MATH 5061 Riemannian Geometry

Solution to Problem Set 1

Problem 1

We use $[(x, t)]$ to denote the equivalent class of the quotient space M.

(a) We show that M can be covered by two charts $\{(U_i, \phi_i)\}_{i \in \{1,2\}}$.

Choose U_1 be the quotient of $(0,1) \times \mathbb{R}$, $\phi_1 : U_1 \to (0,1) \times \mathbb{R}$ defined by $\phi_1([x,t]) = (x,t)$. Clearly it is well-defined and it is a homeomorphism.

Choose U_2 be the quotient of $((0.5, 1] \cup [0, 0.5)) \times \mathbb{R}, \phi_2 : U_2 \to (0.5, 1.5) \times \mathbb{R}$ defined by

$$
\phi_2([x,t]) := \begin{cases} (x,t), & x > 0.5\\ (x+1,-t), & x < 0.5 \end{cases}
$$

This is well defined since for any $t \in \mathbb{R}$, we have $\phi_2([0,t]) = (1,-t)$ $\phi_2([(1,-t)]),$ which says the value of ϕ_2 does not rely on the representative. It's easy to see it is a homeomorphism by the property of quotient space.

So we find two charts covering M.

Moreover, the transaction map $\phi_2 \circ \phi_1^{-1} : ((0, 0.5) \cup (0.5, 1)) \times \mathbb{R} \to ((0.5, 1) \cup$ $(1, 1.5)$) $\times \mathbb{R}$ has the form

$$
\phi_2 \circ \phi_1^{-1}(x, t) = \begin{cases} (x, t), & x > 0.5 \\ (x + 1, -t), & x < 0.5 \end{cases}
$$

by the definition of ϕ_i . So it is a C^{∞} map and its inverse is still a C^{∞} map.

Hence, the charts $\{(U_i, \phi_i)\}_{i \in \{1,2\}}$ define a differentiable structure on M. (b) Let's assume M is orientable. So there is an atlas $\mathcal{A} = \{(\tilde{U}_i, \tilde{\phi}_i)\}_{i \in I}$ such that all transition maps are orientation-preserving.

Now, we will insert $(U_1, \phi_1), (U_2, \phi_2)$ into the atlas A to get a contradiction. First, let's consider a function $f : \phi_1^{-1}(U_1) \to \mathbb{R}$ defined by

$$
f(p) := \begin{cases} 1, & \text{if } \phi_1(p) \in \tilde{U}_i \text{ and } \det(d(\tilde{\phi}_i \circ \phi_1)) > 0 \text{ for some } i \in I \\ 0, & \text{if } \phi_2(p) \in \tilde{U}_i \text{ and } \det(d(\tilde{\phi}_i \circ \phi_1)) < 0 \text{ for some } i \in I \end{cases}
$$

It is well-defined since if $\phi_1(p) \in \tilde{U}_j$ at the same time, then $\det(d(\tilde{\phi}_j \circ \tilde{\phi}_i^{-1})) > 0$ and $\det(d(\tilde{\phi}_i \circ \phi_1)) > 0 \leq 0) \implies \det(d(\tilde{\phi}_j \circ \phi_1)) > 0 \leq 0).$

Note that f is indeed continuous, since for each $\phi_1(p) \in \tilde{U}_i$, we can find small neighborhood V of p with $\phi(V) \subset \tilde{U}_i$ and the function $\det(d(\tilde{\phi}_i \circ \phi_1))$ is also continuous and not vanish everywhere.

Since f can only take two values, we know f is indeed a constant since $\phi_1^{-1}(U_1) = (0,1) \times \mathbb{R}$ is connected. If f always takes 1, then by the definition

of f, we know (U_1, ϕ_1) is compatible with A with the orientation on it. That is we can take $\tilde{\mathcal{A}} = \mathcal{A} \cup \{(U_1, \phi_1)\}\$ and $\tilde{\mathcal{A}}$ is an atlas that all transition maps are orientation-preserving.

If f always takes -1 , we can reverse the orientation of ϕ_i , i.e. by choosing $\phi_1([x,t]) = (x, -t)$, or reverse the orientation of M to make sure f is greater than 0. For notation simplicity, we just reverse the orientation of M on this case.

Note that by the same trick, we can also add (U_2, ϕ_2) into our orientation chart $\tilde{\mathcal{A}}$ or add $(U_2, \overline{\phi}_2)$ into $\tilde{\mathcal{A}}$ where $\overline{\phi}_2([x,t]) := \phi_2([x,-t])$, which reverses the orientation of ϕ_2 .

