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Suggested Solution 6

(1) In the proof of Lusin’s Theorem (Theorem 2.12), it was assumed that f is non-negative,
bounded and A is compact. Complete the proof by showing the conclusion still holds when

f is finite a.e. and A is of finite measure.
Solution: We divide the proof into three steps.

Step 1. Assume that f is bounded and supported on a compact set A. Write f = fT — f~.
Then both f* and f~ are bounded and supported on A. Then by what is proved in Theorem

2.12, the conclusion of Lusin’s Theorem holds in this situation.

Step 2. Assume that f is bounded and vanishes outside a measurable set A with p(A) < oo.
Let € > 0 be fixed. By the regularity of u, there exists a compact set K and an open set G
such that K € A C G and u(G \ K) < §. By Urysohn’s Lemma, there exists h € C.(X)
such that K < h < G.

Now we apply Step 1 to f|x, we have there exists g € C.(X) such that

p{r e X :g(x) # flx(2)}) <

DO

Observe that gh € C.(z), gh = g on K and gh = 0 outside G. Hence we have

{z: g(a)h(z) # f(2)} S {x: g(z) # flx(2)} U (G\ K).

Therefore,

p({z - g(@)h(z) # f(2)}) < p({z : g(x) # flx(@)}) + w(G\ K)

<e+e
—+—-=c.
2 2

Step 3. Assume that f is finite a.e. and vanishes outside a measurable set A with p(A) < oo.

For each n > 1, we define

() if [f(z)| < n,

n-signf(z) otherwise.

fulx) ==
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Then we have f,(x) — f(x) for every z € X. Note that

{z: fu(z) # f(x)} S{z: [f(2)] > n}.

Since f is finite a.e., supported on A and p(A) < oo, we have

p{x: |f(x)] >n}) L0, asn — oco.

Hence there exists ng, such that

p{w : foo(2) # f(2)}) <

N o

Apply the result of Step 2 to f,,, we get a g € C(X) such that

plfe = g(x) # fny(2)}) <

DN

Note that

{z:g(x) # f(2)} S{z: g9(2) = fo (), fro(2) # f2)} U{z : g(2) # fro(2)}-

Hence we have u({z : g(z) # f(z)}) < e, completing the proof.

Let p be a Riesz measure on R™. Show that for every measurable function f, there exists a

sequence of continuous functions {f,} such that f,, — f almost everywhere.

Solution: For each k > 1, we define a set By, := {z € R" : |z| < k} and a function

f(z) if x € By and |f(z)| <k,
fu(@) == k-signf(z) if z € By, and |f(z)| > k,

0 otherwise.

Then it is easy to see that fip(z) — f(z) at every z € R™. Note that fi is bounded
and supported on a set of finite measure, we can apply the result of Exercise (1) to get a
g € C.(R™), such that

pllz €B": filx) # () < 5

Let Ay = {z € R" : gi(x) # fr(x)}. Then by the Borel-Cantelli Lemma, we have for almost

every z € R" z € Ay, for finite many k. As a consequence, we have g — f a.e..
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(3) Here we construct a Cantor-like set, or a Cantor set with positive measure, with positive
measure by modifying the construction of the Cantor set as follows. Let {ax} be a sequence

of positive numbers satisfying

o0
v = ZQk_lak <1.
k=1

Construct the set S so that at the kth stage of the construction one removes 2¥~1 centrally

situated open intervals each of length a;. Establish the facts:

(a) LY(S)=1-1,

(b) S is compact and nowhere dense.

(c) S is perfect hence uncountable.

Note. A set A is perfect if for every © € A and € > 0, (B(z) \ {z}) N A # 0, that is,

every point in A is an accumulation point of A. It is known that a perfect set must be

uncountable.

Solution:

(a) As the intervals removed at the same stage or different stages are mutually disjoint, we

have
o0
LS = 1- Z 28=1 length of interval removed in the k th stage

k=1
o0

= 1-) 2¥lg,
k=1

= 1—n.

