Q1(a) $S: X \to \overline{\mathbb{R}}$ defined by $S(x) := \sum_{k=1}^{\infty} \chi_{A_k}(x)$ is a measurable function, whence $E = S^{-1}(\{2020\})$ is measurable. Alternatively, since

$$E = \bigcup_{i_1 < \dots < i_{2020}} \left(A_{i_1} \cap \dots \cap A_{i_{2020}} \cap \bigcap_{k \notin \{i_1, \dots, i_{2020}\}} A_k^c \right)$$

and $\{(i_1, \ldots, i_{2020}) \in \mathbb{N}^{2020} : i_1 < \cdots < i_{2020}\}$ is a subset of the countable set \mathbb{N}^{2020} , we see that E is measurable.

- (b) Please refer to assignment 1 solution for a proof.
- Q2(a) We should proceed with caution for not having $\infty \infty$. Consider the following example. If we write

$$fg = \frac{1}{4} \left[(f+g)^2 - (f-g)^2 \right],$$

then

- (a) when $f \equiv \infty$ and $g \equiv -\infty$, we have $fg \equiv -\infty$ while (f + g) is undefined;
- (b) when $f \equiv \infty$ and $g \equiv \infty$, we have $fg \equiv \infty$ while (f g) is undefined;
- (c) when $f \equiv \infty$ and $g \equiv 0$, we have $fg \equiv 0$ while $[(f+g)^2 (f-g)^2]$ is undefined.

To proceed, we may assume f, g are real-valued functions (rather than extended real-valued) when answering this question. We then refer to lecture notes Ch1 Proposition 1.3 for a proof.

- (b) Let $\mathcal{F} := \{ E \in \mathcal{P}_{\mathbb{R}} : f^{-1}(E) \in \mathcal{B} \}$. We first show that \mathcal{F} is a σ -algebra:
 - Since $f^{-1}(\mathbb{R}) = \mathbb{R} \in \mathcal{B}$, we have $\mathbb{R} \in \mathcal{F}$;
 - If $E \in \mathcal{F}$, then $f^{-1}(E) \in \mathcal{B}$, whence $f^{-1}(\mathbb{R} \setminus E) = \mathbb{R} \setminus f^{-1}(E) \in \mathcal{B}$, which shows $\mathbb{R} \setminus E \in \mathcal{F}$;
 - If $E_i \in \mathcal{F}$, then $f^{-1}(E_i) \in \mathcal{B}$ for all i, whence $f^{-1}(\bigcup_{i=1}^{\infty} E_i) = \bigcup_{i=1}^{\infty} f^{-1}(E_i) \in \mathcal{B}$, which shows $\bigcup_{i=1}^{\infty} E_i \in \mathcal{F}$.

Since f is continuous, \mathcal{F} contains all open sets in \mathbb{R} . As \mathcal{B} is the smallest σ -algebra containing all open sets in \mathbb{R} , we have $\mathcal{B} \subseteq \mathcal{F}$. Consequently, for all $B \in \mathcal{B}$, we have $B \in \mathcal{F}$, whence $f^{-1}(B) \in \mathcal{B}$.

Q3(a) Plainly $\mu([a, b]) \leq \phi([a, b])$. To show the reverse inequality, let $\{I_k = [a_k, b_k]\}_{k=1}^{\infty}$ be a collection of closed and bounded intervals such that $[a, b] \subseteq \bigcup_k I_k$. Our aim is to show

$$\sum_{k=1}^{\infty} \phi(I_k) \ge \phi([a,b]) = g(b) - g(a)$$

¹This solution is adapted from the work by former TAs.

Approach 1^2

Recall that g is a continuous, non-decreasing function on \mathbb{R} . By $[a, b] \subseteq \bigcup_k [a_k, b_k]$, we claim that $[g(a), g(b)] \subseteq \bigcup_k [g(a_k), g(b_k)]$, which may be justified as follows. Given $y \in [g(a), g(b)]$, by the intermediate value theorem, there exists $x \in [a, b]$ such that $y = g(x) \in g([a, b]) \subseteq g(\bigcup_k [a_k, b_k]) \subseteq \bigcup_k [g(a_k), g(b_k)]$.