This shows $\det(d(\phi_2 \circ \phi_1^{-1}))$ should be always positive or negative on $\phi_1^{-1}(U_1 \cap$ U_2).

But we know the exact form of $\phi_2 \circ \phi_1^{-1}$, which imply

$$
\det(d(\phi_2 \circ \phi_1^{-1})) = \begin{cases} 1, & x > 0.5 \\ -1, & x < 0.5 \end{cases}
$$

This is a contradiction with the above fact.

Hence, M is non-orientable.

(c) We show that $\mathbb{RP}^2\setminus a$ disk is homeomorphic to Möbius band.

Note that \mathbb{RP}^2 can be viewed as the quotient space of sphere \mathbb{S}^2 by identify the antipodal point, i.e. $p \sim -p$.

So when we remove a disk on \mathbb{RP}^2 , it will become the quotient space of sphere removing two opposed disk. For example, we can just think $N := \mathbb{RP}^2 \setminus \mathbb{RP}^2$ disk as the quotient space of $M_1 := \{(x_1, x_2, x_3) \in \mathbb{S}^2, -\frac{1}{2} < x_3 < \frac{1}{2}\}.$

Note that the set $M_2 := \{(x_1, x_2, x_3) \in \mathbb{S}^2, -\frac{1}{2} < x_3 \leq \frac{1}{2}, x_1 \leq 0\}$ already covers N under quotient map. So we can view N as the quotient space by identify the point $(0, x_2, x_3) \sim (0, -x_2, -x_3)$ on M_2 , this exact the construction of Möbius band. (The only left thing is to construct a homeomorphism between M_2 and $[0,1] \times \mathbb{R}$)

The following is a picture in the construction.

Figure 1: The pictures of M_1 , M_2 and identification on boundary

Since M is non-orientable, \mathbb{RP}^2 is non-orientable, too since the orientation can be pass to the submanifold by restricting the atlas on submanifold.

Problem 2

We will use $[z_1, z_2]$ to denote the equivalent class in \mathbb{CP}^1 .

Construct the map $f : \mathbb{S}^2 \to \mathbb{CP}^1$ by

$$
f(x_1, x_2, x_3) := \begin{cases} \left[\frac{x_1 + ix_2}{1 - x_3}, 1\right], & x_3 \neq 1\\ \left[1, \frac{x_1 - ix_2}{1 + x_3}\right], & x_3 \neq -1 \end{cases}
$$

We need to verify f is well-defined when $x_3 \neq 1, -1$. Indeed, we have (Note $x_1 + ix_2 \neq 0.$

$$
\[\frac{x_1 + ix_2}{1 - x_3}, 1\] = \left[1, \frac{1 - x_3}{x_1 + ix_2}\right] = \left[1, \frac{(1 - x_3)(x_1 - ix_2)}{x_1^2 + x_2^2}\right] = \left[1, \frac{x_1 - ix_2}{1 + x_3}\right]
$$

which shows f is well-defined.

Now let's show f is a diffeomorphism.

Let $(U_1, \phi_1), (U_2, \phi_2)$ be the two charts on \mathbb{S}^2 defined as

$$
U_1 = \mathbb{S}^2 \setminus \{ (0, 0, 1) \}, \phi_1(x_1, x_2, x_3) = \left(\frac{x_1}{1 - x_3}, \frac{x_2}{1 - x_3} \right)
$$

$$
U_2 = \mathbb{S}^2 \setminus \{ (0, 0, -1) \}, \phi_2(x_1, x_2, x_3) = \left(\frac{x_1}{1 + x_3}, \frac{x_2}{1 + x_3} \right)
$$

Let $(V_1, \varphi_1), (V_2, \varphi_2)$ be the two charts on \mathbb{CP}^1 defined by

$$
V_1 = \mathbb{CP}^1 \setminus \{ [1, 0] \}, \varphi_1([z_1, z_2]) = \frac{z_1}{z_2}
$$

$$
V_2 = \mathbb{CP}^1 \setminus \{ [0, 1] \}, \varphi_2([z_1, z_2]) = \frac{z_2}{z_1}
$$

So for $p \in U_1$, f has the form under the chart (U_1, ϕ_1) and (V_1, φ_1) as following

$$
\varphi_1 \circ f \circ \phi_1^{-1}(u_1, u_2) = u_1 + iu_2
$$

which is a smooth function.

For $p \in U_2$, we have

$$
\varphi_2 \circ f \circ \phi_2(u_1, u_2) = u_1 - iu_2
$$

which is also smooth.