(b) Let S,, be the set of points left in [0, 1] after the n-th level construction. Then S, is
descending and S =2, S,. Notice that S, is a union of 2" mutually disjoint closed
intervals hence is compact. Hence S is compact. The 2" components of S, are of the

same length
n
by = 27" (1 - ZZklak> :
k=1

Clearly b, — 0 as n — 0o. Hence S does not have an interior point, since otherwise S
will contain an open interval which is also contained in every .S,,, which is impossible

since b, — 00 as n — oco. Hence S is nowhere dense.

(c) If x € S, then x belongs some connected component of S,,Vn € N. Observe that the
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(4)

end points of the 2" intervals of S, are in S, so Jy,, end point of one of the interval s.t.
|y, — 2| < b, — 0 as n — oo.

We have S is a perfect set.

Let 0 < ¢ < 1. Construct an open set G' C [0, 1] which is dense in [0, 1] but £!(G) = «.

Solution: Similar to the construction of Cantor’s familiar “middle thirds” set. Define
Ky = [0,1] and inductively define K, C K,_1 by removing an open interval of length
2(1 — ¢£)272". By the construction each K, has 2" connected components with length a,
which satisfy

1
an = i(an_l —2e272), n=1,2,...

a():l,

from which we get a, = (1 —£)27" + 272", Thus

LYK) = lim £YK,)= lim 2"a, =1 —«¢.

n—oo n—oo

Take G = [0,1] \ K, then £}(G) = . On the other hand, G is dense in [0, 1] since the

interior of K is empty.

Let A be the subset of [0, 1] which consists of all numbers which do not have the digit 4
appearing in their decimal expansion. Find £!(A).
Solution: Let B = {0,1,2,3,5,6,7,8,9}, the set Fy = {z € [0,1] : = 0.4aza3--- ,a; =

) 1
0,1,2,---,9} = [ , —] is of Lebesgue measure 0 Fix 11 € B, |B| = 9! = 9, the set

10’ 10
4 0

. )
Fy,, ={x€[0,1 : x = 0.y1dag--- ,a; = 0,1,2,--- ,9Vj > 3} = | o+ﬁ TO—i-m] is of

1
Lebesgues measure 100" Fix (y1,y2) € B?, |B?| = 9% = 81, the set F(,, ,,) = {z € [0,1] :

x = 0.y19y24a4--- ;a5 = 0,1,2,--- ,9Vj > 4} is of measure

1000° Continuing the process,

we have

U U Fly s syn) Y Fy)

=1 (y1,y2, ,yn)EB™
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(6)

and as all F{ , Fy are disjoint, we have

Y1,Y2, Yn)

I~ 1
1 _
L4 = 1-5-2. 2
n=1 (y1,y2, ,yn)EB"
1

o0 9n

10 10n+1

Let NV be a Vitali set in [0, 1]. Show that M = [0, 1] \ N has measure 1 and hence deduce
that
LYN) + LYM) > LYN UM).

Remark: I have no idea what £'(N\) is, except that it is positive.
Solution: We first prove that every Lebesgue measurable subset of ' must be of measure
zero. Let A be a Lebesgue measurable subset of N, { A+ q}qeqnio,1) is a sequence of disjoint

measurable set contained inside [—1,2]. By translational invariance of Lebesgue measure,

LU A+9= ). LA+9= ) L4 <,

qeQn[o,1) q€Qn[o,1) qeQn[o,1)

Therefore we must have

LY(A) =0.
We try to prove by contradiction, suppose there is an open set G s.t. L}(G) =1—¢ < 1
and G 2 N¢. Then [0,1] \ G is a measurable subset of N satisfying
0<e=2LY0,1) — £YG) < £[0,1]\ G).

Contradicting to our previous result.

Let E be a subset of R with positive Lebsegue measure. Prove that for each o € (0, 1), there

exists an open interval I so that
LYENT) > aL'(]).

It shows that E contains almost a whole interval. Hint: Choose an open G containing F
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such that £}(E) > aL!(G) and note that G can be decomposed into disjoint union of open

intervals. One of these intervals satisfies our requirement.

