Real Analysis 20-11-13 Chap4 Lebesgue spaces. § 4.3 Lebesgue spaces. Let (X, M, μ) be a measure space. Let p > 0. A measurable function f on X is said to be P-integrable if) 17|^Pdµ < 60. Moreover, We write $\|f\|_{p} := \left(\int |f|^{p} d\mu\right)^{\frac{1}{p}}$ We call it the p-norm of f.

Prop 4.10 (Hölder inequality)
Let
$$|<\rho < \infty$$
. Then
 $\int |fg| d\mu \leq (\int |f|^{\rho} d\mu)^{\frac{1}{p}} \cdot (\int |g|^{q} d\mu)^{\frac{1}{q}}$,
where $q > 1$ with $\frac{1}{p} + \frac{1}{q} = 1$.
Prop 4.11 (Minkowski inequality)
Let $p \ge 1$. Then
 $\|f + g\|_{p} \leq \|f\|_{p} + \|g\|_{p}$.
The proof of the above propositions is based
on the following
(Young's inequality)
Let $d, \beta \ge 0$. Let $p, q > 1$ with $\frac{1}{p} + \frac{1}{q} = 1$
Then $d\beta \leq \frac{d^{p}}{p} + \frac{\beta^{q}}{q}$

"="holds
$$\Leftrightarrow \beta = d^{P-1}$$
.
Pf of Young's inequality:
We use a geometric approach. Consider
the function $y = \chi^{P-1}$. Its inverse is
 $x = y^{q-1}$ (using $(P-1)(q-1)=1$)
 $p \int_{-\infty}^{-1} (y = \chi^{P-1}) \int_{-\infty}^{-1} (y = \chi^{P$

$$= \int_{0}^{p} y^{q-1} dy = \frac{p^{q}}{q}$$

From the above geometry, we see that
 $d \beta \leq \frac{d}{p} + \frac{p^{q}}{2}$.
Clearly '='' holds $\Rightarrow \beta = d^{P-1}$.
Proof of the Hölder inequality:
Let $p > 1$. Let f, g be measurable functions
on X. WLOG, we may assume $|f|_{f} |g| < \infty$.
Set $d(x) = \frac{15\omega 1}{11511p}$, $\beta(x) = \frac{19\omega 1}{11911q}$,
here $q > 1$ with $\frac{1}{p} + \frac{1}{2} = 1$.

Using Young's inequality to
$$d(x)$$
, $\beta(x)$, we
obtain
$$\frac{|f(x)g(x)|}{||f||_{p}} \leq \frac{|f(x)|^{p}}{||f||_{p}} + \frac{|g(x)|^{q}}{||f||_{q}} + \frac{|g(x)|^{q}}{||f||_{q}} + \frac{|g(x)|^{q}}{||f||_{q}} + \frac{|f(x)|^{p}}{||f||_{p}} + \frac{|f(x)|^{p}}{||f||_{p}} + \frac{|f(x)|^{p}}{||f||_{p}} + \frac{|f(x)|^{p}}{||f||_{p}} + \frac{|f(x)|^{p}}{||f||_{p}} + \frac{|f(x)|^{q}}{||f||_{p}} + \frac{|f(x)|^{q}}{||f||_{p}} + \frac{|f(x)|^{q}}{||f||_{q}} + \frac{|f(x)|^{q}}{||f||_{q}} + \frac{|f(x)|^{q}}{||f||_{p}} + \frac{|f(x)|^{q}}{||f||_{p}} + \frac{|f(x)|^{q}}{||f||_{q}} + \frac{|f(x)|^{q}}{||f||$$

