Real Analysis 20-10-16.
Regularity of Riesz measures
Def. Let
$$\mu$$
 be a Borel measure on a topological
space X. A set $E \subset X$ is said to be
outer regular if
 $\mu(E) = \inf \{ \mu(G) : G \text{ is open, } G \supset E \}$
We say that E is inner regular if
 $\mu(E) = \sup \{ \mu(K) : K \text{ is compact,} K \subset E \}$.
Moreover, we say μ is regular if
all measurable sets in X is both outer and
inner regular with respect to μ .

Prop 2.9. Let
$$\wedge$$
 be a positive linear functional
on a LCHS X. Let $\mu = \mu_{\Lambda}$ be
the Riesz measure associated with Λ .
Then the following hold:
(1) Every set in X is outer regular.
(2) Every open set in X is inner regular.
(3) Every measurable set with finite measure
is inner regular.
Pf. (1) follows from the definition of μ .
Next we prove (2). Let $G \subset X$ be open.
Recall that
 $\mu(G) = \sup \{ \Lambda(f) : f < G \}$
 $= \sup \{ \int_X f d\mu : f < G \}$
 $\leq \sup \{ \mu(K) : K compact, K < G \}$

(Reason: for given
$$f < G$$
, take $K = supp(f)$.
then
 $\int_X f d\mu \le \mu(K)$ since $f \le \chi_K$)
Now we prove (3), i'e every measurable
set of finite measure is inner regular.
Let $A \subset X$ be measurable and $\mu(A) < \infty$
Let $E > 0$. Pick an open G such that
 $G \supset A$ and
 $\mu(G) \le \mu(A) + \Sigma$.
By the additivity of μ , we obtain
 $\mu(G \setminus A) = \mu(G) - \mu(A) < \Sigma$
(we used the assumption
 $\mu(A) < \infty$
Pick another open $G_1 \supset G \setminus A$ such that

 $\mu(G_1) \leq \mu(G \setminus A) + \varepsilon < 2\varepsilon.$ Now observe that $A = G \setminus (G \setminus A)$ $\geq G \setminus G_{I.}$ Also we have $A = (G \setminus G_1) \cup (A \setminus (G \setminus G_1))$ $= (G \setminus G_1) \cup (A \cap (G \setminus G_1)^c)$ $= (G \setminus G_1) \cup (A \cap (G^{c} \cup G_1))$ $= (G \setminus G_1) \cup (A \cap G_1) \quad (since A \in G_1)$ Hence $\mu(A) \leq \mu(G \setminus G_1) + \mu(G_1 \cap A)$ $\leq \mu(G(G_i) + \mu(G_i))$ $< \mu(G \setminus G_1) + 2 \varepsilon$

That is,
$$\mu(G \setminus G_1) > \mu(A) - 2\epsilon$$
.
Next we pick a compact $K \subset G$
Such that $\mu(G \setminus K) < \epsilon$.
Notice that
 $(K \setminus G_1) \cup (G \setminus K) \supseteq G \setminus G_1$
So
 $\mu(K \setminus G_1) + \mu(G \setminus K) \ge \mu(G \setminus G_1)$
 $> \mu(A) - 2\epsilon$.
Hence
 $\mu(K \setminus G_1) > \mu(A) - 2\epsilon - \mu(G \setminus K)$
 $> \mu(A) - 3\epsilon$.
Notice that $A \supset G \setminus G_1 \supset K \setminus G_1$,
Hence $\tilde{K} = K \setminus G_1$ is a compact subset

of A such that
$$\mu(\vec{k}) \ge \mu(A) - 3\varepsilon$$
.
This proves (3).
Prop 2.10. Let μ be a Riesz measure on
a LCHS X which is σ - finite with regist to
 μ .
(i.e. $X = \bigcup X_j$: with $\mu(X_j) < \omega$)
Then the following hold:
(1) For any measurable $E \subset X$ and $\varepsilon > 0$,
there exist an open set G and a
closed set F so that
 $F \subset E \subset G$, and $\mu(G \setminus F) < \varepsilon$.
(2). For any measurable set $E \subset X$, there
exists a G_{δ} set A and a F_{σ} set B
such that $B \subset E \subset A$ and $\mu(A \setminus B) = 0$.

Consequently, Mc is the completion
of Bx.
(3) Every measurable set is inner regular.
Recall that a Grs set is a countable intersection
of open sets; a For set is
a union of countably many closed
sets).
Pf. Let ECX be measurable.
Let X = UX; with
$$\mu(X_i) < \omega$$
.
Write Ej = X; n E. Then
 $\mu(E_i) < \omega$. Now let $E > 0$.
Pick open set $G_i > E_i$ so that
 $\mu(G_i \setminus E_i) < \epsilon 2^{-j}$.

