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TA’s solutionﬁl to 5011 midterm exam

S : X — R defined by S(z) == >77, X, () is a measurable function, whence E = S~'({2020})
is measurable. Alternatively, since

E= |J AN Ay 0 () A4
Z'1<"'<7:2020 k¢{21 ..... igozo}
and {(i1,...,49090) € N?%0 14} < .-+ <y} is a subset of the countable set N2 we see that F

is measurable.

Please refer to assignment 1 solution for a proof.

We should proceed with caution for not having co — co. Consider the following example. If we
write

fo==[(f+9)?=(f—9)?],

N

then

(a) when f = o0 and g = —o0, we have fg = —oo while (f + g) is undefined;
(b) when f = 0o and g = oo, we have fg = oo while (f — g) is undefined;
(c) when f = oo and g = 0, we have fg = 0 while [(f + ¢)? — (f — ¢)?] is undefined.

To proceed, we may assume f, g are real-valued functions (rather than extended real-valued) when
answering this question. We then refer to lecture notes Chl Proposition 1.3 for a proof.

Let F:={E € P : f~'(E) € B}. We first show that F is a o-algebra:

o Since f7}(R) =R € B, we have R € F;

o If E € F, then f~Y(F) € B, whence f71(R\ E) =R\ f~'(F) € B, which shows R\ FE € F;

o If B, € F, then f~(E;) € Bfor all 4, whence [~ (U2, Ei) = U2, fH(E;) € B, which shows
U=, Ei € F.

Since f is continuous, F contains all open sets in R. As B is the smallest o-algebra containing all
open sets in R, we have B C F. Consequently, for all B € B, we have B € F, whence f~!(B) € B.

Plainly u([a, b]) < ¢([a, b]). To show the reverse inequality, let {I; = [ax, bx]},—, be a collection of
closed and bounded intervals such that [a,b] C |J, I. Our aim is to show

> 6(I) = ¢([a, b]) = g(b) — g(a).

!This solution is adapted from the work by former TAs.



Approach Ji

Recall that ¢ is a continuous, non-decreasing function on R. By [a,b] C |, [ax, bx], we claim that
[g(a), g(b)] € U,lg(ar), g(by)], which may be justified as follows. Given y € [g(a), g(b)], by the
intermediate value theorem, there exists « € [a, b] such that y = g(x) € g([a, b]) € g(U,[ar, bx]) €

Uelg(ar), g(br)].

As a result,

K
n
NE
=N
=

9(b) = g(a) = L([g(a), g(0)]) < L({Jlg(ar), g(br)]) <

k=1 k=1 k=1

which was to be demonstrated.
Approach 25

Fix an € > 0. Since g is continuous and non-decreasing, there exist 7y, s such that

—00 < T < a < b < s <00
g(sk) — g(br) < /2!
glag) — g(ry) <e/21.

la,b] € UIk - U(Tk,sk U T Sk
% % k

It follows that we have

and .
€+Z¢Ik EZd) Tk, Sk))
=1 )

As [a,0] is compact and covered by {(rx,sx)}, there is a finite sub-covering, say, {(7x,sx)}r;.
Let {C¢},c; be the connected components of the set U, [, s&]. Since [a,b] a connected sub-
set of Uivzl[rk,sk], it is contained in, say, C;. Given 1 < k < N, as [rg, Sg] is connected,
we have either [rg,s;] € Cy or [ry,sp] N Cy = 0. Therefore, C1 = U7, sk}, where K :=
{1 <k <N :rg, sk C€Ch}. Since connected subsets of R are exactly singletons and intervals, we
see that C} is a closed interval, which we denote by [Fuin, Emax)-

Let E = {ri} e U{Sk}rex be the set of all end points given by [r, sx], k € K. Given e € E with
e # Eyax, we use el to denote the immediate successor of e in E. i.e. el is the smallest element
in F which is greater than e. Noting that £ C [Ewin, Emax], We have [e,e!] C [Euin, EBuax] =
Uker [7xs 5], whence there exists k € K such that

e+el
2

€ [k, Sk)-

As a result,
e+ el

< sp = el <5
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2A student suggests this idea.
3A student suggests this idea.



i.e. [e,e!] C [ry,s]. Consequently, each such [e, €] is contained in some [ry, si], whence

ety o) 2) o(lresi) 2y ollrs) =, > ()

kK kEK e€E\FEmax
le.e"Clre,sk]

= Y sllee) Y 1= Y oee))

EEE\Emax keK EEE\Emax
le,eT]C[rg,s]

= O([Emin, Prmax]) > ¢([a,b]) since [a,b] C [Emnin, Puax]-

As € > 0 is arbitrary, the result follows.

