
TA’s solution1 to 5011 midterm exam

Q1(a) S : X → R defined by S(x) :=
∑∞

k=1χAk
(x) is a measurable function, whence E = S−1({2020})

is measurable. Alternatively, since

E =
∪

i1<···<i2020

Ai1 ∩ · · · ∩ Ai2020 ∩
∩

k/∈{i1,...,i2020}

Ac
k


and {(i1, . . . , i2020) ∈ N2020 : i1 < · · · < i2020} is a subset of the countable set N2020, we see that E
is measurable.

(b) Please refer to assignment 1 solution for a proof.

Q2(a) We should proceed with caution for not having ∞− ∞. Consider the following example. If we
write

fg =
1

4

[
(f + g)2 − (f − g)2

]
,

then

(a) when f ≡ ∞ and g ≡ −∞, we have fg ≡ −∞ while (f + g) is undefined;
(b) when f ≡ ∞ and g ≡ ∞, we have fg ≡ ∞ while (f − g) is undefined;
(c) when f ≡ ∞ and g ≡ 0, we have fg ≡ 0 while [(f + g)2 − (f − g)2] is undefined.

To proceed, we may assume f , g are real-valued functions (rather than extended real-valued) when
answering this question. We then refer to lecture notes Ch1 Proposition 1.3 for a proof.

(b) Let F := {E ∈ PR : f−1(E) ∈ B}. We first show that F is a σ-algebra:

• Since f−1(R) = R ∈ B, we have R ∈ F ;
• If E ∈ F , then f−1(E) ∈ B, whence f−1(R \E) = R \ f−1(E) ∈ B, which shows R \E ∈ F ;
• If Ei ∈ F , then f−1(Ei) ∈ B for all i, whence f−1(

∪∞
i=1 Ei) =

∪∞
i=1 f

−1(Ei) ∈ B, which shows∪∞
i=1Ei ∈ F .

Since f is continuous, F contains all open sets in R. As B is the smallest σ-algebra containing all
open sets in R, we have B ⊆ F . Consequently, for all B ∈ B, we have B ∈ F , whence f−1(B) ∈ B.

Q3(a) Plainly µ([a, b]) ≤ ϕ([a, b]). To show the reverse inequality, let {Ik = [ak, bk]}∞k=1 be a collection of
closed and bounded intervals such that [a, b] ⊆

∪
k Ik. Our aim is to show

∞∑
k=1

ϕ(Ik) ≥ ϕ([a, b]) = g(b)− g(a).

1This solution is adapted from the work by former TAs.
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Approach 12

Recall that g is a continuous, non-decreasing function on R. By [a, b] ⊆
∪

k[ak, bk], we claim that
[g(a), g(b)] ⊆

∪
k[g(ak), g(bk)], which may be justified as follows. Given y ∈ [g(a), g(b)], by the

intermediate value theorem, there exists x ∈ [a, b] such that y = g(x) ∈ g([a, b]) ⊆ g(
∪

k[ak, bk]) ⊆∪
k[g(ak), g(bk)].

As a result,

g(b)− g(a) = L([g(a), g(b)]) ≤ L(
∞∪
k=1

[g(ak), g(bk)]) ≤
∞∑
k=1

L([g(ak), g(bk)]) =
∞∑
k=1

ϕ(Ik),

which was to be demonstrated.

Approach 23

Fix an ε > 0. Since g is continuous and non-decreasing, there exist rk, sk such that
−∞ < rk < ak ≤ bk < sk < ∞
g(sk)− g(bk) < ε/2k+1

g(ak)− g(rk) < ε/2k+1.

It follows that we have
[a, b] ⊆

∪
k

Ik ⊆
∪
k

(rk, sk) ⊆
∪
k

[rk, sk],

and
ε+

∞∑
k=1

ϕ(Ik) ≥
∞∑
k=1

ϕ([rk, sk]).

