
MATH 5061 Riemannian Geometry

Solution to Problem Set 1

Problem 1
We use [(x, t)] to denote the equivalent class of the quotient space M .
(a) We show that M can be covered by two charts {(Ui, φi)}i∈{1,2}.

Choose U1 be the quotient of (0, 1) × R, φ1 : U1 → (0, 1) × R defined by
φ1([x, t]) = (x, t). Clearly it is well-defined and it is a homeomorphism.

Choose U2 be the quotient of ((0.5, 1]∪ [0, 0.5))×R, φ2 : U2 → (0.5, 1.5)×R
defined by

φ2([x, t]) :=

{
(x, t), x > 0.5

(x+ 1,−t), x < 0.5

This is well defined since for any t ∈ R, we have φ2([(0, t)]) = (1,−t) =
φ2([(1,−t)]), which says the value of φ2 does not rely on the representative. It’s
easy to see it is a homeomorphism by the property of quotient space.

So we find two charts covering M .
Moreover, the transaction map φ2 ◦φ−11 : ((0, 0.5)∪(0.5, 1))×R→ ((0.5, 1)∪

(1, 1.5))× R has the form

φ2 ◦ φ−11 (x, t) =

{
(x, t), x > 0.5

(x+ 1,−t), x < 0.5

by the definition of φi. So it is a C∞ map and its inverse is still a C∞ map.
Hence, the charts {(Ui, φi)}i∈{1,2} define a differentiable structure on M .

(b) Let’s assume M is orientable. So there is an atlas A = {(Ũi, φ̃i)}i∈I such
that all transition maps are orientation-preserving.

Now, we will insert (U1, φ1), (U2, φ2) into the atlas A to get a contradiction.
First, let’s consider a function f : φ−11 (U1)→ R defined by

f(p) :=

{
1, if φ1(p) ∈ Ũi and det(d(φ̃i ◦ φ1)) > 0 for some i ∈ I
0, if φ2(p) ∈ Ũi and det(d(φ̃i ◦ φ1)) < 0 for some i ∈ I

It is well-defined since if φ1(p) ∈ Ũj at the same time, then det(d(φ̃j ◦ φ̃−1i )) > 0

and det(d(φ̃i ◦ φ1)) > 0(< 0) =⇒ det(d(φ̃j ◦ φ1)) > 0(< 0).
Note that f is indeed continuous, since for each φ1(p) ∈ Ũi, we can find

small neighborhood V of p with φ(V ) ⊂ Ũi and the function det(d(φ̃i ◦ φ1)) is
also continuous and not vanish everywhere.

Since f can only take two values, we know f is indeed a constant since
φ−11 (U1) = (0, 1) × R is connected. If f always takes 1, then by the definition
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of f , we know (U1, φ1) is compatible with A with the orientation on it. That is
we can take Ã = A ∪ {(U1, φ1)} and Ã is an atlas that all transition maps are
orientation-preserving.

If f always takes −1, we can reverse the orientation of φi, i.e. by choosing
φ1([x, t]) = (x,−t), or reverse the orientation of M to make sure f is greater
than 0. For notation simplicity, we just reverse the orientation of M on this
case.

Note that by the same trick, we can also add (U2, φ2) into our orientation
chart Ã or add (U2, φ2) into Ã where φ2([x, t]) := φ2([x,−t]), which reverses
the orientation of φ2.

This shows det(d(φ2◦φ−11 )) should be always positive or negative on φ−11 (U1∩
U2).

But we know the exact form of φ2 ◦ φ−11 , which imply

det(d(φ2 ◦ φ−11 )) =

{
1, x > 0.5

−1, x < 0.5

This is a contradiction with the above fact.
Hence, M is non-orientable.

(c) We show that RP2\a disk is homeomorphic to Möbius band.
Note that RP2 can be viewed as the quotient space of sphere S2 by identify

the antipodal point, i.e. p ∼ −p.
So when we remove a disk on RP2, it will become the quotient space of

sphere removing two opposed disk. For example, we can just think N := RP2\a
disk as the quotient space of M1 := {(x1, x2, x3) ∈ S2,− 1

2 < x3 <
1
2}.

Note that the set M2 := {(x1, x2, x3) ∈ S2,− 1
2 < x3 <

1
2 , x1 ≤ 0} already

covers N under quotient map. So we can view N as the quotient space by
identify the point (0, x2, x3) ∼ (0,−x2,−x3) on M2, this exact the construction
of Möbius band. (The only left thing is to construct a homeomorphism between
M2 and [0, 1]× R)

The following is a picture in the construction.

