 and up,

O(a) = p1, O(B) = pa.



Case 1: « and g are in different family, « is i-family, 5 is in the
Jj-family, € is in the k-family.

if k:i, O(E)Z/ﬂ,

if k:./a O(E):M%
if k 7& i?.jv O(E) = max{lu’lalu’Z} +1

Case 2: « and (8 are in the same family, i-family.

it k= ia O(E) = min{:ulvu2}7
if k#i, O(e) = max{p1, p2} +1

Approximate Characteristics: X;(t) is said to be an j-characteristic
if X;(t) is a piecewise line segment with constant slope \;(u?) if u®
is constant and becomes an i-front when it hits an i-front.



§3.7 Approximate Solution

Goal: Eventually, we need to show the previously constructed
scheme produces a “good” approximate solution.

Definition 3.9 (Approximate solution) For any € > 0. An
g-approximate solution to the Cauchy problem (1) is a
vector-valued piecewise constant function separated by finitely
many line segments with the following properties:

1. Each wave may originate from either t = 0 or at the collision
points of two other waves and the wave in general will stay
forever unless it collides with other waves.

2. There are finitely many collision points.



3. All the waves are classified into three classes

(1)

(2)

shock wave or contact discontinuity: i-shock or j-contact
discontinuity is a triple (uj, u,, x(t)) such that u, = s;(e;, uy)
and |X; — s;| < 0 (where s; is the speed of original shock or
contact discontinuity).

Rarefaction front: an i-rarefaction front is a triple (v, u,, X;)
such that u, = Ri(7,u;), 0 < 7 < 6, and

[Xi — Ai(ur)| <0

Pseudo-shock: a pseudo shock is a triple (u;, u,, Apy1t) is a
discontinuity travelling with speed A,y; .

D lu(y(t)+,t) = u(y(t)—, 1) <6

Yeps

|u®(x,0) — wo(x)|dx < &



Theorem 3.6 The front tracking algorithm discussed before
indeed produce a d-approximation solution if one chooses ¢ and o
appropriately and T.V.ug is small.

Sketch of idea of the proof
1. Estimate of u’(x, t):

e scheme has to be stable,
e to avoid produce too many fronts.

Glimm's idea is crucial.
2. Total amount of pseudo shocks < ¢:
e tracking the order of waves.
(1.) interaction estimate

(2.) Glimm functional



Proof of Theorem 3.6
Step 1 Wave interaction estimates.

Lemma 3.6 (ARS) i-wave « and j-wave [ interact and then

produce waves € = (g1, ,&p).

Casel i>j. |ei—al+leg—pB|+ Z lex| = O(1)|el - |B]
k#iyj

Case2 i=j. |ei—(a+B)+ ) lel=0()al- |8

k#i



Lemma 3.7 (SRS)
Case 1 |of-|8] < 0.

|ir — ur| = O(1)laf - |5

(whether i = j or not, we always have the above estimate)




Case 2 One pseudo shock interacts with one front, then

|br = ur| = |um — u| = O(1)|e - [um — v




Let u’(x, t) be defined on some interval (0, T), T > 0.

Lt)=>_ vl

Let / be the collision times in (0, T). L(t) is piecewise constant on
(0, T). L(t) is well-defined on te(O H\I.

AL(t) = L(t+) — L(t—) tel .

Vite(0, T)\ I,

Q)= _lal- 18]
(a, B) are approaching waves acrossing t-time line.

« is i-wave, (3 is j-wave, either i > j or i = j and one of them
must be a compressive shock.



Q(t) is also piecewise constant, and
AQ(t) = Q(t+) — Q(t—) <0 Vtel

AL(t) = O(Dal-|5]  tel
Qt) = Xlal-18]
Q(t+) = Q(t=) = —Jal 18]+ O(L)lal - 18] - L(t)

choose a constant k,

G(t)
AG(t)

L(t) + k Q(t)
AL(t) + kAQ(t) tel



O(1)|af - [B] + k(=1 + O(1) - L(t=))lal - |A]
(0(1) — k(1 = 0(1) - L(t=)))|er] - 5]

k
AG(t) < ~lal |8



Claim: By induction, AG(t) < —%£|a| - |8], Vtel,if

G(tt) < G(t—)=G(0+)
= L(0+)+ kQ(0+)
< L(0+)+ £L%(04)
< 2L(0+)

L(ti+) < 2L(0+).

By induction, we prove that L(t) <,
AG(t) < —£|al-|B8] Veel .



Step 3 Estimates on total interactions.