Proof of the Minkowski inequality:
We prove this by apply the Hölder inequality.
If
$$p=1$$
, then since
 $|f(x) + g(x)| \leq |f(x)| + |g(x)|$
Taking integration gives
 $||f + g||_{1} \leq ||f||_{1} + ||g||_{1}$.
Next we assume $|.
 $|f + g|^{P} \leq |f| \cdot |f + g|^{P-1} + |g| \cdot |f + g|^{P-1}$
Taking integration gives
 $||f + g||_{P}^{P} \leq |f| \cdot |f + g|^{P-1} + |g| \cdot |f + g|^{P-1}$
 $||f + g||_{P}^{P} \leq |f| \cdot |f + g|^{P-1} d\mu + \int |g| \cdot |f + g|^{P-1} d\mu$
 $\leq (\int |f|^{P} d\mu)^{V_{P}} (\int |f + g|^{P-1} d\mu)^{V_{2}} d\mu$$

$$= \|f\|_{p} \cdot \|f + s\|_{p}^{p/q}$$

$$= \|f\|_{p} \cdot \|f + s\|_{p}^{p/q} \quad (usig (p-1)q = p)$$

$$= (\|f\|_{p} + \|g\|_{p}) \cdot \|f + s\|_{p}^{p/q}$$

$$Hence \quad \|f + g\|_{p}^{p-\frac{p}{q}} \leq \|f\|_{p} + \|g\|_{p},$$

$$Noticing that \quad p - \frac{p}{q} = 1, \quad we \quad obtain$$

$$the desired inequality \quad M$$

$$Def. \quad Let \quad p>0. \quad Set$$

$$L^{P}(X, M, \mu) = \left\{all \quad p - integrable \quad functions \\ on \quad (X, M, \mu).$$
For short, we write
$$L^{P}(\mu) := L^{P}(X, M, \mu).$$

Recall that for
$$f \in L^{p}(\mu)$$
,
 $\|f\|_{p} = (\int |f|^{p} d\mu)^{p}$.
If $\|f\|_{p} = 0$, then $f = 0$ a.e.
Define $f \sim g$ if $f = g$ a.e.
Then this relation " \sim " is an equivalence relation.
Now define
 $L^{p}(\mu) = L^{p}(\mu)/\sim$
For $\hat{f} \in L^{p}(\mu)$, define
 $\|f\|_{p} = \|f\|_{p}$ if $\hat{f} = LfI$.
Then $\hat{L}^{p}(\mu)$ becomes a normed vector space.

Thm 4.12. Let
$$|\langle p \langle w \rangle$$
. Let $(f_n)_{n=1}^{\infty}$ be a
Cauchy sequence in $L^{p}(\mu)$. Then $\exists f \in L^{p}(\mu)$
Such that
 $||f_n - f||_{p} \rightarrow o$ as $n \rightarrow \infty$.
As a consequence, $L^{p}(\mu)$ is a Banach space.
Pf. Since $(f_n)_{n=1}^{\infty}$ is a Cauchy sequence,
for any $j \in \mathbb{N}$, $\exists n_{j} \in \mathbb{N}$ such that
 $for any j \in \mathbb{N}$, $\exists n_{j} \in \mathbb{N}$ such that
 $for any j \in \mathbb{N}$, $\exists n_{j} \in \mathbb{N}$ such that
 $for any further require that
 $n_{j+1} > n_{j}$, $j=1,2,\cdots$
By removing a subset of zero measure, we may
assume $|f_n(x)| < \infty \forall x \in X$, $n \in \mathbb{N}$.$

Define
$$\begin{aligned} \sum_{j=1}^{k} \left| f_{n_{j+1}}(x) - f_{n_{j}}(x) \right| \\ g_{R}(x) &= \sum_{j=1}^{\infty} \left| f_{n_{j+1}}(x) - f_{n_{j}}(x) \right| \\ g(x) &= \sum_{j=1}^{\infty} \left| f_{n_{j+1}}(x) - f_{n_{j}}(x) \right| \\ Clearly \quad g(x) &= \lim_{k \to \infty} g_{R}(x) \\ Using the Minkowski inequality to \quad g_{R} gives \\ \|g_{R}\|_{p} &\leq \sum_{j=1}^{k} \left\| f_{n_{j+1}} - f_{n_{j}} \right\|_{p} \\ &\leq \sum_{j=1}^{k} 2^{-j} \quad (by (1)) \\ &< 1 \\ By Fatou's lemma, \\ \left\| g_{R} \right\|_{p}^{p} &= \int |g_{x}\rangle|^{p} d\mu_{x} = \int \frac{\lim_{k \to \infty} |g_{R}^{x}|^{p} d\mu_{x}}{|g_{R}|^{p}} d\mu_{x} \end{aligned}$$