Let
$$G = \bigcup_{j=1}^{\infty} E_j$$
.
Then $G \setminus E = (\bigcup_j G_j) \setminus E$
 $\subseteq \bigcup_j (G_j \setminus E_j)$
Hence
 $\mu(G|E) \in \sum_{j=1}^{m} \mu(G_j \setminus E_j) < \sum_{j=1}^{m} \sum_$

set
$$F = G_{1}^{C}$$
. Then F is closed
and
 $E \setminus F = G_{1} \setminus E^{C}$
Hence $\mu(E \setminus F) < \epsilon$.
Since $F \subset E \subset G$,
we have
 $\mu(G \setminus F) = \mu(G \setminus E) + \mu(E \setminus F)$
 $< 2\epsilon$.
 $(because G \setminus F = (G \setminus E) \cup (E \setminus F))$
This proves (1).
Next we prove (2). By (1), we can find
open sets (Gn), closed sets (Fn) such that
 $\begin{cases} Fn \subset E \subset Gn, n \in IN \\ \mu(Gn \setminus Fn) < 2^{-n} \end{cases}$

Let
$$A = \bigcap_{n} G_{n}$$
,
 $B = \bigcup_{n} F_{n}$,
Then A is a G_s set and B is a F₀ set.
Clearly $B = E \subseteq A$, and
 $\mu(A|B) \leq \mu(G_{n}\setminus F_{n}) < 2^{n}$,
which implies $\mu(A|B) = 0$.
This proves (2).
Finally we prove (3). It suffices to prove
 $\sup \{\mu(K) : K \text{ compact}, K \subseteq \} = \infty$
if $\mu(E) = +\infty$.
For this, let $X = \bigcup_{j} X_{j} = w$; th $\mu(X_{j}) < \infty$

Letting Ej = En Xj, we have $E = \bigcup_{j=1}^{\infty} E_j$ Hence $\mu(\bigcup_{i=1}^{\infty} E_i) = \infty$, which implies $\mu\left(\bigcup_{i=1}^{N} E_{j}\right) \xrightarrow{N} \infty \quad \text{as } N \xrightarrow{N}$ Now for each N, we can find a compact $K_N \subset \bigcup_{i=1}^N E_j$ with $\mu(K_{N}) \geq \mu(\bigcup_{i=1}^{N} E_{i}) - \bigcup_{N}^{\perp}$ -> + 10 as N -> 10 回

§ 2.5. Lusin's Thm.

Thm 2.12. Let
$$\mu$$
 be a Riesz measure On
a LCHS X. Let $f: X \rightarrow \mathbb{R}$ be measurable such
that f vanishes on A^{c} for some measurable set
A with finite measure.
Then for any so, $\exists g \in C_{c}(X)$,
such that
 $\mu \{x: f(x) \neq g(x)\} < \varepsilon$.
Pf. Writing $f = f^{+} - f^{-}$, we may simply assume
 f is non-negative.
Also we may assume f is bounded and
A is compact by an approximation argument.
Dividing f by a large number, we may assume
 $o \leq f \leq 1$.

Next we construct simple functions
$$S_n \uparrow f$$
.
Such that for $n = 1, 2, ...,$

$$S_n(x) = \begin{cases} \frac{j}{2^n}, & \text{if } \frac{j}{2^n} \in f(x) < \frac{j+1}{2^n} \\ & \text{for } j=0, j, ..., 2^{n}, n-1, \\ & n & \text{o ther } w \text{ is } 0. \end{cases}$$
Notice that $S_1(x) = \frac{1}{2} \text{ or } 0$ and

$$S_n(x) - S_{n-1}(x) = \frac{1}{2^n} \text{ or } 0 \text{ for } n \ge 2.$$
Lettice $S_n(x) - S_{n-1}(x) = \frac{1}{2^n} \bigvee T_n(x), n \ge 1,$
where T_n is the set of points x at which $S_n(x) - S_{n-1}(x) = \frac{1}{2^n}$.
Notice that $T_n \subset A$.
(because on A^c , $f(x) = 0$ so $S_n(x) = 0$)

Next notice that

$$f(x) = \sum_{n=1}^{\infty} S_n(x) - S_{n-1}(x)$$

$$= \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \chi_{T_n}(x)$$
Since A is compact, we can choose an
open set V such that
 $A = V$, \overline{V} is compact.
Now Let $\varepsilon > 0$. For each n, pick an open
set Gn and compact Kn such that
 $K_n = T_n = G_n = V$
so that $\mu(G_n \setminus K_n) < \frac{\varepsilon}{2^n}$.

By the Unysohn lemma,
$$\exists h_n \in C_c(X)$$

 $K_n < h_n < G_n$
Now we define
 $g = \sum_{n=1}^{\infty} \frac{1}{2^n} h_n$.
Hence $g \in C_c(X)$. (Because $g = 0$ on ∇^c)
Notice that
 $h_n = \mathcal{X}_{Tn}$ except on the set $G_n \setminus K_n$.
(since on K_n , $h_n = \mathcal{X}_{T_n} = 1$
on G_n^c , $h_n = 0 = \mathcal{X}_{T_n}$)
Hence $f = g$ except on $\bigcup (G_n \setminus K_n)$

It follows that

$$\begin{cases} x : f(x) \neq g(x) \} \equiv \bigvee G_n \setminus K_n \\
However, \\
\mu \left(\bigcup G_n \setminus K_n \right) \leq \sum_n \mu \left(G_n \setminus K_n \right) \\
\quad & (\prod_n \sum \sum_{n=1}^n \sum \sum_{n=1}^n \sum$$

Pf. By Lusin's Thm, we can find for nEN,

$$g_n \in C_c(X)$$
 and $E_n \subset X$ measurable
such that
 $\mu(E_n) < \frac{1}{2^n}$ and $f = g_n$ on E_n^c .
Then
 $\sum_{n=1}^{\infty} \mu(E_n) < \infty$.
By Borel-Cantell' bemma,
 $\mu\{x: x \in E_n \text{ for infinitely many } n\} = 0$
Hence for almost all point x ,
 x belongs to finitely many $E_n's$
and let n_0 be the largest such n .
Then
 $g_n(x) = f(x)$ for all $n \ge n_0(x)$.
Hence $\lim_{n \to \infty} g_n(x) = f(x)$.