Vtel,
AQ() = (~1+0()- L(t-)lol- |8 < ~3lal - |8

>3 ol 18]

IN

32 AQ() = Q(0+) - Q(T)
Q(O+) < 317(0+)

IN



Step 4 Estimates on the number of collision.

The key is to estimate the number of collisions which have to be
resolved by ARS, which will be used only when the incoming
interacting waves satisfy |a| - || > o .

/ /

Z/jrarw = > a-Bl+ D> ol 18|

tel Ial\ijZU lal|8|<o
1
No < Bl < =12
o < > lal-18] < 5L3(0+)
la]|8|>0
N < —1[?
< SoL(04)

= total number of collisions is finite (e.x.).
= u°(x,t) can be defined on (0, 4c0) .



Step 5 Total variation estimates on a non-resonant curve.

Definition 3.10 A Lipschitz continuous curve is said to be
non-resonant if it divides the half plane into positive 3°7 and
negative » .

Further {1,--- ,n,n+ 1} can be decomposed into N, NO, N~
such that:

1. N° contains at most one point,

2. Nt N° N~ are pairwise disjoint,

3. NT and N~ contain consecutive numbers in
{1,2,--- ,n,n+1},



\4

If ie N=, and i-characteristic hits c, then it crosses ¢ from 3" to 3.~
If ie N*, and i-characteristic hits c, then it crosses ¢ from 3.~ to S.*.
If ie N° and i-characteristic hits ¢, then it must become part of ¢ (it can
hit ¢ from both sides).

(Here i-characteristic means i-approximate characteristic.)



Example 1: t = constant, ¢ > 0 is non-resonant, N® = ¢, N~ = ¢,
A

Nt ={1,--- n,n+1}.

Y




Example 2: Any space-like curve. Assuming A1(u) < 0 < Apy1(u),
these may be represented by Lipschitz functions t = #(x),
—00 < X < 00, with )\% < % < ﬁ“ a.e. on (—o0,+00) .

In that case Ny = {1,--- ,n+ 1} while N_ =Ng=¢.



Example 3: cisi-characteristics.

X;: ith-characteristics

3
|

{1a2a)171}
Nt = {i+1,---,n+1}

\ 4



Let ¢ be Lipsehitz and non-resonant with respect to u° .
TV .= |v|], v areall the waves cross c .

Let J be the times that some waves hits on ¢,

M) =D W+ W +> vl te(0, T)\ (1 UJ)
- + 0

> _: sums over all the i-wave, ie N~, cross t-time line on the
positive side.

>, sums over all the i-wave, ie NT, cross t-time line on the
negative side.

ZO: sums over all the i-wave, with i e N9, which cross t-time line
on either side of e .



AM(t) = —v teJ\ I
AM(t) = O(1)al[f] tel\J
AM(t) = —[v|+01)|a||f] telnJ

where || and || are the strengths of the waves colliding at te/
and |v| is the strength of the wave that impinges on ¢ at teJ .

TVl <M(T) < M)+ kY |al|B] < 2L(0+)



Step 6 Estimate the total strength of the pseudo shocks.

Main idea: Waves of higher generation order are produced after a
large number of collisions. So it should be expected to be small if
its initial strength is small.

Step 6.1 Estimate on the total strength of waves of higher
generation order.

Since the total number of collisions of waves is finite, the
generation order is finite also, 3~ > 0, 0 < u < v. However,
v =v(6) and in general, v(§) — +o0 if § — 0.



Definition 3.11
(1) Lu(t) =>_1v|, |v| across t-time line and p(v) > p.
(2.) Qu(t) = Z/ || - |B], where o and 3 are approaching waves.

Both cross t-time line, moreover, max{u(«), u(8)} > p.
(3.) I, ={tel; at which a wave of order p collides with a wave of
order < u}.



In particular, Lo(t) = L(t), Qo(t) = Q(t). How to estimate L,(t)
and Q,(t) when p large?

Lemma 3.8

(
(
(
(

(5.

1.)
2))

3.)
4)
5)

AL,(t)=0
AL,(t)+2kAQu-1(t) <0
AQ,(t) + 2k AQ(t) Ly(t-) <
AQu(t) +2k AQu1(t) L(t-)
AQu(t) <0

0
<0

tEIoU/1U"'U/u72

tel 1 U Ul
teloU - Ul s
tﬁl‘u_l
tel,U---Ul,



Proof of Lemma 3.8
(1) AL,(t)=0 tehU---Ul,_»
This follows, interactions among waves of generation order

< u — 2, can produce waves of the generation order < u — 1,
which has no effects on L, (t).