M1 M2

Figure 1: The pictures of M1, M2 and identification on boundary

Since M is non-orientable, RP2 is non-orientable, too since the orientation
can be pass to the submanifold by restricting the atlas on submanifold.

Problem 2
We will use [z1, z2] to denote the equivalent class in CP1.

2



Construct the map f : S2 → CP1 by

f(x1, x2, x3) :=

{
[x1+ix2

1−x3
, 1], x3 6= 1

[1, x1−ix2

1+x3
], x3 6= −1

We need to verify f is well-defined when x3 6= 1,−1. Indeed, we have (Note
x1 + ix2 6= 0.)[

x1 + ix2
1− x3

, 1

]
=

[
1,

1− x3
x1 + ix2

]
=

[
1,

(1− x3)(x1 − ix2)

x21 + x22

]
=

[
1,
x1 − ix2
1 + x3

]
which shows f is well-defined.

Now let’s show f is a diffeomorphism.
Let (U1, φ1), (U2, φ2) be the two charts on S2 defined as

U1 = S2\{(0, 0, 1)},φ1(x1, x2, x3) = (
x1

1− x3
,

x2
1− x3

)

U2 = S2\{(0, 0,−1)},φ2(x1, x2, x3) = (
x1

1 + x3
,

x2
1 + x3

)

Let (V1, ϕ1), (V2, ϕ2) be the two charts on CP1 defined by

V1 = CP1\{[1, 0]}, ϕ1([z1, z2]) =
z1
z2

V2 = CP1\{[0, 1]},ϕ2([z1, z2]) =
z2
z1

So for p ∈ U1, f has the form under the chart (U1, φ1) and (V1, ϕ1) as
following

ϕ1 ◦ f ◦ φ−11 (u1, u2) = u1 + iu2

which is a smooth function.
For p ∈ U2, we have

ϕ2 ◦ f ◦ φ2(u1, u2) = u1 − iu2

which is also smooth.
Hence f is a diffeomorphism.

Problem 3
Recall the SO(n) is defined as following

SO(n) = {B ∈ Rn×n : BTB = In and det(B) = 1}

So for any fixed A ∈ SO(n), we know near A, we can writeM asM = f−1(0)
with f : Rn×n → Rn×n, f(B) = BTB. We can drop the condition of det(B) = 1
since in the sufficient small neighborhood U ⊂ Rn×n of A with det(B) > 0 for
all B ∈ U . The condition BTB = In will force det(B) = 1.

Hence we have TAM = ker(dfA). We need to calculate dfA : TA(Rn×n) →
TIn(Rn×n). Actually we can identify TA(Rn×n) with Rn×n for short notation.
Hence for any P ∈ Rn×n, we have

dfA(P ) = lim
t→0

f(A+ tP )− f(A)

t
= ATP + PTA
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Note dfA is a surjective to the symmetric metrics, so dim ker(dfA) = n2 −
(n+1)n

2 = n(n−1)
2 .

Hence SO(n) has dimension n(n−1)
2 and the tangent space of SO(n) at A is

the space {P ∈ Rn×n : ATP + PTA = 0}.

Problem 4
Let A = {(Ui, φi)}i∈I be an atlas of Mm. Then we let

Ã := {(TUi, φ̃i) : i ∈ I} with φ̃i(p, v) = (φ(p), dφp(v)) ∈ φ(Ui)× Rm

The transition maps between (TUi, φ̃i), (TUj , φ̃j) is

Φij(x,w) = (φj ◦ φ−1i (x), d(φj ◦ φ−1i )x(w))

Note that d(φj ◦ φ−1i )x is linear, so the Jacobian matrix is just itself. Hence

dΦij(x,w) =

[
d
(
φj ◦ φ−1i (x)

)
0

0 d
(
φj ◦ φ−1i (x)

)]
Hence det(d(Φij)) =

[
d(φj ◦ φ−1i (x))

]2
> 0 since d(φj◦φ−1i (x)) non-degenerate.

This means all the transition maps are orientation-preserving. Hence TM is
orientable.

Problem 5
(a) First, let’s suppose π : E → B is trivial. Then there is a diffeomorphism
h : E → B × Rn with h|π−1(x) is an isomorphism when restriction on the fiber
π−1(x) for x ∈ B.

