TA's remarks on 5011 homework 7

1. In this 12-question warm-up exercise, you can gain 10/12 marks from each answered question. On the other hand, there is mark deduction if your Hw2-5 are overdue. The arrangement is as follows.

No. of late submittion	Mark deduction
1	0.5
2	1.5
3	3
4	5

For example, if you have answered 11 questions in Hw7, and you have submitted Hw1,3,5 late while you haven't submitted Hw2,4, then your marks for Hw7 is

$$11 \times \frac{10}{12} - 1.5 = 7.67.$$

- 2. The TA is not familiar with functional analysis, so he is not so qualified to review the homework. Sorry about that.
- 3. Nevertheless, let's try to fill in some of the blank of the solution. The first is Q5. Let S be a dense set of ℓ^{∞} . To show that S is uncountable, a formal way is to find an injective map from some uncountable set to S.

Since S is dense in ℓ^{∞} , for each $a \in \{0,1\}^{\mathbb{N}}$, there exists $s_a \in S$ such that $||s_a - a||_{\infty} < 0.5$. Consider the function $f : \{0,1\}^{\mathbb{N}} \to S$ defined by $f(a) := s_a$. If f(a) = f(b) for some $a, b \in \{0,1\}^{\mathbb{N}}$, then $||a - b||_{\infty} \leq ||a - f(a)||_{\infty} + ||f(b) - b||_{\infty} < 1$, whence a = b and f is injective. This shows $\operatorname{card}(\{0,1\}^{\mathbb{N}}) \leq \operatorname{card}(S)$.

4. In Q9(c), to find a sequence $\{f_n\} \in X$ such that $||g - f_n|| \to 1$, an approach is as follows. Define a continuous function $h_n : [0, 1] \to \mathbb{R}$ by

$$h_n(x) := \begin{cases} 0 & \text{if } x = 0\\ \text{linear} & \text{if } x \in (0, \delta_n)\\ 1 + \frac{1}{n} & \text{if } x \in [\delta_n, 1], \end{cases}$$

where δ_n is a small number such that $\int_0^1 h_n \ge 1 + \frac{1}{2n}$. The function $\Phi : [0,1] \to \mathbb{R}$ defined by $\Phi(\theta) := \int_0^1 (g - \theta h_n)$ is continuous. As $\Phi(0) = 1 > 0$ and $\Phi(1) \le 1 - (1 + \frac{1}{2n}) < 0$, by the intermediate value theorem there exists $\theta_0 \in [0,1]$ such that $\Phi(\theta_0) = 0$. If we define $f_n|_{[0,1]} := g|_{[0,1]} - \theta_0 h_n$, then $\int_0^1 f_n = 0$ and $\|g - f_n\|_{[0,1]} = \theta_0 \cdot \|h_n\|_{[0,1]} \le 1 + \frac{1}{n}$. We can define $f_n|_{[-1,0]}$ similarly, so that the resulting f_n is continuous on [-1,1] with $f_n(0) = g(0), f_n \in X$, and $\|g - f_n\| \le 1 + \frac{1}{n}$.