(2.) can be proved similarly. It follows from this lemma that

Claim: If n is small, then
L, = sup L, (t) < 27Hen
t

Qu = Z:[AQM(t)]+ < 27HF3 22 (T.V.ug <o)

tel

[A]" = max{A, 0}, [A]” = max{—A,0}



Proof of the claim:

Part 1: Note that L,(0+) =0, p=1,2,--- ,v, then it follows (1.)
+ (2.) (in fact, sum them up) to get

L) < Y (-2KAQa(1)

tel,_1U--Ul,

2% 3 [AQu (t)]

tel

2%y [AQu1(t)]”

tel

IN

SO

~>
=
N



Part 2: Estimate on the potential Q,(0+) =0, p=1,2,---,v,

L(t) = Lo(t) < G(t) < G(0+)
< L(0+)+%L2(0+)
< 2L(0+)
YIAQM]T = Q(0+) — Q(T-) < Q(0+)

IN

1
-2
SL3(0+)



(3.) + (4) + (5)
STAQUT < 2k ) Lu(t=)[AQ(E)]T +2k Y [AQu_1] " L(t-)
- < 2kL, Y [AQME)]T +4kL(04) DY [ [AQu-1]”

tel tel

2k L, 7L2(0+ + 4k L(0+) ) [AQu]”

IN



Therefore,

2k - 2k Z [AQu-1(t)] - %L2(0+)

+4k L(0) Y [AQu-1(t)]
so Q. < %Z[AQM_I(t)]: p=12- v,

tel

(2) Qu

IN

when L(0+) is small enough.

In particular, for p =1,

| 1,
Qu<5) [8Q1 < ;12(0+)



However,

D IAQ]T =Y IAQUT =) [AQuD)], k=12

tel tel tel

since [A]" — [A]” = A, Qu(0+) =0,

hence 3OIAQUO] < S IAQT = Q

tel tel

A

1.
SO Qu < EQu—l w=12- v

This implies the claim by induction.



Step 6.2 Estimate of the combined strength of pseudo shocks of
generation order < pug.

Part 1: Bound on the number of waves of generation order < up.
Let k, be the number of waves of order < y1. Then
k: wave strength

1 k
ku < ku—1+§(k371)g’7
b,
< 2k,
b 2u+1
= k, < <5> ',

¢ depends on initial data.



Part 2: Estimate on the strength of a pseudo shock. Let a be the
strength of the pseudo shock.

Claim: |o| < co

Proof of the claim: This is true initially. The strength of the
wave will change only when it interacts with front of strength 3,
by the estimate, now the strength will be

O(1)o(1+15])
as the strength at any time is bounded by

O(1)r-N(L+[8) < O(1)oe=l
_ O(l)a_eO(l)—L(OJr) —



Conclusion: The combined strength of pseudo shocks of order
o < kyo 0 O(1) < 5 (choose o small enough).

Ve >0, dup such that Zuo <2 cep < %

then fix pg, choose o so small that
€
kMO 0(1)0' < 5

= the combined strength of all pseudo shocks of any order < ¢.
Consequently = Theorem 3.6



Theorem 3.7 Let us be a sequence of d-approximate solution
constructed by the front-tracking algorithm. Then 3 subsequence
0k — 0 as k — oo, such that

us, — u, a.e. R x (0,00)

such that
(i) u(-, t)e BV, which is a weak solution to (1.1)-(1.2).
(ii) u satisfies the entropy admissible condition.
(i) T.V.u(,t) <cT.V.y 0<t<+4o0.
(iv) 7 Ju(x, t) — u(x,s)|dx < c|t —s| T.V. up.
(v) the trace of u on any Lipschitz continuous graph in R’ x R+
which is non-resonant to us has bounded total variation.



Proof:

Step 1: Recall that the J-approximate solution us constructed by
our front tracking algorithm satisfies

T.V.us(-,t) < cT.V.u Vt>0
/ lus(x, t) — us(x,s)|dx < cT.V.u(t—s) Vt>s(ex.)

o0

The same arguments using Helley's principle and diagonal
procedure

= d0, -0 as k— 400, s.t. us—u a.e. RIXR;



Step 2: Consistency of the front tracking method

Aim: Oiu+0xf(u)=0 inD
fe. Voec®(R xR))

o0

/ Orpu(x,t)+ Ox o f(u(x, t))dx dt + / ©(x,0) up(x)dx =0

—00

Therefore, define

Ei() = [ [10cus+0uof(u)axd+ [ olx.0) us(x.0)ds

SO Es—0 as 0 — 0+
iff the scheme is consistent.