$$\leq 1$$
Hence $g(x) < \infty$ for μ -a.e x .
That is, for μ -a.e x ,
 $\sum_{j=1}^{\infty} |f_{n_{j+1}}(x) - f_{n_{j}}(x)| < \infty$
Consider the sum
(2) $f_{n_{j}}(x) + \sum_{j=1}^{\infty} (f_{n_{j+1}}(x) - f_{n_{j}}(x))$,
which converges for μ -a.e. x .
Let $f(x)$ be the above sum if (2) Converges
otherwise, let $f(x) = 0$.

Then for a.e
$$x \in X$$
,

$$f(x) = \lim_{k \to \infty} \left(f_{n_{j}(x)} + \sum_{j=1}^{k} \left(f_{n_{j}(x)} - f_{n_{j}(x)} \right) \right)$$

$$= \lim_{k \to \infty} f_{n_{k+1}} (x)$$
That is, $f_{n_{k}} \to f$ a.e.
In what follows we prove that

$$\lim_{k \to \infty} f_{n_{k}} \to f$$
 a.e.
Let $\sum 0.$ Take a large N $\in \mathbb{N}$ so that
(3) $\| f_{n} - f_{m} \|_{p} < 2 \quad \forall n, m > \mathbb{N}$
For any $m > \mathbb{N}$, by Fatou's lemma,

$$\|f - f_m\|_p^p = \int |f - f_m|^p dM$$

$$= \int \lim_{j \to \infty} |f_{n_j} - f_m|^p dM$$

$$\leq \lim_{j \to \infty} \int |f_{n_j} - f_m|^p dM$$

$$\leq 2^p$$
That is, $\|f - f_m\|_p < \epsilon$.
So $\||f||_p \in \|f - f_m\|_p + \|f_m\|_p$

$$<\infty$$
and $\|f_n - f_n\|_p \to \alpha \text{ as } n \to \infty$.

Read that a simple function on
$$(X, M, \mu)$$
 is of
the form
 $S = \sum_{j=1}^{n} d_j \mathcal{Y}_{E_j}(x),$
where $d_j \in \mathbb{R}\setminus \{0\}, E_j \in M$.
Let $S = \{S : S \text{ is a simple function} \\ \sum_{j=1}^{n} d_j \mathcal{Y}_{E_j} \text{ with } \mu(E_j) < \infty \}.$
Prop 4. 14. Let $P \ge 1$. Then
 S is dense in $L^{0}(\mu)$.
Pf. Clearly $S \subset L^{0}(\mu)$.
Next assume $f \in L^{0}(\mu), f$ is non-negative.
Then \exists a sequence $(S_{k})_{k=1}^{\infty}$ of non-negative simple
functions, $S_{k} f f$.
Then by Lebesgue Dominated Convergence Thm,
 $\int |S_{k} - f|^{p} d\mu \rightarrow 0$ as $k \ge \infty$.

It follows that

$$\|S_{R} - f\|_{p} \to 0 \quad \text{as } k \to \infty.$$
Moreover, when k is large enough, $\|S_{R}\|_{p} < \infty.$

$$White S_{R} = \int_{j=1}^{n} d_{j} \mathcal{N}_{E_{j}}, \quad \text{then}$$

$$d_{j}^{P} \mu(E_{j}) \leq \int |S_{R}|^{P} d\mu < \infty$$

$$\Rightarrow \mu(E_{j}) < \infty \Rightarrow S_{R} \in S$$
In the general core, we write
$$f = f^{t} - f.$$
Applying the above analysis to f^{+} and f , we see that
$$\exists (S_{R}) = S \quad \text{s.t} \quad \|S_{R} - f\|_{p} \to 0.$$

Prop 4.15. Let X be a LCHS, let
$$\mu$$
 be a Riesz
measure. Then
 $C_{c}(X)$ is dense in $L^{P}(\mu)$ for all $|\leq P < \infty$.

Pf. Let
$$| \leq P < \infty$$
. By Prop 4.14, it Suffices to
proved that for given $E \in M$ with $\mu(E) < \infty$,
and $2 > 0$, $\exists P \in C_c(X)$ such that
 $\| P - \chi_E \|_p < \epsilon$.