As [a, b] is compact and covered by {(rk, sk)}, there is a finite sub-covering, say, {(rk, sk)}Nk=1.
Let {Cℓ}ℓ∈L be the connected components of the set

∪N
k=1[rk, sk]. Since [a, b] a connected sub-

set of
∪N

k=1[rk, sk], it is contained in, say, C1. Given 1 ≤ k ≤ N , as [rk, sk] is connected,
we have either [rk, sk] ⊆ C1 or [rk, sk] ∩ C1 = ∅. Therefore, C1 =

∪
k∈K [rk, sk], where K :=

{1 ≤ k ≤ N : [rk, sk] ⊆ C1}. Since connected subsets of R are exactly singletons and intervals, we
see that C1 is a closed interval, which we denote by [Emin, Emax].
Let E := {rk}k∈K ∪{sk}k∈K be the set of all end points given by [rk, sk], k ∈ K. Given e ∈ E with
e ̸= Emax, we use e↑ to denote the immediate successor of e in E. i.e. e↑ is the smallest element
in E which is greater than e. Noting that E ⊆ [Emin, Emax], we have [e, e↑] ⊆ [Emin, Emax] =∪

k∈K [rk, sk], whence there exists k ∈ K such that

e+ e↑

2
∈ [rk, sk].

As a result, 
e <

e+ e↑

2
≤ sk ⇒ e↑ ≤ sk

e↑ >
e+ e↑

2
≥ rk ⇒ e ≥ rk.

2A student suggests this idea.
3A student suggests this idea.
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i.e. [e, e↑] ⊆ [rk, sk]. Consequently, each such [e, e↑] is contained in some [rk, sk], whence

ε+
∞∑
k=1

ϕ(Ik) ≥
∞∑
k=1

ϕ([rk, sk]) ≥
∑
k∈K

ϕ([rk, sk]) =
∑
k∈K

∑
e∈E\Emax

[e,e↑]⊆[rk,sk]

ϕ([e, e↑])

=
∑

e∈E\Emax

ϕ([e, e↑])
∑
k∈K

[e,e↑]⊆[rk,sk]

1 ≥
∑

e∈E\Emax

ϕ([e, e↑])

= ϕ([Emin, Emax]) ≥ ϕ([a, b]) since [a, b] ⊆ [Emin, Emax].

As ε > 0 is arbitrary, the result follows.

(b) Let G be the collection of all closed and bounded intervals in R. As (G, ϕ) forms a gauge, µ is an
outer measure on R. We shall apply Caratheodory’s criterion to show that µ is a Borel measure. So
pick two sets E,F ⊆ R with δ1 := dist(E,F ) > 0. We want to show that µ(E∪F ) = µ(E)+µ(F ).
By subadditivity of µ we only need to show that µ(E ∪ F ) ≥ µ(E) + µ(F ).
Let ε > 0. By cutting intervals into smaller ones, we see that

µ(E) = inf

{∑
k

ϕ(Ik) : E ⊆
∪
k

Ik, Ik closed and bounded interval with diam(Ik) < δ1/2

}
.

Therefore, we can find a countable collection I of closed intervals such that E ∪ F ⊆
∪

J∈I J ,

µ(E ∪ F ) + ε ≥
∑
J∈I

ϕ(J),

and diam(J) < δ1/2 for all J ∈ I. Thus each J ∈ I can only intersect at most one of E and F . Let
I1 := {J ∈ I : J ∩ E ̸= ∅} and I2 := {J ∈ I : J ∩ F ̸= ∅}. We have E ⊆

∪
J∈I1 J , F ⊆

∪
J∈I2 J ,

and I1 ∩ I2 = ∅, whence

µ(E ∪ F ) + ε ≥
∑
J∈I

ϕ(J)

≥
∑
J∈I1

ϕ(J) +
∑
J∈I2

ϕ(J)

≥ µ(E) + µ(F ).

Since ε > 0 is arbitrary, The result follows.