As a result,

$$g(b) - g(a) = \mathcal{L}([g(a), g(b)]) \le \mathcal{L}(\bigcup_{k=1}^{\infty} [g(a_k), g(b_k)]) \le \sum_{k=1}^{\infty} \mathcal{L}([g(a_k), g(b_k)]) = \sum_{k=1}^{\infty} \phi(I_k),$$

which was to be demonstrated.

Approach 2^3

Fix an $\varepsilon > 0$. Since g is continuous and non-decreasing, there exist r_k, s_k such that

$$\begin{cases} -\infty < r_k < a_k \le b_k < s_k < \infty \\ g(s_k) - g(b_k) < \varepsilon/2^{k+1} \\ g(a_k) - g(r_k) < \varepsilon/2^{k+1}. \end{cases}$$

It follows that we have

$$[a,b] \subseteq \bigcup_{k} I_{k} \subseteq \bigcup_{k} (r_{k},s_{k}) \subseteq \bigcup_{k} [r_{k},s_{k}],$$

and

$$\varepsilon + \sum_{k=1}^{\infty} \phi(I_k) \ge \sum_{k=1}^{\infty} \phi([r_k, s_k]).$$

As [a, b] is compact and covered by $\{(r_k, s_k)\}$, there is a finite sub-covering, say, $\{(r_k, s_k)\}_{k=1}^N$. Let $\{C_\ell\}_{\ell \in L}$ be the connected components of the set $\bigcup_{k=1}^N [r_k, s_k]$. Since [a, b] a connected subset of $\bigcup_{k=1}^N [r_k, s_k]$, it is contained in, say, C_1 . Given $1 \leq k \leq N$, as $[r_k, s_k]$ is connected, we have either $[r_k, s_k] \subseteq C_1$ or $[r_k, s_k] \cap C_1 = \emptyset$. Therefore, $C_1 = \bigcup_{k \in K} [r_k, s_k]$, where K := $\{1 \leq k \leq N : [r_k, s_k] \subseteq C_1\}$. Since connected subsets of \mathbb{R} are exactly singletons and intervals, we see that C_1 is a closed interval, which we denote by $[E_{\min}, E_{\max}]$.

Let $E := \{r_k\}_{k \in K} \cup \{s_k\}_{k \in K}$ be the set of all end points given by $[r_k, s_k], k \in K$. Given $e \in E$ with $e \neq E_{\max}$, we use e^{\uparrow} to denote the immediate successor of e in E. i.e. e^{\uparrow} is the smallest element in E which is greater than e. Noting that $E \subseteq [E_{\min}, E_{\max}]$, we have $[e, e^{\uparrow}] \subseteq [E_{\min}, E_{\max}] = \bigcup_{k \in K} [r_k, s_k]$, whence there exists $k \in K$ such that

$$\frac{e+e^{\uparrow}}{2} \in [r_k, s_k]$$

As a result,

$$\begin{cases} e < \frac{e + e^{\uparrow}}{2} \le s_k \Rightarrow e^{\uparrow} \le s_k \\ e^{\uparrow} > \frac{e + e^{\uparrow}}{2} \ge r_k \Rightarrow e \ge r_k. \end{cases}$$

²A student suggests this idea.

³A student suggests this idea.

i.e. $[e, e^{\uparrow}] \subseteq [r_k, s_k]$. Consequently, each such $[e, e^{\uparrow}]$ is contained in some $[r_k, s_k]$, whence

$$\varepsilon + \sum_{k=1}^{\infty} \phi(I_k) \ge \sum_{k=1}^{\infty} \phi([r_k, s_k]) \ge \sum_{k \in K} \phi([r_k, s_k]) = \sum_{k \in K} \sum_{\substack{e \in E \setminus E_{\max} \\ [e, e^{\uparrow}] \subseteq [r_k, s_k]}} \phi([e, e^{\uparrow}])$$
$$= \sum_{e \in E \setminus E_{\max}} \phi([e, e^{\uparrow}]) \sum_{\substack{k \in K \\ [e, e^{\uparrow}] \subseteq [r_k, s_k]}} 1 \ge \sum_{e \in E \setminus E_{\max}} \phi([e, e^{\uparrow}])$$
$$= \phi([E_{\min}, E_{\max}]) \ge \phi([a, b]) \quad \text{since } [a, b] \subseteq [E_{\min}, E_{\max}].$$

As $\varepsilon > 0$ is arbitrary, the result follows.