To show the above result, fix Ee, M with
$$\mu(E) < \infty$$
,
fix $2 > 0$. By Lusin's Thm, $\exists \mathcal{P} \in C_{c}(X)$
Such that $\|\mathcal{P}\|_{\infty} := \sup_{X} |\mathcal{P}(X)| \leq 1$
and
 $\|\mathcal{I} X : \mathcal{P}(X) \neq \chi_{E}(X) \} < 2^{-P} \varepsilon^{P}$.
Then $\|\mathcal{P} - \chi_{E}\|_{P}^{P} = \int |\mathcal{P}(X) - \chi_{E}(X)|^{P} d\mu$

$$= \int || \varphi - \chi_{E} ||^{P} d\mu$$

$$= \int || \varphi - \chi_{E} ||^{P} d\mu$$

$$\{x: \varphi(x) \neq \chi_{E}(x)\}$$

$$\leq 2^{P} \cdot \mu \{x: \varphi(x) \neq \chi_{E}(x)\}$$

$$< \Sigma^{P},$$
which implies
$$\|| \varphi - \chi_{E} \||_{p} \leq \Sigma . \qquad \square$$

$$Prop 4.16. \quad L^{P}(IR^{d}) \text{ is separable for } |\leq P < \infty.$$

$$(:= L^{P}(J^{d}), J^{d} - Lebesgue measure$$

$$(:= L^{P}(J^{d}), J^{d} - Lebesgue measure$$

$$on (R^{d})$$
Reall that we say a topological space X
is separable if $\exists a \text{ countable subset}$

of X which is dense in X.
Pf. Let
$$B_n = \{x \in \mathbb{R}^d : |x| \leq n\}$$
, $n \in \mathbb{N}^n$.
Let P_n denote the collection of the
restriction of polynomials with rational
coefficients on B_n .
That is, any element of P_n is of the
form
 $f = X_{B_n} \cdot g$
where g is a polynomial with rational
coefficients defined on \mathbb{R}^d .
Hence P_n is countable.
Let $P = \bigcup_{n=1}^{\infty} P_n \cdot P$ is countable.

We show below
$$\mathcal{P}$$
 is dense in $L^{P}(\mathbb{R}^{d})$.
By Prop 4.15, $C_{c}(\mathbb{R}^{d})$ is dense in $L^{P}(\mathbb{R}^{d})$.
It is enough to show that for $\mathcal{P} \in C_{c}(X)$,
and $\Sigma > 0$, $\exists R \in \mathcal{P}$ s.t
 $\|\mathcal{P} - \mathcal{R}\|_{P} < \Sigma$.
Since $\operatorname{Spt}(\mathcal{P})$ is compact, $\exists n \in \mathbb{N}$ such
that
 $\operatorname{spt}(\mathcal{P}) \subset B_{n} := \{x : \|x\|| < n\}$.
Then by Weierstrass approximation Thun,
 $\exists \mathcal{R} \in \mathcal{P}_{n}$ such that
 $\sup_{X \in \mathcal{B}_{h}} |\mathcal{P}(X) - h(X)| < \frac{\Sigma}{2} \cdot (d^{d}(B_{n}))^{V_{P}}$.

Now $\| \mathbf{Q} - \mathbf{h} \|_{p}^{P} = \int | \mathbf{\varphi}(\mathbf{x}) - \mathbf{h}(\mathbf{x}) |^{P} d\mathbf{d}^{d}(\mathbf{x})$ $= \int_{B_{n}} |\varphi(x) - h(x)|^{p} d d^{d} x$ $\leq \int_{x\in B_{n}}^{d} (B_{n}) \left(\sup_{x\in B_{n}} |\varphi(x) - h(x)| \right)^{r}$ $\leq d^{d}(B_{n})\left(\frac{\varepsilon}{2}\cdot(d^{d}(B_{n}))^{\mu}\right)^{p}$ $\leq \left(\frac{\varepsilon}{2}\right)^{r}$ $\| \varphi - h \|_{p} < \frac{\varepsilon}{2}$. So (1)