Hence f is a diffeomorphism.

Problem 3

Recall the $SO(n)$ is defined as following

$$
SO(n) = \{ B \in \mathbb{R}^{n \times n} : B^T B = I_n \text{ and } \det(B) = 1 \}
$$

So for any fixed $A \in SO(n)$, we know near A, we can write M as $M = f^{-1}(0)$ with $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $f(B) = B^T B$. We can drop the condition of $\det(B) = 1$ since in the sufficient small neighborhood $U \subset \mathbb{R}^{n \times n}$ of A with $\det(B) > 0$ for all $B \in U$. The condition $B^T B = I_n$ will force $\det(B) = 1$.

Hence we have $T_A M = \text{ker}(df_A)$. We need to calculate $df_A : T_A(\mathbb{R}^{n \times n}) \to$ $T_{I_n}(\mathbb{R}^{n\times n})$. Actually we can identify $T_A(\mathbb{R}^{n\times n})$ with $\mathbb{R}^{n\times n}$ for short notation. Hence for any $P \in \mathbb{R}^{n \times n}$, we have

$$
df_A(P) = \lim_{t \to 0} \frac{f(A + tP) - f(A)}{t} = A^T P + P^T A
$$

Note df_A is a surjective to the symmetric metrics, so dim ker $(df_A) = n^2 \frac{(n+1)n}{2} = \frac{n(n-1)}{2}$ $\frac{i-1j}{2}$.

Hence $SO(n)$ has dimension $\frac{n(n-1)}{n^2}$ and the tangent space of $SO(n)$ at A is the space $\{P \in \mathbb{R}^{n \times n} : A^T P + P^T \tilde{A} = 0\}.$

Problem 4

Let $\mathcal{A} = \{(U_i, \phi_i)\}_{i \in I}$ be an atlas of M^m . Then we let

$$
\tilde{A} := \{ (TU_i, \tilde{\phi}_i) : i \in I \} \text{ with } \tilde{\phi}_i(p, v) = (\phi(p), d\phi_p(v)) \in \phi(U_i) \times \mathbb{R}^m
$$

The transition maps between $(TU_i, \tilde{\phi}_i)$, $(TU_j, \tilde{\phi}_j)$ is

$$
\Phi_{ij}(x,w) = (\phi_j \circ \phi_i^{-1}(x), d(\phi_j \circ \phi_i^{-1})_x(w))
$$

Note that $d(\phi_j \circ \phi_i^{-1})_x$ is linear, so the Jacobian matrix is just itself. Hence

$$
d\Phi_{ij}(x,w) = \begin{bmatrix} d(\phi_j \circ \phi_i^{-1}(x)) & 0\\ 0 & d(\phi_j \circ \phi_i^{-1}(x)) \end{bmatrix}
$$

Hence $\det(d(\Phi_{ij})) = [d(\phi_j \circ \phi_i^{-1}(x))]^2 > 0$ since $d(\phi_j \circ \phi_i^{-1}(x))$ non-degenerate. This means all the transition maps are orientation-preserving. Hence TM is orientable.

Problem 5

(a) First, let's suppose $\pi : E \to B$ is trivial. Then there is a diffeomorphism $h: E \to B \times \mathbb{R}^n$ with $h|_{\pi^{-1}(x)}$ is an isomorphism when restriction on the fiber $\pi^{-1}(x)$ for $x \in B$.

Let $\{e_1, \dots, e_n\}$ be the canonical basis in \mathbb{R}^n and we choose n maps $\{s_i\}_{1 \leq i \leq n}$ by $s_i(b) = h^{-1}(b, e_i)$. Now we will show each s_i will be a sections.

Clearly $s_i : B \to E$ is smooth since h is a diffeomorphism. Note that since $h|_{\pi^{-1}(b)}$ is an isomorphism between $\pi^{-1}(b)$ and $\{b\} \times \mathbb{R}^n$, which means $|h^{-1}|_{\{b\}\times\mathbb{R}^n}(b,e_i)\in\pi^{-1}(b)$ and hence $\pi\circ s_i(b)=b$, which shows s_i is indeed a section.

Moreover, we know that $\{s_i(b)\}_{1\leq i\leq n}$ forms a linearly independent set of $\pi^{-1}(b)$ since h is an isomorphism on $\pi^{-1}(b)$.

Secondly, let's assume there is n linearly independent sections $\{s_i\}_{1\leq i\leq n}$. Let's define the map $h: E \to B \times \mathbb{R}^n$ by the following method.