Recall that us(x, t) is a piecewise constant function with
FINITELY many jumps which are called x = x,(t) (o < N). By
using Green's theorem and direct computation, we have,

+o00o
E— - /O S ([F(u5)] — 5alus]) (xa(2), £)dt

where [A] = A(xa+) — A(xa—). The summation runs over all the
jumps of us at the time t.

Case 1: x = x,(t) is an approximate shock or contact
discontinuity.



Claim: |([f(us)] — Xa(t)[us]) (xa(2), )] < 6[[us](xa(t), 1)]

Proof of the claim: Recall the shock speed s = \;(uj, u; ) by
R-H condition

[f(us)] — s[us] =0

SO

[ (us)] — xalus]| |[f (us)] — s[us]| + |s[us] — xa[is]|
0 + 6 [us]]

0| [us]]

IIVARVAN



Case 2: x = x4(t) is an approximation rarefaction front.

Recall that the shock wave curve and the rarefaction wave curve
are at least 2nd order contact.

|([F (us)] = %alus]) | < |[F(us)] = s[us]| + Is[us] — %a[us]|
= 0+ s — X [[us]]
< c|[us]]



Case 3: x = x,(t) is a pseudo shock.

[ (us)] = Xalus]| < c|[us]|

By cases 1-3, we have

| Es|

IN

ce (Z[f(U5)]>'<a[U6]+ > [f(U5)]>'<a[U6])
aep aeNp

co(cod T.Vug+ cd)

cpc(l+ T.Vu)d

<
<
— 0 as 0 — 0+



Step 3: Entropy solution

Let (n(u), g(u)) be an entropy-entropy flux with 7 convex. Let
pec®(R' x R;) with ¢ > 0. Then applying Green’s theorem, we
can get

/{8tg077U5)+8X<pq(u(;)}dxdt+/( ,t=0) uf dx

N _/o ZSD (la(us)] — xa(t)[n(us)])dt



Case 1: x = x,(t) is i-entropy shock

ININIA

[q(us)](xa(t), t) = Xa(t)[(us)] (xa(t), t)
[q(us)] — s[n(us)] + (s — xa(t))[n(us)]
(s — xa(t))[n(us)]

o[[n(us)]|

c 6 [us]|



Case 2 & 3: Similar as before. So we have

+o00
_/0 > ella(us)] = %a(t)[n(us)])dt
> —cgpé(T.OéV.u0+1)_>0 as 550

Step 4: Proof of (5.)

An easy self exercise.



§3.8 Continuous Dependence of the front Tracking
Solutions

Recall (scalar case)

/

{ Oru+0xf(u)=0 weR
u(x,t =0) = up(x)

L'-contraction principle
Let u and v be two “right” solutions to (1) with initial data ugp and
vo respectively. Then

/Oo lu(x, £) — v(x, £)|dx < /Oo luo(x) — vio(x)|dx

—c0 —00



3 example due to B temple. NO L!-contraction in n x n system.
Our aim:

/oo lu(x,t) —v(x, t)]dx < ¢ /oo |up(x) — vo(x)|dx

—00 —00
Bressan's idea: In a non-translation invariant space,
1
e =l = p(u,v) < cllu = vl

p(u,v)(t) < p(u,v)(s) Vt>s



Let v and v be d-approximate solutions to (1.1). For fixed t, then
V(X) = 55,0 © 1 S0 U(X)

Define
+oo N
plu). () = [ > i) ()

where w;(x) are weights to be determined.



If 1 < w;(x) <2, then

| Y letide<pur) <2 [ 5 ool ox

1 o0 oo
C/ lu(x) — v(x)| dx < plu, v) < c/ lu(x) — v(x)| dx
The crucial part is how to define w;(x)

wi(x) =1+ k1 Ai(x) + ko(Q(u) + Q(v))

where Q(u(t)) is the potential of wave interaction amount
approaching waves acrossing time t. A;(x) are the total strength
of physical wave in u and v which approach the i-wave p;(x).