Let {e1, · · · , en} be the canonical basis in Rn and we choose nmaps {si}1≤i≤n
by si(b) = h−1(b, ei). Now we will show each si will be a sections.

Clearly si : B → E is smooth since h is a diffeomorphism. Note that
since h|π−1(b) is an isomorphism between π−1(b) and {b} × Rn, which means
h−1|{b}×Rn(b, ei) ∈ π−1(b) and hence π ◦ si(b) = b, which shows si is indeed a
section.

Moreover, we know that {si(b)}1≤i≤n forms a linearly independent set of
π−1(b) since h is an isomorphism on π−1(b).

Secondly, let’s assume there is n linearly independent sections {si}1≤i≤n.
Let’s define the map h : E → B × Rn by the following method.

For each p ∈ B, let b = π(p). Since {si(b)}1≤i≤n forms a linearly independent
set of π−1(b), we can find unique (a1, a2, · · · , an) ∈ Rn with p =

∑n
i=1 aisi(b).

Then we define h(p) := (π(p), (a1, a2, · · · , an)) ∈ B×Rn. Note that the inverse
of h is also well-defined and has form h−1(b, (a1, · · · , an)) =

∑n
i=1 aisi(b) as the

linear space. So we know that h|π−1(p) : π−1(b)→ {b} ×Rn is an isomorphism.
Now let’s verify h is a diffeomorphism. Let (Ui, φi) be a local trivializa-

tion of E near π(p). I.e. φi : π−1(Ui) → Ui × Rn is a diffeomorphism with
π(p) ∈ B and the restriction on each fiber is an isomorphism. Now since si
is a (smooth) section of π : E → B, which means φi ◦ si : Ui → Ui × Rn
smooth. So the map φi ◦ h−1 : Ui × Rn → Ui × Rn is smooth with re-
spect to the first variable. But φi ◦ h−1 is linear(isomorphism) with respect
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to the second variable, φi ◦ h−1 is indeed smooth. Moreover, we can write
φi ◦ h−1(b, (a1, · · · , an)) = (b,

∑n
j=1 ajπ2 ◦ φi ◦ sj(b)) where π2 is the projection

from Ui × Rn → Rn. So we can find the differential of φi ◦ h−1 is always non-
degenerate. This shows both h and h−1 are locally diffeomorphism and hence
h is indeed a diffeomorphism.

(b) Let B be the quotient space [0, 1] where we identify the 0 and 1. We can
easily find B is diffeomorphic to S1. Let V1 = (0, 1) ⊂ B, V2 = the quotient of
(0.5, 1] ∪ [0, 0.5). Let ϕ1([x]) = x, ϕ2([x]) = x for x > 0.5 and ϕ2([x]) = x + 1
for x < 0.5. So B can be covered by two charts (V1, ϕ1), (V2, ϕ2).

With the notations in Problem 1, we can actually see that (U1, φ1), (U2, φ2)
give us a way to locally trivialize the spaceM over the base space B. Moreover,
the transition map restricted on each fiber is an isomorphism. So the above will
give the structure of vector bundle of π : M → S1 where π([x, t]) = [x].

Now let’s show π : M → S1 is non-trivial. If on the contrary, π : M → S1

is a trivial vector bundle, then by above, we can find a section s : S1 → M
such that s(b) 6= 0 on the fiber π−1(b). (This is because M is a rank 1 vector
bundle.)

So in the local chart (V1, ϕ1) and local trivialization (U1, φ1), s can be written
as φ1 ◦ s ◦ ϕ−11 (x) = (x, s1(x)), where s1(x) decided by s which is non-zero
everywhere for x ∈ (0, 1). WOLG, we assume s1(x) > 0 for x ∈ (0, 1). If
we work on the chart (V2, ϕ2) and local trivialization (U2, φ2), we can also get
φ2◦s◦ϕ−12 (x) = (x, s2(x)) for some s2 : (0.5, 1.5)→ R which nonzero everywhere
and hence it does not change sign.

Recall the transition map φ2 ◦ φ−11 (x, t), we know for x > 0.5, s2(x) = s1(x)
and s2(x) > 0 for 0.5 < x < 1. For x < 0.5, we have s2(x + 1) = −s1(x) and
s2(x) < 0 for 1 < x < 1.5. This is a contradiction with the above fact that s2(x)
does not change sign.

Hence π : M → S1 is a non-trivial vector bundle.
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