Solution: As In € Ns.t. LY{(E N (—n,n)) > 0, WLOG we may assume that E has finite

outer measure, then Vo € (0,1), 3 open G s.t.G 2 E and

LYE) + M[F(E) > L£YQ),

(0%

Hence
LYE) > aLY(G).

o0

we can write G = U I; where I; are disjoint open intervals. Then one of these I; must

i=1
satisfy the desired property, otherwise
LYE) <Y LYENT) <a) L'(L)=al(G) < o,
i=1 i=1

contradicting the above inequality.

(8) Let E be a measurable set in R with respect to £! and £!(E) > 0. Show that E — E contains

an interval (—a,a), a > 0. Hint:

(a) U, V open, with finite measure, z +— L£!((z + U) NV is continuous on R.

(b) A, B measurable, u(A), u(B) < oo, then z — LY((x + A) N B) is continuous. For
AcU,BcCV,try

LY(z+U)NV) =LY (z+A)NB)| < LY U\ A)+ LYV c B).

(c) Finally, x — LY((z + E) N E) is positive at 0 and if (x + E)NE # (), then x € E\ E.
Solution:

(a) We prove the case when U is an open interval I, note for all subset A, B of R,

(z+ANB)\((y+A4)NB)) = (z+A)\(y +4)NB.

Therefore

1LY ((z+D)NV) =LY ((y+D)NV)| < LY@+ D\ (y+D)+L (y+ D\ (z+1)) < 4|z—y|.
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the function is Lipschitz and continuous. In general U can be written as countable

union of disjoint open intervals {I;}, as Z€ < 00,3dN s.t. for all k > N,
i=1

D Ul <e
i=k
We have

iﬁl((aﬁ—h)ﬂ‘/)—ﬁl((y-i-I nv) (x+L)NV) =LY ((y+1)NV) +2¢ < 3¢

i=1

||M?r

for x sufficiently close to y. Similarly

iﬁl((y +I)NV) =LY (z+ L) NV) < 3e.
=1

We have the function £!((z + U) N V) is continuous.

Obviously , ((x+U)NV)\ ((x + A)NB) CU\ AUV \ B. Therefore, we have
0< L' ((z+U)NV) =LY ((z+A)NB) < LU\ A) + LYV \ B).

Note RHS is independent on z, y, so the result follow from outer regularity of Lebesgue

measure.

the function £'((z + E) N E) is continuous and positive at 0, Ja > 0 s.t the function
remain positive on (—a,a), i.e

(x+E)NE#0

and Vo € (—a,a),3ejes € E s.t

r=e —e € F—F.

Alternate proof. The following is a simple proof due to Karl Stromberg.

By the regularity of £!, for every € > 0 there are a compact set K C E and an open set
U D E such that

LYEK)+e>LYE) > LYU) —e.
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For our purpose it is enough to choose K and U such that
2LY(K) > £Y(U).

Since K C U, there is an open cover of K that is contained in U. Since K is compact, one

can choose a small neighborhood V' of 0 such that
K+VvcU.

Let v € V, and suppose
(K+v)NK=10.

Then,
2LY(K) = LYK +v) + LY(K) < £YU),

contradicting our choice of K and U. Hence for all v € V there exists k1, ko € K C F such
that
kl +v= k27

which means that V C F — E.

Give an example of a continuous map ¢ and a measurable f such that fo¢ is not measurable.

Hint: May use the function h = x + g(x) where g is the Cantor function as ¢.

Solution: Let h = x + g(x) where g is the Cantor function. Then h : [0,1] — [0,2] is a
strictly monotonic and continuous map, so its inverse ¢ = h~! is continuous too. Since g is
constant on every interval in the complement of C, one has that h maps such an interval to
an interval of the same length. Hence p(h(C)) = 1, where C is the cantor set. Then h(C)
contains a non-measurable set A due to Proposition 3.3. Let B = ¢(A). Set f = xp. Then

f o ¢ is not measurable since its inverse image of 1 is A.