Ai(x, t) =

> o+ X

Xop <X Xy >X
L i<ka<n 1<i<ke |

>+ X

Xy <X Xey >x

li<ka<n 1<i<kq |

loal

loal +

if

i Ldg

>

ke=i
o e J(u),xq <x

>

ke =i
o € J(u),xe >x

+

+

>

ke=i
a e J(v),xq >x

>

k=i
a e J(V),x>xa

loal if pi(x) < 0

loal if pi(x) > 0

if i — gNL



Theorem 3.8 3 suitable constants dg, k1, k>, ¢ > 0, s.t. if u and
v are d-approximate solution constructed by front tracking
algorithm with G(u(t)) < o, G(v(t)) < dp. Then

p(u(t),v(t))—p(u(s),v(s)) < cd(t—s) V0<sct VO0<s<t

Proof: The key is to understand the evolution of p in time,

+oo N
(u,v) / ZW, ) |pi(x)| dx



Step 1: (At collosion time)

t=relU/l
where [: collosion time of u, I": collosion time of v.

First, note that p;(x, t) : [0, +00) — L!(R!) are continuous at
t=r.

Next, let & and o be fronts in u which collide at t = 7, then

—3lol|o|

O(1) o ||

)
—~
<
—~
9
+
N—r
~
|
)
—~
<
—~
9
-
~
[N



Recall
wi = 1+ ki Ai + ko(Q(u) + Q(v))

SO
wi(x, 7+) — wi(x,7=) < 0,

if ko is large enough.

Therefore
p(u,v)(7+) < p(u,v)(T—)



Step 2: Let u and v be two d-approximate solutions.
Fixed (x, t)

u(x,t) = ng o--- 532 o sgl(v(x7 t))

Vte l,Ul,.

In this case, %p(u,v)(t) is continuously differentiable. To
compute %p(u,v)(t), we set wp(x),- -, wy(x) by

wi(x) = s

si = Ai(wi-1(x), wi(x))



Let x1(t), x2(t), -, xa(t), xn(t) be all the point where either u or

v has a jump.
Claim:

d
LA

- aZJ ;xa[\m wi](Xa) (3.33)

= Z Z}'(a{|p;(xa+)| Wi(Xa+) — [Pi(xa—)| Wi(xa—)}

acd i=1



Proof of the claim:
Xl(t) n N-1 Xa+1 400
puv)= [ wxolexla+ Y [ |
-0 =1 a=1 Xa(t) XN(t)
To estimate the right hand side of (3.33), we will denote
p,‘aJr = pi(Xa“‘)a P,-ai = Pi(Xa—), W,'Oéi = Wi(Xa:l:)a )\,qi = si(Xa:l:)
Since u and v are constants on (Xo—1(t), Xa(t)), then

151 (3)] Ai(x) wi(x) = [p{* DF AT DT e DE e yam 0

1



then

%p(u v)(t)

TSmO = )~ I WO )}

aed i=1
n

= > Eai(t)

aed i=1
where

Eai = [PfF] Wt (OSF — 50) — 007 Wi~ (AT — %)



Proposition 3.3

Y Ei<0(1)loal  aeNp (3.34)
i=1

n
Y E.i<0(1)dloa] aesnR (3.35)
i=1



Proof: Let us start with ae N p.

Eai = Wi [pfT] (0T —50) = wi™ [pP| (A — %)
= (W’a"" _ Wia_) ()\?“f‘ _ Xa) ‘pla—‘
Fwi (T =N e
W (T = %) (197 [6F )
Wi W = (AR AT) = ol
AT AT = 0(1) ol
1P| = 1P| = O(1) |0



Key thing is to show (3.35).

. + + + + +
Fix o w=w'", pr =P, v =u(xa %)

Proof of (3.35):

Step 1: Reduction to a single shock case. x, is a jump point of v.
So that ace J(u), we introduce the

B(x) = sk (v2), Xa= Ak, (v_,0)

Oa

Define pj(x) such that & =s; o--- sl%l(u), the intermediate state

o = u(x), W, Wp = 0, Wy = sh Wiig, A = Ni(Wiix, W),



Case 1: x, is a shock or a contact discontinuity, by

b=vy, w=wl N=\, Vi
pi = p; (3.36)

|Xa — Xa| < 6
Case 2: x,, is rarefaction front, so 0 < o, < 4. In this case, since

the shock wave curve and rarefaction wave curve are second order
contact, so

o = wvy+0(1)|oaf?
pi = pi +0(1) ol
Wi = wit+0(1) oal? (3.37)
A= AT H+0Q1) |oal

|Xa —Xa] = O(1)9



)

W' PO = %) —wi e | (A — %a)
,a+ |p,+|(>‘+_ka)_w P | (A7 = %a)

+(§a_’.<a)( + |P | — |P )
(o BN — %) - w7 |p O =)
Hw" Bl (A7 = A+ (\P+|—|P:|)(>\ — Xa)}

+(Xa — Xa)(W +|p+|—w Ip )
Ei/—i_EéI_‘_El



Claim: Vie{1,2,--- ,n}

2 0 if Oq < 0
Eai = { 0o(1) |0a\3 if o04€[0,0] (338)
E2, = O(1)5]r| (339)

Proof of (3.38): 0, < 0, x, is a shock or contact discontinuity,
then (3.36) is true. Then

E2; = wi Bl (\F = X) +wi (I ] = [Bil) (A — %)

=0
if o4 €[0,],
2

a,i

= 0(1) |oaf?