(b) Let \mathcal{G} be the collection of all closed and bounded intervals in \mathbb{R} . As (\mathcal{G}, ϕ) forms a gauge, μ is an outer measure on \mathbb{R} . We shall apply Caratheodory's criterion to show that μ is a Borel measure. So pick two sets $E, F \subseteq \mathbb{R}$ with $\delta_1 := \operatorname{dist}(E, F) > 0$. We want to show that $\mu(E \cup F) = \mu(E) + \mu(F)$. By subadditivity of μ we only need to show that $\mu(E \cup F) \ge \mu(E) + \mu(F)$.

Let $\varepsilon > 0$. By cutting intervals into smaller ones, we see that

$$\mu(E) = \inf\left\{\sum_{k} \phi(I_k) : E \subseteq \bigcup_{k} I_k, I_k \text{ closed and bounded interval with } \operatorname{diam}(I_k) < \delta_1/2\right\}.$$

Therefore, we can find a countable collection \mathcal{I} of closed intervals such that $E \cup F \subseteq \bigcup_{J \in \mathcal{I}} J$,

$$\mu(E \cup F) + \varepsilon \ge \sum_{J \in \mathcal{I}} \phi(J),$$

and diam $(J) < \delta_1/2$ for all $J \in \mathcal{I}$. Thus each $J \in \mathcal{I}$ can only intersect at most one of E and F. Let $\mathcal{I}_1 := \{J \in \mathcal{I} : J \cap E \neq \emptyset\}$ and $\mathcal{I}_2 := \{J \in \mathcal{I} : J \cap F \neq \emptyset\}$. We have $E \subseteq \bigcup_{J \in \mathcal{I}_1} J, F \subseteq \bigcup_{J \in \mathcal{I}_2} J$, and $\mathcal{I}_1 \cap \mathcal{I}_2 = \emptyset$, whence

$$\begin{split} \mu(E \cup F) + \varepsilon &\geq \sum_{J \in \mathcal{I}} \phi(J) \\ &\geq \sum_{J \in \mathcal{I}_1} \phi(J) + \sum_{J \in \mathcal{I}_2} \phi(J) \\ &\geq \mu(E) + \mu(F). \end{split}$$

Since $\varepsilon > 0$ is arbitrary, The result follows.

Q4(a) The answer is no. To construct a counter example, let $h : [0,1] \to [0,2]$ be the function given by lecture notes Ch3 section 3.2. i.e. h(x) := x + g(x) where g is the Cantor function. Define $\Phi : \mathbb{R} \to \mathbb{R}$ by

$$\Phi(x) := \begin{cases} x & \text{if } x < 0\\ h(x) & \text{if } 0 \le x \le 1\\ x+1 & \text{if } 1 < x. \end{cases}$$

Using the property of h, we see that Φ is an injective and continuous function on \mathbb{R} . Denoting the Cantor set by \mathcal{C} , we have $\mathcal{L}(\Phi(\mathcal{C})) = \mathcal{L}(h(\mathcal{C})) = 1$ by the property of h. Therefore, by lecture notes Ch3 Proposition 3.3, there exists some non-measurable $A \subseteq \Phi(\mathcal{C})$. Since Φ is injective, $E := \Phi^{-1}(A)$ is a subset of \mathcal{C} . As \mathcal{C} is of measure zero, E is a measurable set, while $\Phi(E) = A$ is not measurable.

(b) Please refer to assignment 5 solution and remark 5 for detail.

Q5 In the following, the whole space in consideration is [0,1], so that for $E \subseteq [0,1]$, $E^c = [0,1] \setminus E$.