Q4(a) The answer is no. To construct a counter example, let h : [0, 1] → [0, 2] be the function given
by lecture notes Ch3 section 3.2. i.e. h(x) := x + g(x) where g is the Cantor function. Define
Φ : R → R by

Φ(x) :=


x if x < 0

h(x) if 0 ≤ x ≤ 1

x+ 1 if 1 < x.
Using the property of h, we see that Φ is an injective and continuous function on R. Denoting
the Cantor set by C, we have L(Φ(C)) = L(h(C)) = 1 by the property of h. Therefore, by lecture
notes Ch3 Proposition 3.3, there exists some non-measurable A ⊆ Φ(C). Since Φ is injective,
E := Φ−1(A) is a subset of C. As C is of measure zero, E is a measurable set, while Φ(E) = A is
not measurable.
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(b) Please refer to assignment 5 solution and remark 5 for detail.

Q5 In the following, the whole space in consideration is [0, 1], so that for E ⊆ [0, 1], Ec = [0, 1] \ E.

Approach 14

Let ε > 0. Define Fn := {x ∈ [0, 1] : f(x) > 1/n}. Since Fn ⊆ Fn+1 and
∪

n Fn = [f > 0], we have
1 = L([f > 0]) = limn→∞ L(Fn), whence there exists N such that L(FN) ≥ 1− ε. It follows that

L(Ek) = L(Ek ∩ FN) + L(Ek ∩ F c
N)

≤ N

∫
Ek∩FN

fdL+ L(Ek ∩ F c
N)

≤ N

∫
Ek

fdL+ L([0, 1])− L(FN)

≤ N

∫
Ek

fdL+ ε.

Letting k → ∞, we have limL(Ek) ≤ ε. The result follows.

Approach 2

It is proved by contradiction. Suppose there exists ε > 0 such that L(Ek) ≥ ε for infinitely many
k. By considering subsequence, we may assume L(Ek) ≥ ε for all k. As

∫ ∣∣fχEk

∣∣ dL → 0, by
lecture notes Ch1 Proposition 1.20, there exists subsequence {kj} and a null set U ⊆ [0, 1] such
that limj→∞ f(x)χEkj

(x) = 0 for all x ∈ U c.

Claim that U c ∩ [f > 0] ⊆
∪∞

L=1

∩
j≥LE

c
kj

. To justify this, note that if x ∈ U c ∩ [f > 0], then
limj→∞χEkj

(x) = 0. Since χEkj
(x) can only be zero or one, this means χEkj

(x) = 0 for all but a
finite number of j, whence x ∈

∪∞
L=1

∩
j≥LE

c
kj

.

Consequently, 1 = L(U c ∩ [f > 0]) ≤ limL L(
∩

j≥L E
c
kj
) ≤ limLL(Ec

kL
) ≤ 1 − ε, which is a

contradiction.

Q6 Plainly µ is a nonnegative function on M and µ(∅) = 0. Let {Ek} be a countable collection of
mutually disjoint sets in M. Writing E :=

∪
k Ek, we would like to show that

µ(E) =
∑
k

µ(Ek).

On the one hand, given F0 ∈ M, we have∑
k

µ(Ek) =
∑
k

inf {µ1(Ek \ F ) + µ2(Ek ∩ F ) : F ∈ M}

≤
∑
k

[µ1(Ek \ F0) + µ2(Ek ∩ F0)] = µ1(E \ F0) + µ2(E ∩ F0),

4A student suggests this solution.
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whence
∑

k µ(Ek) ≤ µ(E) by taking inf over F0 ∈ M on the R.H.S.
To get the reverse inequality, let ε > 0 be fixed. For each k, there exists Fk ∈ M such that

µ1(Ek \ Fk) + µ2(Ek ∩ Fk) ≤ µ(Ek) +
ε

2k

Let F :=
∪

k(Ek ∩ Fk). Note that F ⊆ E and E \ F =
∪

k(Ek \ Fk). Hence

µ(E) ≤ µ1(E \ F ) + µ2(E ∩ F )

=
∑
k

µ1(Ek \ Fk) +
∑
k

µ2(Ek ∩ Fk)

=
∑
k

[µ1(Ek \ Fk) + µ2(Ek ∩ Fk)]

≤
∑
k

µ(Ek) + ε.

Since ε > 0 is arbitrary, we finish the proof.
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