Proof of (3.39):

Exi= (o= x){w (151 = I ) + (w" = w)lpi I}
By construction, w:t — w;” = k(AT — A7) = O(1) ki |oal.
Next,

1P =P || < Ipt —pi | < O(1) o]
E3, < O(1)d]ol

It follows that one needs to show that

Z ou— 5’JO¢|



Step 2: Some elementary estimates

Proposition 3.4
(1) If the ko-family is linearly degenerate. Then

B, — P, — 0ol + Y 1B =P | =0(1) Y |p; |- loal (3.40)
ke, ke,

(2) If the ky-family is genuinely nonlinear

|Pro = Pr, — Tal + 2iz, 1P — p; |

= _ ! 3.41
= 0()(Ipg b, + oal 4 s i Dioa] G4V



(3) If the ko-family is genuinely nonlinear

pk_a + 0

Xa =X, = T +0(1) |pic, +oalllpi, |+ loal) + D 1p7|
i#ke

] Pka — (1 ~

Xa = Ak, = T+ 0(1) i (P, |+ loal) + > 1y |

i#ka



Lemma 3.9 Let W(p, p*,0)eC>®(R""! x R x R — R!) with
properties:

(a) W(p,p*,0) = V(0,s, —s) = ¥(0,0,5) = 0,
then W(p, p*, o) = O(1)(|p| + |p*||p* + o|)|o|

(b) If W(p, p*,0) =0 = W(0, p*, ),
then W(p, p*, o) = O(1)|p| - ||



Lemma 3.10 Let W(p, p*,0)eCH°(R™ ! x R! x R! — R!). Then,

(a) If %(0,0,0) _

then W(p, p*,0) = P

(b) If %(0,0,0) -

then W(p, p*,0) =

?;5(0, 0,0) = %, V(0,s,—s) =0,
X7 0()(J8l + 15" + o l(lp"] + o).
1
5,\11(0,0,0) =0, Vo,
2

+ O)(IBI + |p*[(|p"[ + |o1))-

N



Proof of Proposition 3.4:

~

We fix u_ = u(x,). Then all quantities, v=, 0, A7, p;, Ai, wi, W,
can be regarded as functions of
p= (P;, ’p/?a—l’p/?a—i-l"" 7p;)ap* :P;a,O'ZO'a.

V(py, Py 0a) = V(B p",0)



Case 1: The k,-family is linearly degenerate, then set

Vi = pi—p; I # ka
Vi, = Pra =P, —0a
i # ka Vi(p,p*,0) = 0

v;(0,p*,0) = 0

Sko o Gka = Gka
p o+p,

«
linearly degenerate.

u_ depends on that the k,-family is

(e



Case 2: If ky-family is genuinely nonlinear,

Case 3:



Step 3: Linearly degenerate fields

Assume that the k,-family is linearly degenerate © = v™, p; = P,-+,
W, = W’-+, A= )\f, |§a — Xo| < 9. Then

+ _ —
W, =W,

Case 1: If i # kg, i-th family is linearly degenerate.



XB<XQ
i<kﬁ§n

xg<xa

i<kg<n

2t

>+

Z+

X6>Xa
1§kﬁ<i

>

xXg>xa

1<kg<i

|os]

|os]



i< ka A?__Ai_ = ‘Ua’
e

In summary,
AF — AT = — sgu(i — ka) |oa]

SO,
Wi — Wi = —ky sgn(i — ka) |00l

1



Case 2: i # k,, i-th family is genuinely nonlinear

W — W™ = —ky sgn(i — ka) yaa|

1 1

)\7 XO‘ - )\ka( ) Aka Z |P,
i>ka
Pk :pk :,Dk +Ja+o Z|0a| ‘pcx
i#ka



First,

Bl = Wilbal 0%, =) =Wl | (O, —%)
< Wktlﬁka\lA;—AkaHWkt(m |p;a|)|A;a—x
< Wbkl IO, = M)l +0(1) - loal D Ip7 |

i#ka

al



By Lemma 3.9, [\ — Ak, | = O()(Y_ Ip7 1) lowl

ika
Ex ko < OM)|oal(D 1P 1)
i#ka
for i # kg,
Exi = WD —Xa) = WP [(A7 — )