For each $p \in B$, let $b = \pi(p)$. Since $\{s_i(b)\}_{1 \leq i \leq n}$ forms a linearly independent set of $\pi^{-1}(b)$, we can find unique $(a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ with $p = \sum_{i=1}^n a_i s_i(b)$. Then we define $h(p) := (\pi(p), (a_1, a_2, \dots, a_n)) \in B \times \mathbb{R}^n$. Note that the inverse of h is also well-defined and has form $h^{-1}(b,(a_1,\dots,a_n)) = \sum_{i=1}^n a_i s_i(b)$ as the linear space. So we know that $h|_{\pi^{-1}(p)} : \pi^{-1}(b) \to \{b\} \times \mathbb{R}^n$ is an isomorphism.

Now let's verify h is a diffeomorphism. Let (U_i, ϕ_i) be a local trivialization of E near $\pi(p)$. I.e. $\phi_i : \pi^{-1}(U_i) \to U_i \times \mathbb{R}^n$ is a diffeomorphism with $\pi(p) \in B$ and the restriction on each fiber is an isomorphism. Now since s_i is a (smooth) section of $\pi : E \to B$, which means $\phi_i \circ s_i : U_i \to U_i \times \mathbb{R}^n$ smooth. So the map $\phi_i \circ h^{-1} : U_i \times \mathbb{R}^n \to U_i \times \mathbb{R}^n$ is smooth with respect to the first variable. But $\phi_i \circ h^{-1}$ is linear(isomorphism) with respect

to the second variable, $\phi_i \circ h^{-1}$ is indeed smooth. Moreover, we can write $\phi_i \circ h^{-1}(b, (a_1, \dots, a_n)) = (b, \sum_{j=1}^n a_j \pi_2 \circ \phi_i \circ s_j(b))$ where π_2 is the projection from $U_i \times \mathbb{R}^n \to \mathbb{R}^n$. So we can find the differential of $\phi_i \circ h^{-1}$ is always nondegenerate. This shows both h and h^{-1} are locally diffeomorphism and hence h is indeed a diffeomorphism.

(b) Let B be the quotient space $[0, 1]$ where we identify the 0 and 1. We can easily find B is diffeomorphic to S^1 . Let $V_1 = (0,1) \subset B$, V_2 = the quotient of $(0.5, 1] \cup [0, 0.5)$. Let $\varphi_1([x]) = x$, $\varphi_2([x]) = x$ for $x > 0.5$ and $\varphi_2([x]) = x + 1$ for $x < 0.5$. So B can be covered by two charts $(V_1, \varphi_1), (V_2, \varphi_2)$.

With the notations in Problem 1, we can actually see that $(U_1, \phi_1), (U_2, \phi_2)$ give us a way to locally trivialize the space M over the base space B . Moreover, the transition map restricted on each fiber is an isomorphism. So the above will give the structure of vector bundle of $\pi : M \to S^1$ where $\pi([x,t]) = [x]$.

Now let's show $\pi : M \to S^1$ is non-trivial. If on the contrary, $\pi : M \to S^1$ is a trivial vector bundle, then by above, we can find a section $s: S^1 \to M$ such that $s(b) \neq 0$ on the fiber $\pi^{-1}(b)$. (This is because M is a rank 1 vector bundle.)

So in the local chart (V_1, φ_1) and local trivialization (U_1, ϕ_1) , s can be written as $\phi_1 \circ s \circ \varphi_1^{-1}(x) = (x, s_1(x))$, where $s_1(x)$ decided by s which is non-zero everywhere for $x \in (0,1)$. WOLG, we assume $s_1(x) > 0$ for $x \in (0,1)$. If we work on the chart (V_2, φ_2) and local trivialization (U_2, ϕ_2) , we can also get $\phi_2 \circ s \circ \varphi_2^{-1}(x) = (x, s_2(x))$ for some $s_2 : (0.5, 1.5) \to \mathbb{R}$ which nonzero everywhere and hence it does not change sign.

Recall the transition map $\phi_2 \circ \phi_1^{-1}(x,t)$, we know for $x > 0.5$, $s_2(x) = s_1(x)$ and $s_2(x) > 0$ for $0.5 < x < 1$. For $x < 0.5$, we have $s_2(x + 1) = -s_1(x)$ and $s_2(x) < 0$ for $1 < x < 1.5$. This is a contradiction with the above fact that $s_2(x)$ does not change sign.

Hence $\pi : M \to S^1$ is a non-trivial vector bundle.