
TA’s remarks on 5011 homework 6

1. The mark distribution for Hw6 is:
Q2, 4, 5, 6 (2.5 marks each).

2. In the solution to Q4, note that {0, 1} ⊆ K, whence G = [0, 1] \K = (0, 1)∩Kc is an open set in R.

3. An alternative approach to Q4 is as follows. Since Q ∩ [0, 1] is a set of L1-measure zero, by outer
regularity there exists an open set O ⊇ Q ∩ [0, 1] such that L1(O) ≤ ε/2. Let U := O ∩ (0, 1), so
that U ⊆ [0, 1] is an open set dense in [0, 1], and L1(U) ≤ L1(O) ≤ ε/2.
Define f : [0, 1] → R by f(x) := L1(U∪(0, x)). If h ≥ 0 and x, x+h ∈ [0, 1], then |f(x+ h)− f(x)| ≤
L1([x, x+h]) = h. This shows that f is continuous. Since f(0) = L1(U) ≤ ε/2 and f(1) = L1([0, 1]) =
1, by the intermediate value theorem, there exists x0 ∈ [0, 1] such that f(x0) = ε. As a result, the
set G := U ∪ (0, x0) satisfies the desired properties.
We remark that the set O at the beginning can also be taken as∪

rn∈Q∩[0,1]

(rn −
1

16

ε

2n
, rn +

1

16

ε

2n
).

4. Q5 gives a glimpse of how fractal geometry plays a role in the study of number theory (numeration
systems and beta-expansions to be specific). Here we present an alternative solution. The interested
set A can be constructed like the Cantor set. In each stage, we divide the remaining intervals into
10 parts of equal length, and we remove the 5th. In this way, at the k-th stage, each interval is of
length 1/10k. Each interval from the (k−1)-th stage produces 10−1 = 9 intervals for the k-th stage,
so by induction, there are in total 9k intervals at the k-th stage. If Ak denotes the set for the k-th
stage, then

L1(A) = lim
k

L1(Ak) = lim
k

(
9

10

)k

= 0.

This fits the probabilistic heuristic that the probability for a random x ∈ [0, 1] to have no digit 4 in
the first k decimal places is (9/10)k.

5. We may think of Q8(a) this way. It appears that for any open and bounded intervals I, J , the
function x 7→ L1((x + I) ∩ J) is continuous. Since an open set in R can be written as a countable
disjoint union of open intervals, therefore by approximation we should be able to get the result.
To be more precise, write V as a disjoint union of open intervals, V =:

∪∞
j=1 Jj (some Jj may be

empty). As L1(V ) < ∞, each Jj is bounded. Given an open and bounded interval I (which may
also be empty), define fI,n, fI : R → R by

fI,n(x) :=
n∑

j=1

L1((x+ I) ∩ Jj), fI(x) := L1((x+ I) ∩ V ).

Since

|fI,n(x)− fI(x)| =

∣∣∣∣∣
n∑

j=1

L1((x+ I) ∩ Jj)−
∞∑
j=1

L1((x+ I) ∩ Jj)

∣∣∣∣∣ ≤
∞∑

j=n+1

L1(Jj),

and
∑∞

1 L1(Jj) = L1(V ) < ∞, we see that fI,n converges uniformly to fI . As each fI,n is continuous,
so is fI .
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Next, write U as a disjoint union of open intervals, U =:
∪∞

i=1 Ii. Again, as L1(U) < ∞, each Ii is
bounded. Define gn, g : R → R by

gn(x) :=
n∑

i=1

fIi(x), g(x) := L1((x+ U) ∩ V ).

As

|gn(x)− g(x)| =

∣∣∣∣∣
n∑

i=1

L1((x+ Ii) ∩ V )−
∞∑
i=1

L1((x+ Ii) ∩ V )

∣∣∣∣∣ ≤
∞∑

i=n+1

L1(x+ Ii) =
∞∑

i=n+1

L1(Ii),

we see that gn converges uniformly to g. Since each gn is continuous, so is g, which was to be
demonstrated.
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