= W BN — ) — a sgnli — ko)loal lo; 10— %)

—Wﬂp, I(A Xa)
= —kiA7 =Sl - loal - o7+ W {1V —%0) = 17| (O =)}
< —kiailoal Ip |+ Wi (1Bl = o DT = %) + [ 1A = A)w"
< —ka atloal p; |+ Wl — by | N = %l + O(D)lp; | loral



so, | # kg,

E;, < —q kiloa| |p; |+ 0(1)(2 )

ik

Z o <

if k1 is big enough.

’Ua‘



Step 4: k,-family is genuinely nonlinear
Step 4.1: Estimate of Ei,-, i # kg
Then it follows from definition that

W = W — ki|oa| sgn (i — k).

1 1



Consequently,

E i = —kloal o I IAT = %al + Wi {IBil(Ai = %a) = P IO = %a)}
< —kaclpy | loal + Wi {(Bi] = o7 DA = %a) + Ip 17 = A0)}
< —chaloal Ip7 1+ W {1pi = P 1IN = Zal + 1571 1A = Ail}
< —ckiloal o7 1+ W {15 — b LIS = %al + 15 [(oal® + 107 = 27D}

IN

—ckiloal 1571+ 0() { Sloal + Ipi | o, +oal + 3 \pﬂ} |70l
ikey

A

. 1 - - - -
(k1) By < —ckiloal lp; |+ 0Q){ Sloaltlp | lpe +oal+ I | ploal
o ke i
i#key



Step 4.2: Estimate of Eal ke

Case 1: [04| <6, |py_ | < 2[oal.

Then (3.4) =
P = P, | = O(1)]oal
Mo = Al = e = AT INL = A | = 0(1)]o]
ko = Xal < Xk = N | ke — A



Proposition 3.4 (3) =

|pk_a + 04

O(M)loa] + ——5——+0(1) (IPZQ +al (Ipi | +loal) + ) IP,-_|>

itke
O1) [ loal + > IP,-)

IN

i#ka

= o) a+2pr|)

itke



It follows from (¥1) and (%) that

n
Z E(i,i = —chiloa| Z P |+ 0(1) [0+ Z pil | loal
i=1 1751(0, ’#ka
< 0(1)d|oq] if ki is big enough!
here we have used (%1) and the assumption that

0al <6, Ipp] < 2lou] <20,



Case 2: p,_, p:; and py, all have the same signs, say all > 0.

Recall
+ _ +\ _ E E
Aka = Aka(Xa ) - + ’0’8’
Bed Bel
i xﬁ<xai,kafkﬁ§n xﬁ>x§,ka>kﬁ21
: +
E + E log| if p,(x3) <0
kg=ka kg=ka
+ =,BeJ(u),><[3 <x(:xt ﬁeJ(v),x[g >x2: J

>+ > |losl i i) 20

kg=kov kg=kov
_BeJ(v),x,3<xét BsJ(u),x5>x§_




Since
pii >0, Al — A =0
(if pg <0, A —A_ =—l|oal)
= W, =W, + ki|oal sgn(p;a)

Next, set

~ ~

Q;Z)(ijv P*, Ua) = ﬁka()\ka - Xa) - P;a()\; - §a)

fe



Since p =0,

v

p*:p;a =0, v. =u_,

Spa(v—) = Sk (u-)
ﬁka:(fa’ ﬁizo) I?éka

Akoz(V_7 )_)\ka(u_7v)
M = M (Wi, Wi) = Ay (1, 0)

~

Ak

(o3



Next, we compute (0, s, —s).