(b) Let G be the collection of all closed and bounded intervals in R. As (G, ¢) forms a gauge, u is an
outer measure on R. We shall apply Caratheodory’s criterion to show that p is a Borel measure. So
pick two sets £, F C R with 4, := dist(E, F') > 0. We want to show that u(EUF) = u(E)+ p(F).
By subadditivity of u we only need to show that u(E U F) > u(E) + u(F).

Let € > 0. By cutting intervals into smaller ones, we see that

w(E) = inf {Z o(Iy) - E C U It, I closed and bounded interval with diam(1;,) < 61/2 ;.
k k

Therefore, we can find a countable collection Z of closed intervals such that EU F C ;.7 J,

WEUF) +e>> ¢(J),
JeT
and diam(J) < §;/2 for all J € Z. Thus each J € Z can only intersect at most one of E and F'. Let
Li={JeZ:JNE#0W}and I, :={J€Z: JNF #0}. We have £ C U7, J, F € U ez, J,
and Z; N Z, = 0, whence

WEUF)+e> ¢(J)
> o)+ Y o)
JeI JeIr

> j(E) + u(F).

Since € > 0 is arbitrary, The result follows.

Q4(a) The answer is no. To construct a counter example, let i : [0,1] — [0,2] be the function given
by lecture notes Ch3 section 3.2. i.e. h(x) := x + g(z) where g is the Cantor function. Define

®:R— R by
x ifz <0
Q(z) =< h(z) f0<z<1
r+1 ifl<ux.

Using the property of h, we see that ® is an injective and continuous function on R. Denoting
the Cantor set by C, we have L(®(C)) = L(h(C)) = 1 by the property of h. Therefore, by lecture
notes Ch3 Proposition 3.3, there exists some non-measurable A C ®(C). Since ® is injective,
E := ®71(A) is a subset of C. As C is of measure zero, E is a measurable set, while ®(F) = A is
not measurable.



(b)

Q5

Q6

Please refer to assignment 5 solution and remark 5 for detail.

In the following, the whole space in consideration is [0, 1], so that for £ C [0, 1], £ = [0,1] \ E.
Approach il

Let ¢ > 0. Define F,, := {z € [0,1] : f(z) > 1/n}. Since F,, C F,,4; and |J,, F,, = [f > 0], we have
= L([f > 0]) = lim,,_,o L(F,,), whence there exists N such that L(Fy) > 1 —e. It follows that

L(Ey) = L(E, N Fy) + L(E N FY)
<N fdL + L(Ey N FS)

EyNFNn

<N [ fdL+ £([0,1]) - £(Fy)

Ey

<N fdL +e.

Ey

Letting k — 0o, we have im£(E},) < e. The result follows.
Approach 2

It is proved by contradiction. Suppose there exists € > 0 such that £(Ej) > ¢ for infinitely many
k. By considering subsequence, we may assume L(Ey) > ¢ for all k. As [ | x Ek‘ dL — 0, by
lecture notes Chl Proposition 1.20, there exists subsequence {k;} and a null set U C [0, 1] such
that lim; f(m)XEkj () =0 for all x € U°.

Claim that U N [f > 0] € UL, N5y Bi,- To justify this, note that if 2 € U°N [f > 0], then
lim; oo X, (%) = 0. Since X, (x) can only be zero or one, this means X (z) = 0 for all but a
finite number of j, whence x € Uz, ;51 £%,-

Consequently, 1 = LU N [f > 0]) < limp £((;5, Ef,) < lim L(Ef ) < 1 — ¢, which is a
contradiction. -

Plainly u is a nonnegative function on M and u()) = 0. Let {E);} be a countable collection of
mutually disjoint sets in M. Writing E := J, Ej, we would like to show that

=> u(Ey).
k
On the one hand, given Fy € M, we have
S (B = S inf {u(Bu\ F) + a(Ec N F) : F e M)
k k

< Z[Ml(Ek \ Fo) + pa(Ey N Fo)] = i (E'\ Fo) + p2(E N Fy),

4A student suggests this solution.



whence ), p(Ey) < p(E) by taking inf over Fy € M on the R.H.S.
To get the reverse inequality, let € > 0 be fixed. For each k, there exists Fj, € M such that

1 (B \ Fr) + po( B, N Fy) < u(Ey) + %
Let F := U,(Ex N Fy,). Note that F C E and E\ F = {J,(Ej, \ F). Hence
p(E) < m(EN\F) + pa(ENF)
= (B \ F) + Y pe(Ep N F)
= i[m(Ek \ Fi) + Mkz(Ek N Fy)]

< ZM(Ek) +e.

Since € > 0 is arbitrary, we finish the proof.