Approach 1^4

Let $\varepsilon > 0$. Define $F_n := \{x \in [0, 1] : f(x) > 1/n\}$. Since $F_n \subseteq F_{n+1}$ and $\bigcup_n F_n = [f > 0]$, we have $1 = \mathcal{L}([f > 0]) = \lim_{n \to \infty} \mathcal{L}(F_n)$, whence there exists N such that $\mathcal{L}(F_N) \ge 1 - \varepsilon$. It follows that

$$\begin{aligned} \mathcal{L}(E_k) &= \mathcal{L}(E_k \cap F_N) + \mathcal{L}(E_k \cap F_N^c) \\ &\leq N \int_{E_k \cap F_N} f d\mathcal{L} + \mathcal{L}(E_k \cap F_N^c) \\ &\leq N \int_{E_k} f d\mathcal{L} + \mathcal{L}([0,1]) - \mathcal{L}(F_N) \\ &\leq N \int_{E_k} f d\mathcal{L} + \varepsilon. \end{aligned}$$

Letting $k \to \infty$, we have $\overline{\lim} \mathcal{L}(E_k) \leq \varepsilon$. The result follows.

Approach 2

It is proved by contradiction. Suppose there exists $\varepsilon > 0$ such that $\mathcal{L}(E_k) \ge \varepsilon$ for infinitely many k. By considering subsequence, we may assume $\mathcal{L}(E_k) \ge \varepsilon$ for all k. As $\int |f\chi_{E_k}| d\mathcal{L} \to 0$, by lecture notes Ch1 Proposition 1.20, there exists subsequence $\{k_j\}$ and a null set $U \subseteq [0, 1]$ such that $\lim_{j\to\infty} f(x)\chi_{E_{k_i}}(x) = 0$ for all $x \in U^c$.

Claim that $U^c \cap [f > 0] \subseteq \bigcup_{L=1}^{\infty} \bigcap_{j \ge L} E_{k_j}^c$. To justify this, note that if $x \in U^c \cap [f > 0]$, then $\lim_{j\to\infty} \chi_{E_{k_j}}(x) = 0$. Since $\chi_{E_{k_j}}(x)$ can only be zero or one, this means $\chi_{E_{k_j}}(x) = 0$ for all but a finite number of j, whence $x \in \bigcup_{L=1}^{\infty} \bigcap_{j \ge L} E_{k_j}^c$.

Consequently, $1 = \mathcal{L}(U^c \cap [f > 0]) \leq \lim_L \mathcal{L}(\bigcap_{j \geq L} E^c_{k_j}) \leq \overline{\lim}_L \mathcal{L}(E^c_{k_L}) \leq 1 - \varepsilon$, which is a contradiction.

Q6 Plainly μ is a nonnegative function on \mathcal{M} and $\mu(\emptyset) = 0$. Let $\{E_k\}$ be a countable collection of mutually disjoint sets in \mathcal{M} . Writing $E := \bigcup_k E_k$, we would like to show that

$$\mu(E) = \sum_{k} \mu(E_k)$$

On the one hand, given $F_0 \in \mathcal{M}$, we have

$$\sum_{k} \mu(E_{k}) = \sum_{k} \inf \{ \mu_{1}(E_{k} \setminus F) + \mu_{2}(E_{k} \cap F) : F \in \mathcal{M} \}$$

$$\leq \sum_{k} [\mu_{1}(E_{k} \setminus F_{0}) + \mu_{2}(E_{k} \cap F_{0})] = \mu_{1}(E \setminus F_{0}) + \mu_{2}(E \cap F_{0}),$$

⁴A student suggests this solution.

whence $\sum_k \mu(E_k) \leq \mu(E)$ by taking inf over $F_0 \in \mathcal{M}$ on the R.H.S. To get the reverse inequality, let $\varepsilon > 0$ be fixed. For each k, there exists $F_k \in \mathcal{M}$ such that

$$\mu_1(E_k \setminus F_k) + \mu_2(E_k \cap F_k) \le \mu(E_k) + \frac{\varepsilon}{2^k}$$

Let $F := \bigcup_k (E_k \cap F_k)$. Note that $F \subseteq E$ and $E \setminus F = \bigcup_k (E_k \setminus F_k)$. Hence

$$\mu(E) \leq \mu_1(E \setminus F) + \mu_2(E \cap F)$$

= $\sum_k \mu_1(E_k \setminus F_k) + \sum_k \mu_2(E_k \cap F_k)$
= $\sum_k [\mu_1(E_k \setminus F_k) + \mu_2(E_k \cap F_k)]$
 $\leq \sum_k \mu(E_k) + \varepsilon.$

Since $\varepsilon > 0$ is arbitrary, we finish the proof.