Since p=0, p; =0, p,_ =5, 0o =—5, V= Sf‘;(v,),
vo = S (u-),

vo = Sa(un), 0= S (ve) = S50 (sl () = u-
Bi =0, Xa = A (v, 0) = A(v,u7)

On the other hand,

)\;a = )\ka ( Wka—l’
= M, (u7,v7)

W)

~

(0,5, —5) = =s(A —Xa) = —s(Ak, (07 v )= Ak (u™,v7T)) =0



By the Lemma 3.9,

Y(B,p" 00) = O(1) [ D Ipi |+ Ipi.| IPe, + 0al | |oal
ike

Consequently, one gets
Bk = Willbl G —Xa) = Wi Ipic | (N, — %a)
= (W = W) I | O, — %)
+W,, {\ﬁka| (Mo = Xa) = 1P| (N, — xa)}

— .- pk_a"i_a—a
= —kiloa| sgn py_ [Py | — 5

+0 (Ipk, +oal lp, | + Ziz, 17 1) loal



By (3.41) and px, has same sign as p,_, also |og| is small:

ki o _ _ _
< —510a| 1P| IPr, toal+O0(1) | [Py, + 0al (Ip, 1) + Z pi || loal
ik

ki _ _
oo (ke3) Ei’ka < —§|0a| Pl 1P, + 0al

+0(1) | 1P, + ol (P )+ D 1571 ] ol
i+ke



It follows from (J1) and (%3),

n ki _ _ _
Z E(;lc,i < _5’0a| ’Pka‘ |Pka + 0a| = ckiloa| Z lp;|
i=1 ko
+0(W)loal [Py | [Py, + oal
+0(1) Y- (1 Dlol + 0(1) 8 ol

i#ka
O(1) 6 |oal if ki and ko >>1

IN



Case 3: p,‘fa <0< py -

In this case, we may assume that o, < 0, i.e., the front is a shock,
otherwise, by (16), one may get into a case like Case 1. Then,

A+ A + 3 _ \+ 2 .
pi=p", wi=w", \j=A", and X — Xa| < 6.

1

It follows from (3.4) that

(P, = PL) + ool < O0) | Pl 1Pk, +oal + D 157 || loal
i#ke

|(Ipk, | =+ 1pE, 1) = loall
Sloal < pi |+ 1P| < 2loal



SO,

1
a,ke

le; \ﬁka|(5\k - ;\(a) — W Ip [(N, — 5?&)

N P,
W bi, | | — > + 0y, | (Ipy, | +loal) +O(1 Z 7|
i#ka

o Py, +0a _ B
W, pku|<—2+0(1>|pku+aa|< e

a4

DY e |

itke




Note that,

. Pra - Pry T 0a
W, B, | <—2> - W lp, | <_ > )

o Pk, . _ P, tOoa— Pk, Pk
= Wi (lbr )5 + W lpi |+ Wl |5

2
W +weo), B P 00— i,
%(_|Pka|)|Pka’ + WkJﬁ’ka



On the other hand, (3.4) = (. Pk, = p; )

1Pk, + 0ol = 1Bro] < O) | ol IPic, + 00l + > 1671 ] o]
ik,

= 1Pral < 1P, +0al+0Q) | P | Pi, +0al + > 1P| | loal

ike
N Py, L P, +0a
(25 v (52)

< =l | 1P, + oal + OW)lp | | 1P| P, + 00l + Ipfl) EN

itke



IN

IN

(*4) Eéka

=P | 1P, + 0al + O()(Ipy, + 0al [P, | (Ips, | + |oal))

+O(1)(1Bka] + I, ) D 1p7 |
i+ke

+O0M)p | | 1P 1P, + oal + D 157 | ] loal
i+ke

—pi | 1Pk, + ol + O() [ Ipi | 1Pk, + 0al + Y 1P| | loal
i+ka



It follows from (¥1) and (%) that

n

1
2 Ea
i=1

< —lpl 1P, + ool —cki | D Ip || loal
i#ka
+0(1) dloal* +0(1) | 1P| (P, +0al) + > 1P| ] loal
i#ka
< 0(1) 9 |oq] we are done



Case 4: All other cases:

All the other cases can be reduced to the one of three cases above.
So the proof is accomplished.

As a direct consequence of Theorem 3.8, we have the following
existence of a semigroup of solutions:

Theorem 3.9 Existence of a Semigroup of solutions

Consider D = closure u € L}(R;R"), u is piecewise constant,
G(U) < dp.



Then 3 &y > 0 with the following property: Let 7 € D, and u® be
d_ approximate solution of the Cauchy problem

{8tu+axf(u) =0
u(x,t=0) = o(x)

Then as § — 0, u’ converges to unique limit solution

u:[0,00) — D. The map (4, t) — u(-,t) = St U is a uniformly
Lapselitz continuous semigroup. Indeed, 3 constant C and C? such
that Vu,v,€ D,s,t > 0, one has

SOL_I:L_I, SSO(StZI):SS+tZI

st T — ss V|| < ||t — V|| +c1\t—s\

Proof is trivial.



